
Icaro Gonçalves a, Fabiano Brito b

a Dpto. de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo, R. do Matão 1010, São Paulo, SP 05508-900, Brazil
b Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, 09.210-170 Santo André, Brazil

A R T I C L E I N F O

Article history:
Available online 31 May 2016

This corrigendum corrects some unfortunate typographical errors that had been forgotten in [1].

(1) In section 2, “δ” stands for Kronecker’s symbol.
(2) Theorem 1.2 in [1] should be read as follows:

Theorem 1.2. Let \mathcal{D}^4 be a distribution on a Riemannian manifold M^{4+p}. Let L be a compact umbilic submanifold of M, with dimension 4, and suppose the sectional curvatures of M are positive along L. If \mathcal{D}^4 is tangent to L, then $\epsilon(\mathcal{D}) \neq 0$.

(3) In section 4, “Proof of Theorem 1.2” shows the proof of Corollary 4.2. The corrected one is very similar to the demonstration of Theorem 1.1, except for one difference: it relies on Milnor’s proof of Hopf’s conjecture in dimension 4.
(4) The foliation considered in Corollary 4.5 must have at least one compact leaf.

Finally, we present a revised version of Theorem 1.3:

Theorem 1.3. Let \mathcal{F} be a SL-foliation of dimension 4 on a closed Riemannian manifold M^{4+p}. If the sectional curvatures of the leaves always have the same sign, then $\chi(\mathcal{F}, v) = \int_M \epsilon(\mathcal{F}) \wedge v \geq 0$.

We thank our readers for their understanding.

References

DOI of original article: http://dx.doi.org/10.1016/j.crma.2016.03.014
E-mail addresses: icarog@ime.usp.br (I. Gonçalves), fabiano@ime.usp.br (F. Brito).

http://dx.doi.org/10.1016/j.crma.2016.05.015
1631-073X/© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.