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r é s u m é

Dans cette note, nous démontrons la non-dégénérescence de la mesure de volume 
au sens de Kobayashi–Eisenman pour une variété dirigée singulière (X, V ), c’est-à-dire 
l’hyperbolicité de la mesure au sens de Kobayashi de (X, V ) lorsque le faisceau canonique 
KV de V est gros au sens de Demailly.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let (X, V ) be a complex directed manifold, i.e X is a complex manifold equipped with a holomorphic subbundle V ⊂ T X . 
The philosophy behind the introduction of directed manifolds, as initially suggested by J.-P. Demailly, is that there are 
certain fonctorial constructions that work better in the category of directed manifolds (ref. [3]). This is so even in the 
“absolute case”, i.e. in the case V = T X . In general, singularities of V cannot be avoided, even after blowing-up, and V can 
be seen as a coherent subsheaf of T X such that T X/V is torsion free. Such a sheaf V is a subbundle of T X outside of an 
analytic subset of codimension at least 2, which we denote here by Sing(V ). The Kobayashi–Eisenman volume measure can 
also be defined for such (singular) directed pair (X, V ).
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Definition 1.1. Let (X, V ) be a directed manifold with dim(X) = n and let rank(V ) = r. Then the Kobayashi–Eisenman vol-
ume measure of (X, V ) is the pseudometric defined on any ξ ∈ �r V x for x /∈ Sing(V ), by

er
X,V (ξ) := inf{λ > 0; ∃ f : Br → X, f (0) = x, λ f∗(τ0) = ξ, f∗(TBr ) ⊂ V },

where Br is the unit ball in Cr and τ0 = ∂
∂t1

∧ · · · ∧ ∂
∂tr

is the unit r-vector of Cr at the origin. One says that (X, V ) is 
Kobayashi measure hyperbolic if er

X,V is generically positive definite, i.e. positive definite on a Zariski open set.

In [3], the author also introduced the concept of canonical sheaf KV for any singular directed variety (X, V ), and he 
showed that the “bigness” of KV implies that all non-constant entire curves f : C → (X, V ) must satisfy certain global 
algebraic differential equations. In this note, we study the Kobayashi–Eisenman volume measure of the singular directed 
variety (X, V ), and give another geometric consequence of the bigness of KV . Our main theorem is as follows.

Theorem 1.2. Let (X, V ) be a compact complex directed variety (where V is possibly singular), and let rank(V ) = r, dim(X) = n. If V
is of general type (see Definition 2.1 below), with a base locus Bs(V ) � X (see also Definition 2.1), then (X, V ) is Kobayashi measure 
hyperbolic.

Remark 1. In the absolute case, Theorem 1.2 is proved in [6] and [7]; for a smooth directed variety it is proved in [3].

2. Proof of the main theorem

Proof. Since the singular set Sing(V ) of V is an analytic set of codimension ≥ 2, the top exterior power �r V of V is a 
coherent sheaf of rank 1, and it admits a generically injective morphism to its bidual (�r V )∗∗ , which is an invertible sheaf 
(and therefore, can be seen as a line bundle). We give below an explicit construction of the multiplicative cocycle that 
represents the line bundle (�r V )∗∗ .

Since V ⊂ T X is a coherent sheaf, we can take a covering by open coordinate balls {Uα} satisfying the following prop-
erty: on each Uα , there exist sections e(α)

1 , . . . , e(α)

kα
∈ �(Uα, T X |Uα ) that generate the coherent sheaf V on Uα . Thus the 

sections e(α)
i1

∧ · · · ∧ e(α)
ir

∈ �(Uα, �r T X |Uα ) with (i1, . . . , ir) varying among all r-tuples of (1, . . . , kα) generate the coherent 
sheaf �r V |Uα , which is a subsheaf of �r T X |Uα . Denote v(α)

I := e(α)
i1

∧ · · · ∧ e(α)
ir

. Then, since codim(Sing(V )) ≥ 2 we know 
that the common zero set of the family of sections v(α)

I is contained in Sing(V ), and thus all tensors v(α)
I are proportional 

via meromorphic factors. By simplifying in a given section v(α)
I0

the common zero divisor of the various meromorphic quo-
tients v(α)

I0
/v(α)

I , one obtains a section vα ∈ �(Uα, �r T X |Uα ) (uniquely defined up to an invertible factor), and holomorphic 
functions {λI ∈ O(Uα)} that do not have common factors, such that v(α)

I = λI vα for all I . From this construction, we can 
see that on Uα ∩ Uβ , vα and vβ coincide up to multiplication by a nowhere-vanishing holomorphic function, i.e.

vα = gαβ vβ

on Uα ∩ Uβ 
= ∅, where gαβ ∈ O∗
X (Uα ∩ Uβ). This multiplicative cocycle {gαβ} defines the line bundle (�r V )∗∗∗ . If we take 

a Kähler metric ω on X , it induces a smooth Hermitian metric Hr on �r T X , and from the natural inclusion �r V → �r T X , 
ω also induces a singular Hermitian metric hs of (�r V )∗∗∗ whose local weight ϕα is equal to log |vα |2Hr

. It is easy to show 
that hs has analytic singularities, and that its set of singularities satisfies Sing(hs) ⊂ Sing(V ). Indeed, we have Sing(hs) =⋃

α{p ∈ Uα |vα(p) = 0}. Now, one gives the following definition.

Definition 2.1. With the notations above, (X, V ) is said to be of general type if there exists a singular Hermitian metric h on 
the invertible sheaf (�r V )∗∗∗ with analytic singularities satisfying the following two conditions:

(1) the curvature current �h ≥ εω, i.e., it is a Kähler current;
(2) h is more singular than hs , that is, there exists a globally defined quasi-psh function χ which is bounded from above 

such that

eχ · h = hs.

Since h and hs have both analytic singularities, χ also has analytic singularities, and thus eχ is a continuous function. 
Moreover, eχ(p) > 0 if p /∈ Sing(h). We define the base locus of V to be

Bs(V ) :=
⋂

h

Sing(h),

where h varies among all the singular metrics on (�r V )∗∗∗ satisfying Properties (1) and (2) above.
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Now fix a point p /∈ Bs(V ) ∪ Sing(V ); then by Definition 2.1 we can find a singular metric h on (�r V )∗∗∗ with analytic 
singularities satisfying Properties (1) and (2) above, and p /∈ Sing(h). Let f be any holomorphic map from the unit ball 
Br ⊂ Cr to (X, V ) such that f (0) = p, then on each f −1(Uα) we have

f∗
(

∂

∂t1
∧ · · · ∧ ∂

∂tr

)
= a(α)(t) · vα| f ,

where a(α)(t) is meromorphic function, with poles contained in f −1
(

Sing(V ) ∩ Uα

)
, and satisfies

∣∣∣∣ f∗
(

∂

∂t1
∧ · · · ∧ ∂

∂tr

)∣∣∣∣2

Hr

= |a(α)(t)|2 · |vα|2Hr
= |a(α)(t)|2 · eϕα◦ f ,

which is bounded on any relatively compact set.
Therefore, ∂

∂t1
∧ · · · ∧ ∂

∂tr
can be seen as a (meromorphic!) section of f ∗(�r V )∗∗ , and thus we set

δ(t) :=
∣∣∣∣ ∂

∂t1
∧ · · · ∧ ∂

∂tr

∣∣∣∣2

f ∗h−1
= |a(α)(t)|2 · eφα◦ f , (1)

where φα is the local weight of h. By Property (2) above, there exists a globally defined quasi-psh function χ on X which 
is bounded from above such that

δ(t) = eχ◦ f ·
∣∣∣∣ f∗

(
∂

∂t1
∧ · · · ∧ ∂

∂tr

)∣∣∣∣2

Hr

. (2)

Now we define a semi-positive metric γ̃ on Br by putting γ̃ := f ∗ω, then we have∣∣ f∗( ∂
∂t1

∧ · · · ∧ ∂
∂tr

)
∣∣

Hr

det γ̃
≤ C0( f (t)) ≤ C1, (3)

where C0(z) is a bounded function on X which does not depend on f , and we take C1 to be its upper bound. One can find 
a conformal factor λ(t) so that γ := λγ̃ satisfies

detγ = δ(t)
1
2 .

Combining (2) and (3) together, we obtain

λ ≤ C
1
r

1 · e
χ◦ f

2r .

Since �h ≥ εω, by (1) and (2) we have

ddc log detγ ≥ ε

2
f ∗ω = ε

2λ
γ ≥ ε

2C
1
r

1

e− χ◦ f
2r γ .

By Property (2) in Definition 2.1 applied to h, there exists a constant C2 > 0 such that

e− χ
2r ≥ C2.

Denote A := εC2

2C
1
r

1

, and it is a universal constant that does not depend on f . Then by the Ahlfors–Schwarz Lemma (see 

Lemma 2.2 below), we have

δ(0) ≤
(

r + 1

A

)2r

.

Since p /∈ Sing(h) ∪ Sing(V ), then we have eχ(p) > 0, and thus∣∣∣∣ f∗
(

∂

∂t1
∧ · · · ∧ ∂

∂tr

)∣∣∣∣2

Hr

(0) ≤ e−χ(p)δ(0) = e−χ(p) ·
(

r + 1

A

)2r

.

Since f is taken to be arbitrary, we conclude by Definition 1.1 that the Kobayashi–Eisenman volume measure er
X,V is positive 

definite outside of Bs(V ) ∪ Sing(V ), and therefore, (X, V ) is Kobayashi measure hyperbolic. �
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Lemma 2.2 (Ahlfors-Schwarz). Let γ = √−1
∑

γ jk(t)dt j ∧dtk be an almost everywhere positive hermitian form on the ball B(0, R) ⊂
Cr of radius R, such that

−Ricci(γ ) := √−1∂∂ log detγ ≥ Aγ

in the sense of currents, for some constant A > 0. Then

det(γ )(t) ≤
(

r + 1

AR2

)r 1

(1 − |t|2
R2 )r+1

.

Remark 2. If V is regular, then V is of general type if and only if �r V ∗ is a big line bundle. In this situation, the base locus 
Bs(V ) = B+(�r V ), where B+(�r V ∗) is the augmented base locus for the big line bundle �r V ∗ (ref. [8]).

With the notations above, we define the coherent ideal sheaf I(V ) to be germ of holomorphic functions which is locally 
bounded with respect to hs , i.e., I(V ) is the integral closure of the ideal generated by the coefficients of vα in some local 
trivialization of �r T X . We denote by K V := �r V ∗∗∗ and KV := K V ⊗I(V ) the sheaf KV is defined in [3] to be the canonical 
sheaf of (X, V ). It is easy to show that the zero scheme of I(V ) is equal to Sing(hs) = Sing(V ). The sheaf KV is said to be 
a big sheaf iff for some log-resolution μ : X̃ → X of I(V ) with μ∗I(V ) =O X̃ (−D), the invertible sheaf μ∗ K V − D is big in 
the usual sense. Now we have the following statement.

Proposition 2.1. V is of general type if and only if KV is big. Moreover, we have

Bs(V ) ⊂ μ(B+(μ∗K V − D)) ∪ Sing(hs) ⊂ μ(B+(μ∗K V − D)) ∪ Sing(V ).

Proof. By Definition 2.1, the condition that KV is a big sheaf implies that K V and μ∗ K V − D are both big line bundles. For 
m � 0, we have an isomorphism

μ∗ : H0(X, (mK V − A) ⊗ I(V )m)
≈−→ H0( X̃,mμ∗K V − μ∗ A − mD). (4)

Let us fix a very ample divisor A. Then for m � 0, the base locus (in the usual sense) B(mμ∗ K V − mD − μ∗ A) is stably 
contained in B+(μ∗K V − D) [8]. Thus we can take a m � 0 to choose a basis s1, . . . , sk ∈ H0( X̃, mμ∗K V −mD −μ∗ A), whose 
common zero is contained in B+(μ∗K V − D). By the isomorphism (4), there exists {ei}1≤i≤k ⊂ H0(X, (mK V − A) ⊗ I(V )m)

such that

μ∗(ei) = si .

We define a singular metric hm on mK V − A by putting

|ξ |2hm
:= |ξ |2∑k

i=1 |ei |2
for ξ ∈ (mK V − A)x.

Choose a smooth metric hA on A such that the curvature �A ≥ εω is a smooth Kähler form. Then h := (hmhA)
1
m defines a 

singular metric on K V with analytic singularities, such that its curvature current �h ≥ 1
m �A ≥ ε

m ω. From the construction 
we know that h is more singular than hs , and Sing(h) ⊂ μ(B+(μ∗K V − D)) ∪ Sing(hs). �
Remark 3. Thanks to Proposition 2.1, we could have taken Definition 2.1 as another equivalent definition of the bigness of 
KV , one that is more analytic. By Theorem 1.2, we can replace the condition that V is of general type by the bigness of KV , 
and we see in this way that the definition of the canonical sheaf of a singular directed variety is very natural.

A direct consequence of Theorem 1.2 is the following corollary, which was suggested in [5].

Corollary 2.3. Let (X, V ) be directed varieties with rank(V ) = r, and f be a holomorphic map from Cr to (X, V ) with generic maximal 
rank. Then if KV is big, the image of f is contained in Bs(V ) � X.

The famous conjecture by Green–Griffiths states that, in the absolute case, the converse of Theorem 1.2 should be true. 
It is natural to ask whether we have similar results for arbitrary directed varieties. A result by Marco Brunella [2] gives a 
weak converse of Theorem 1.2 for every 1-directed variety:

Theorem 2.4. Let X be a compact Kähler manifold equipped with a singular holomorphic foliation F by curves. Suppose that F
contains at least one leaf that is hyperbolic, then the canonical bundle KF is pseudoeffective.
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Indeed, Brunella proved more than the results stated in the above theorem. By putting on KF precisely the Poincaré 
metric of hyperbolic leaves, he constructed a singular Hermitian metric h on KF (possibly not with analytic singularities), 
such that the set of points where h is locally unbounded is the polar set Sing(F) ∪ Parab(F), where Parab(F) is the union 
of parabolic leaves, and such that the curvature �h of the metric h is a positive current. In this vein, a natural question is:

Question 2.5. Can Brunella’s theorem be strengthened by stating that when a foliation (X, F) admits a hyperbolic leaf, then 
not only KF is pseudo-effective, but also the canonical sheaf KF = KF ⊗ I(F) is pseudo-effective? In other words, can 
we find a singular Hermitian metric h on KF with the curvature �h is a positive current, and h is more singular than hs? 
(Recall that hs is the singular metric on KF induced by a Hermitian metric on T X .)

Remark 4. In [10], the author introduces the definition of canonical singularities for foliations, in dimension 2 this definition 
is equivalent to reduced singularities in the sense of Seidenberg. The generic foliation by curves of degree d in CPn is 
another example of canonical singularities. In this situation, one cannot expect to improve the “bigness” of the canonical 
sheaf KF by blowing-up. Indeed, this birational model is “stable” in the sense that π∗KF̃ = KF for any birational model 
π : ( X̃, F̃) → (X, F). However, on a complex surface endowed with a foliation F with reduced singularities, if f is an 
entire curve tangent to the foliation, and T [ f ] is the Ahlfors current associated with f , then in [9] it is shown that the 
lower bound for T [ f ] · c1(TF ) can be improved by an infinite sequence of blowing-ups. Indeed, for certain singularities, the 
separatrices containing them are rational curves, and thus the lifted entire curve will not pass through these singularities. 
In the literature (e.g., [1,9]) this type of singularity is sometimes called “small”, i.e. the lifted entire curve will not pass 
through these singularities. Since T [ f ] · c1(TF ) is related to value distribution, these “small” singularities do not have any 
negative contribution to the lower bound for T [ f ] · c1(TF ), which will be substantially increased by the effect of performing 
blow-ups. In [4], this “Diophantine approximation” idea has been generalized to higher dimensions; for more details, we 
refer the reader to the above-mentioned papers.
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