Dynamical systems

Periodic points in the intersection of attracting immediate basins boundaries

Points périodiques à l'intersection entre les frontières de bassins immédiats attractifs

Bastien Rossetti
Laboratoire Émile-Picard, Université Paul-Sabatier, 31062 Toulouse, France

ARTICLE INFO

Article history:

Received 2 April 2014
Accepted after revision 13 September 2016
Available online 15 December 2016
Presented by the Editorial Board

Abstract

We give conditions under which the intersection between two attracting immediate basins boundaries of a rational map contains at least one periodic point.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

R É S U M É

Nous donnons des conditions suffisantes pour que l'intersection entre les frontières de deux bassins immédiats attractifs d'une fraction rationnelle contienne au moins un point périodique.
© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

For a rational map $R: \widehat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}, \mathcal{J}(R)$ denotes the Julia set of $R, \mathcal{P}(R)$ the set $\left\{R^{n}(c): R^{\prime}(c)=0 ; n \geq 1\right\}$ and $\mathcal{P}_{b}(R)$ the set of $x \in \mathcal{P}(R)$ that are not in the closure of a connected component of $\widehat{\mathbb{C}} \backslash \mathcal{J}(R)$. A point $z \in \widehat{\mathbb{C}}$ is said to be eventually periodic if there exists a $n \in \mathbb{N}$ such that $R^{n}(z)$ is periodic. By sink we mean a connected component of an attracting immediate basin.

Theorem 1. Let f be a rational map with two distinct sinks B_{1} and B_{2} (not necessarily in the same cycle) such that $\partial B_{1} \cap \partial B_{2} \neq \emptyset$. Assume that B_{1} and B_{2} are simply connected, and ∂B_{1} and ∂B_{2} are locally connected.

1. If the intersection $\partial B_{1} \cap \partial B_{2}$ contains no critical point with infinite orbit and is disjoint from the ω-limit set of every recurrent critical point, then $\partial B_{1} \cap \partial B_{2}$ contains a periodic point.
2. Assume furthermore that each component of $\widehat{\mathbb{C}} \backslash \mathcal{J}(f)$ that is eventually mapped to B_{1} or to B_{2} is simply connected. If $\partial B_{1} \cap \partial B_{2}$ contains no accumulation point of $\mathcal{P}_{b}(f)$ nor $\mathcal{P}(f) \cap\left(\partial B_{1} \cup \partial B_{2}\right)$, then the subset of eventually periodic points in $\partial B_{1} \cap \partial B_{2}$ is non-empty and dense in $\partial B_{1} \cap \partial B_{2}$.
[^0]As a particular case of part 2 of Theorem 1, if $\sharp \mathcal{P}(f)<+\infty$ then the set of eventually periodic points in $\partial B_{1} \cap \partial B_{2}$ is non-empty and dense in $\partial B_{1} \cap \partial B_{2}$. Nevertheless, the theorem does not require $\mathcal{P}(f)$ to be finite.

Here is an example of a non-empty intersection between two sink boundaries with no periodic point in the intersection. Let us consider $F_{\theta}(z)=\rho_{\theta} z^{2}(z-3) /(1-3 z)$, where $\theta \in \mathbb{R} \backslash \mathbb{Q}$ and $\rho_{\theta} \in S^{1}\left(S^{1}\right.$ denotes the unit circle in $\left.\mathbb{C}\right)$ is such that $F_{\theta}: S^{1} \rightarrow S^{1}$ has rotation number θ. The map $F_{\theta}: \mathbb{C} \rightarrow \mathbb{C}$ has been studied in [3]. The map F_{θ} has two attracting fixed points 0 and ∞. The intersection between the boundaries of the corresponding sinks is non-empty and included in S^{1}. This intersection contains no periodic point since $F_{\theta \mid S^{1}}$ is topologically conjugate to $z \mapsto \mathrm{e}^{2 i \pi \theta} z$. One notes that in this example the intersection contains the point 1 , which is a critical point with an infinite orbit.

To prove the theorem, we assume that B_{1} and B_{2} are fixed, for otherwise we work with an iterate of f. Since there will not be confusion, we will note $\mathcal{J}=\mathcal{J}(f), \mathcal{P}=\mathcal{P}(f)$ and $\mathcal{P}_{b}=\mathcal{P}_{b}(f)$.

Proof of part 1. We assume that $\partial B_{1} \cap \partial B_{2}$ does not contain a critical point with finite orbit nor a parabolic point, for otherwise $\partial B_{1} \cap \partial B_{2}$ would contain a periodic point.

A point $x \in \partial B_{i}$ is said to be multiple if it belongs to the impression of at least two prime ends in B_{i}. Using the expansion of f on ∂B_{i}, it is easy to show that a multiple point of ∂B_{i} in $\partial B_{1} \cap \partial B_{2}$ is eventually periodic. Thus we assume that $\partial B_{1} \cap \partial B_{2}$ contains no multiple point of ∂B_{1} nor ∂B_{2}.

In this context we show, using Theorem 3, that $f_{\mid \partial B_{1} \cap \partial B_{2}}$ is distance-expanding with respect to the spherical metric, that is there exist $\lambda>1, \eta>0$ and $N \geq 0$ such that for any $x, y \in \partial B_{1} \cap \partial B_{2}$, if $d(x, y) \leq \eta$ then $d\left(f^{N}(x), f^{N}(y)\right) \geq \lambda d(x, y)$. Then we find a periodic point in $\partial B_{1} \cap \partial B_{2}$ using the Theorem 4 dealing with periodic points for distance-expanding maps.

Lemma 2. The restriction $f_{\mid \partial B_{1} \cap \partial B_{2}}$ is distance-expanding with respect to the spherical metric.
Proof. By Theorem 3 below, there exists an integer $N \geq 0$ such that $\min _{x \in \partial B_{1} \cap \partial B_{2}}\left\|\left(f^{N}\right)^{\prime}(x)\right\|>1$. By continuity of the map $x \mapsto\left\|\left(f^{N}\right)^{\prime}(x)\right\|$, there exist $\lambda>1$ and a neighborhood U of $\partial B_{1} \cap \partial B_{2}$ such that $\min _{x \in U}\left\|\left(f^{N}\right)^{\prime}(x)\right\| \geq \lambda$. By compactness of $\partial B_{1} \cap \partial B_{2}$, there exists $\eta>0$ such that if $d(x, y) \leq \eta$, then the geodesic Γ between $f^{N}(x)$ and $f^{N}(y)$ lifts to a path γ from x to y with $\gamma \subset U$. Thus we get $d\left(f^{N}(x), f^{N}(y)\right)=$ length $(\Gamma) \geq \lambda$.length $(\gamma) \geq \lambda d(x, y)$.

Theorem 3. ([2]) Let g be a rational map of degree at least 2 , and $\Lambda \subset \mathcal{J}(g)$ be a compact forward invariant set containing no critical point nor parabolic point. If Λ is disjoint from the ω-limit set of every recurrent critical point, then there exists $N \in \mathbb{N}$ such that $\min _{z \in \Lambda}\left\|\left(g^{n}\right)^{\prime}(z)\right\|>1$ for every $n \geq N$.

Theorem 4. ([5], chapter 4) Let (X, ρ) be a compact metric space. If $T: X \rightarrow X$ is continuous, open and distance-expanding, then there exists $\alpha>0$ such that the following holds: if there exist $x \in X$ and $L \geq 1$ such that $\rho\left(x, T^{L}(x)\right) \leq \alpha$, then X contains a periodic point.

Lemma 5. The restriction $f_{\mid \partial B_{1} \cap \partial B_{2}}$ is open.
Proof. Let $O \subset \partial B_{1} \cap \partial B_{2}$ and assume $f(0)$ is not open.
There exists a sequence $\left(y_{n}\right)_{n \geq 0} \subset\left(\partial B_{1} \cap \partial B_{2}\right) \backslash f(0)$ converging to some $y \in f(0)$. Let $x \in O$ be such that $f(x)=y$. Since $\partial B_{1} \cap \partial B_{2}$ contains no critical point, there exist a neighborhood U of x and a neighborhood V of y such that $f: U \rightarrow V$ is a homeomorphism. Thus for n large enough $y_{n} \in V$, the point $x_{n}=f^{-1}\left(y_{n}\right) \cap U$ is well defined and $x_{n} \rightarrow x$.

We show now that $x_{n} \in\left(\partial B_{1} \cap \partial B_{2}\right) \backslash O$ so that O is not open. It is clear that $x_{n} \notin O$ since $f\left(x_{n}\right) \notin f(O)$. For any n, there exists a Fatou component B_{i}^{n} such that $f\left(B_{i}^{n}\right)=B_{i}$ and $x_{n} \in \partial B_{1}^{n} \cap \partial B_{2}^{n}$. The following assertion finishes the proof of the lemma.

Assertion 6. For n large enough $B_{i}^{n}=B_{i}, i \in\{1,2\}$.
Proof. Otherwise, for some $i_{0} \in\{1,2\}$ there exists a Fatou component B such that $B \neq B_{i_{0}}, f(B)=B_{i_{0}}$ and $x \in \partial B$. The boundary ∂B has finitely many connected components, thus each one of them is locally connected. Let \tilde{B} be either B or $B_{i_{0}}$. There exists a connected component $U_{\tilde{B}}$ of $U \cap \tilde{B}$ such that $x \in \partial U_{\tilde{B}}$. Since $f(x)$ is simple in $\partial B_{i_{0}}$, there exists a unique connected component $V_{B_{i_{0}}}$ of $V \cap B_{i_{0}}$ such that $f(x) \in \partial V_{B_{i_{0}}}$. Hence $f\left(U_{\tilde{B}}\right)=V_{B_{i_{0}}}$. Since $B \neq B_{i_{0}}$, we have $U_{B_{i_{0}}} \cap U_{B}=\emptyset$ and $f\left(U_{B_{i_{0}}}\right)=f\left(U_{B}\right)$, which contradicts the injectivity of $f_{\mid U}$.

Now we apply Theorem 4 to finish the proof of part 1. Let w be an accumulation point of the orbit of some $z \in \partial B_{1} \cap \partial B_{2}$. There exist $P>Q \geq 0$ such that $f^{P}(z), f^{Q}(z) \in B(w ; \alpha / 2)$, where α is the constant in Theorem 4. Hence $d\left(f^{Q}(z), f^{P}(z)\right)=$ $d\left(f^{Q}(z), f^{P-Q}\left(f^{Q}(z)\right)\right) \leq \alpha$, and we get a periodic point in $\partial B_{1} \cap \partial B_{2}$.

The proof of part 2 uses ideas and techniques developed by K. Pilgrim in his thesis ([4], chapter 5). In case where f is hyperbolic and $\sharp \mathcal{P}<+\infty$, part 2 is a corollary of his work.

We assume that $\sharp \mathcal{P}>2$, for otherwise f is conjugate to $z \mapsto z^{d}$ for some $d \in \mathbb{Z}$, and the conclusion follows. Up to make a quasi-conformal deformation, we also assume that all the critical points in $\bigcup_{j \geq 0} f^{-j}\left(B_{1} \cup B_{2}\right)$ have a finite orbit (see [1], theorem VI 5.1; this is why we assume that each component of $\widehat{\mathbb{C}} \backslash \mathcal{J}$ that is eventually mapped to B_{1} or to B_{2} is simply connected).

Let $d_{k} \geq 2$ be the degree of $f_{\mid B_{k}}$ and let $\phi_{k}: \mathbb{D} \rightarrow B_{k}$ be an isomorphism conjugating f with $z^{d_{k}}$. For $t \in \mathbb{R}$, set $R_{k}(t):=$ $\phi_{k}\left(\left\{\mathrm{e}^{2 \mathrm{i} \pi t}: 0 \leq r<1\right\}\right)$. Since ∂B_{k} is locally connected, ϕ_{k} extends continuously to $\overline{\phi_{k}}: \overline{\mathbb{D}} \rightarrow \overline{B_{k}}$.

Denote χ the set of chords, that is the set of $\overline{R_{1}(t)} \cup \overline{R_{2}\left(t^{\prime}\right)}$ such that $\overline{R_{1}(t)} \cap \overline{R_{2}\left(t^{\prime}\right)} \neq \emptyset$. If $\alpha \in \chi$ is periodic, then the point $\alpha \cap \mathcal{J} \in \partial B_{1} \cap \partial B_{2}$ is periodic. For any chord α and any set $X \subset \widehat{\mathbb{C}},[\alpha]_{X}$ will denote the isotopy class of α rel X. For any distinct $\alpha, \beta \in \chi$, the complement $\widehat{\mathbb{C}} \backslash(\alpha \cup \beta)$ has at least two connected components and at most three, with points of \mathcal{J} in each of them. For any $m \geq 0,[\alpha]_{f^{-m}(\mathcal{P})}=[\beta]_{f^{-m}(\mathcal{P})}$ if and only if one connected component of $\hat{\mathbb{C}} \backslash(\alpha \cup \beta)$ contains all but two points of $f^{-m}(\mathcal{P})$ (these two points being the extremities of the chords).

Set $G O(\mathcal{P}):=\bigcup_{z \in \mathcal{P}} \bigcup_{m \in \mathbb{Z}} f^{m}(z)$. From the hypothesis of part 2, the set $G O(\mathcal{P}) \cap\left(\partial B_{1} \cap \partial B_{2}\right)$ is finite. Thus if $\alpha \in \chi$ is such that $\alpha \cap \mathcal{J} \in G O(\mathcal{P})$, then the point $\alpha \cap \mathcal{J}$ is eventually periodic. We denote $\chi\left(S^{2}, G O(\mathcal{P})\right)$ the set $\{\alpha \in \chi: \alpha \cap \mathcal{J} \notin$ $G O(\mathcal{P})\}$. For any $n \geq 0$ we denote $\chi\left(S^{2}, f^{-n}(\mathcal{P})\right)$ the set $\left\{\alpha \in \chi: \alpha \cap \mathcal{J} \notin f^{-n}(\mathcal{P})\right\}$.

The proof of part 2 is as follows. We equip χ with the Hausdorff distance d_{H}, so that it is a compact metric space. Pick $\alpha \in \chi\left(S^{2}, G O(\mathcal{P})\right)$. If the sequence $\left(\left[f^{j}(\alpha)\right]_{f-1}(\mathcal{P})\right)_{j \geq 0}$ is eventually cyclical then α is eventually periodic (Lemma 10). Otherwise, noting that $\left(\left[f^{j}(\alpha)\right]_{\mathcal{P}}\right)_{j \geq 0}$ contains twice the same element (Lemma 11), we build a sequence $\left(\beta_{n}\right)_{n \geq 0} \subset \chi\left(S^{2}, G O(\mathcal{P})\right)$ by a series of adjustments (Lemma 7) such that β_{n} converges (Lemma 8) to a chord β with the following property: either $\beta \cap \mathcal{J} \in G O(\mathcal{P})$, or $\left(\left[f^{j}(\beta)\right]_{f^{-1}(\mathcal{P})}\right)_{j \geq 0}$ is eventually cyclical. This proves the existence of a periodic point in $\partial B_{1} \cap \partial B_{2}$. The density part will follow from the fact that we can build β as close as we want to α.

Let $\alpha \in \chi\left(S^{2}, f^{-m}(\mathcal{P})\right)$ (resp. $\chi\left(S^{2}, G O(\mathcal{P})\right)$). A lift of α is the closure of a connected component of $f^{-1}(\dot{\alpha})$. If a lift of α is a chord, then it belongs to $\chi\left(S^{2}, f^{-(m+1)}(\mathcal{P})\right)$ (resp. $\chi\left(S^{2}, G O(\mathcal{P})\right)$).

Lemma 7. Let $N \geq 1, \alpha \in \chi\left(S^{2}, G O(\mathcal{P})\right)$ and $\beta_{N} \in \chi\left(S^{2}, \mathcal{P}\right)$ be such that $\beta_{N} \in\left[f^{N}(\alpha)\right]_{\mathcal{P}}$. There exists a unique chord β_{0} isotopic to α rel $f^{-1}(\mathcal{P})$, such that $f^{N}\left(\beta_{0}\right)=\beta_{N}$ and $\left[f^{i}\left(\beta_{0}\right)\right]_{f^{-1}(\mathcal{P})}=\left[f^{i}(\alpha)\right]_{f^{-1}(\mathcal{P})}$ for every $0 \leq i \leq N-1$. Furthermore, $\beta_{0} \in[\alpha]_{f-N}(\mathcal{P})$.

Proof. Since $f^{N-1}(\alpha)$ is a lift of $f^{N}(\alpha)$, there exists a unique lift β_{N-1} of β_{N} such that $\beta_{N-1} \in\left[f^{N-1}(\alpha)\right]_{f-1}(\mathcal{P})$. In particular, $\beta_{N-1} \in\left[f^{N-1}(\alpha)\right]_{\mathcal{P}}$. For each $1 \leq i \leq N$, we construct inductively a unique $\beta_{N-i} \in\left[f^{N-i}(\alpha)\right]_{f-1}(\mathcal{P})$ such that $f^{i}\left(\beta_{N-i}\right)=\beta_{N}$ and $f^{k}\left(\beta_{N-i}\right) \in\left[f^{k}\left(f^{N-i}(\alpha)\right)\right]_{f-1}(\mathcal{P})$ for any $0 \leq k \leq i-1$. Note that $\beta_{N-i} \in\left[f^{N-i}(\alpha)\right]_{f^{-i}(\mathcal{P})}$.

Lemma 8. For any $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that: $\forall \alpha, \beta \in \chi\left(S^{2}, f^{-N}(\mathcal{P})\right)$, if $[\alpha]_{f^{-N}(\mathcal{P})}=[\beta]_{f^{-N}(\mathcal{P})}$ then $d_{H}(\alpha, \beta) \leq \varepsilon$. As a consequence, if $[\alpha]_{f^{-n}(\mathcal{P})}=[\beta]_{f^{-n}(\mathcal{P})}$ for every $n \in \mathbb{N}$ then $\alpha=\beta$.

It follows from the following assertion:
Assertion 9. For every $\varepsilon>0$ there exists $\eta>0$ such that : for any $\alpha, \beta \in \chi\left(S^{2}, G O(\mathcal{P})\right)$, if $d_{H}(\alpha, \beta)>\varepsilon$ then in at least two connected components of $\widehat{\mathbb{C}} \backslash(\alpha \cup \beta)$ lie an open ball centered at a point of \mathcal{J} and with radius η.

Proof. By contradiction, assume that there exists $\varepsilon>0$, a sequence $\left(\eta_{n}\right)_{n \geq 0} \subset \mathbb{R}_{+}^{*}$ tending to 0 , and a sequence $\left(\left(\alpha_{n}, \beta_{n}\right)\right)_{n \geq 0} \subset \chi\left(S^{2}, G O(\mathcal{P})\right)^{2}$ such that, for any $n \geq 0: d_{H}\left(\alpha_{n}, \beta_{n}\right) \geq \varepsilon$ and there does not exist two connected components of $\widehat{\mathbb{C}} \backslash\left(\alpha_{n} \cup \beta_{n}\right)$ in which lies an open ball centered at a point of \mathcal{J} and with radius η_{n}. By compactness of $\chi\left(S^{2}, G O(\mathcal{P})\right)^{2}$, we choose an accumulation point (α, β) of $\left(\left(\alpha_{n}, \beta_{n}\right)\right)_{n \geq 0}$ and up to extraction $\left(\alpha_{n}, \beta_{n}\right) \rightarrow(\alpha, \beta)$. We have $d_{H}(\alpha, \beta) \geq \varepsilon$. If $\widehat{\mathbb{C}} \backslash(\alpha \cup \beta)$ has three connected components, then we note U_{1} one of the two connected components that are Jordan domains and we note U_{2} the connected component that is not a Jordan domain. If $\hat{\mathbb{C}} \backslash(\alpha \cup \beta)$ has two connected components, then we note them U_{1} and U_{2}. In any case, there exist $\eta>0$ and $z_{i} \in \mathcal{J} \cap U_{i}$ such that $B\left(z_{i} ; \eta\right) \subset U_{i}, i \in\{1,2\}$. For n large enough, $B\left(z_{1} ; \eta / 2\right)$ and $B\left(z_{2} ; \eta / 2\right)$ are included in two distinct connected components of $\hat{\mathbb{C}} \backslash\left(\alpha_{n} \cup \beta_{n}\right)$. This is a contradiction as soon as $\eta_{n}<\eta / 2$.

Proof of Lemma 8. Let $\varepsilon>0$ and η as in the assertion. Since $\sharp \mathcal{P}>2$, there exists $N \geq 0$ such that each one of the two balls of the assertion contains a point of $f^{-N}(\mathcal{P})$. Hence there is a point of $f^{-N}(\mathcal{P})$ in at least two connected components of $\hat{\mathbb{C}} \backslash(\alpha \cup \beta)$, thus $[\alpha]_{f^{-N}(\mathcal{P})} \neq[\beta]_{f^{-N}(\mathcal{P})}$.

Lemma 10. For any $\alpha \in \chi\left(S^{2}, G O(\mathcal{P})\right.$), if the sequence $\left(\left[f^{n}(\alpha)\right]_{f-1}(\mathcal{P})\right)_{n=0}^{\infty}$ is cyclical, then α is periodic.
Proof. Assume that there exists $Q \geq 1$ such that $\left[f^{n+Q}(\alpha)\right]_{f^{-1}(\mathcal{P})}=\left[f^{n}(\alpha)\right]_{f^{-1}(\mathcal{P})}$ for any $n \geq 0$. In particular, $f^{n+Q}(\alpha) \in$ $\left[f^{n}(\alpha)\right]_{\mathcal{P}}$. By Lemma 7, there exists a unique chord $\beta_{n} \in[\alpha]_{f^{-1}(\mathcal{P})}$ such that $f^{n}\left(\beta_{n}\right)=f^{n+Q}(\alpha)$ and for all $0 \leq i \leq n$,
$\left[f^{i}\left(\beta_{n}\right)\right]_{f^{-1}(\mathcal{P})}=\left[f^{i}(\alpha)\right]_{f^{-1}(\mathcal{P})}$. This chord is $f^{Q}(\alpha)$. Thanks to Lemma 7, we also have $f^{Q}(\alpha) \in[\alpha]_{f-n}(\mathcal{P})$. Since this is true for any $n \geq 0$, we conclude by Lemma 8 that $f^{Q}(\alpha)=\alpha$.

Lemma 11. For any $\alpha \in \chi\left(S^{2}, G O(\mathcal{P})\right)$, there exist $M, N \in \mathbb{N}$ distinct such that $\left[f^{M}(\alpha)\right]_{\mathcal{P}}=\left[f^{N}(\alpha)\right]_{\mathcal{P}}$.
Proof. Assume that for any $m, n \geq 0$ distinct, we have $\left[f^{m}(\alpha)\right]_{\mathcal{P}} \neq\left[f^{n}(\alpha)\right]_{\mathcal{P}}$. Let us show that the set \mathcal{P}_{b} or the set $\mathcal{P} \cap$ $\left(\partial B_{1} \cup \partial B_{2}\right)$ accumulate on $\partial B_{1} \cap \partial B_{2}$, which contradicts the hypothesis of part 2 of Theorem 1 .

Since $\left(\chi, d_{H}\right)$ is compact, up to extraction the sequence $\left(f^{n}(\alpha)\right)_{n \geq 0}$ accumulates on a chord β. Since for any k, k^{\prime} distinct at least two connected components of $\widehat{\mathbb{C}}-\left(f^{k}(\alpha) \cup f^{k^{\prime}}(\alpha)\right)$ contain a point of \mathcal{P}, one can construct a non-stationary sequence $\left(z_{n}\right)_{n \geq 0} \subset \mathcal{P}$, which accumulates on a point $z \in \beta$.

Assume that $\left(z_{n}\right)_{n \geq 0} \cap\left(\mathcal{P} \backslash \mathcal{P}_{b}\right)$ is infinite and up to extraction that $\left(z_{n}\right)_{n \geq 0} \subset \mathcal{P} \backslash \mathcal{P}_{b}$. There exist finitely many distinct connected components V_{1}, \ldots, V_{N} of $\hat{\mathbb{C}} \backslash \mathcal{J}$, which are distinct from B_{1} and B_{2} and such that $\left(z_{n}\right)_{n \geq 0} \subset \overline{B_{1}} \cup \overline{B_{2}} \cup \overline{V_{1}} \cup \ldots \cup$ $\overline{V_{N}}$. Each V_{j} is included in $\widehat{\mathbb{C}} \backslash \chi$, but by construction there is an infinite subset of $\left(z_{n}\right)_{n \geq 0}$ whose elements are pairwise separated by chords, thus there is an infinite subset of $\left(z_{n}\right)_{n \geq 0}$ included in $\overline{B_{1}} \cup \overline{B_{2}}$. Since we assume that the extremities of the chords are the only points of \mathcal{P} in $B_{1} \cup B_{2}$, we conclude that there is an infinite subset of $\left(z_{n}\right)_{n \geq 0}$ included in $\mathcal{P} \cap\left(\partial B_{1} \cup \partial B_{2}\right)$.

Hence, up to extraction, we have $\left(z_{n}\right)_{n \geq 0} \subset \mathcal{P}_{b}$ or $\left(z_{n}\right)_{n \geq 0} \subset \mathcal{P} \cap\left(\partial B_{1} \cup \partial B_{2}\right)$. In particular, $\left(z_{n}\right)_{n \geq 0} \subset \mathcal{J}$, and $z=$ $\lim _{n \rightarrow \infty} z_{n}=\beta \cap \mathcal{J} \in \partial B_{1} \cap \partial B_{2}$.

Proof of part 2. Let α be a chord. We have three cases.
Case 1: $\alpha \cap \mathcal{J} \in G O(\mathcal{P})$. Thus $\alpha \cap \mathcal{J}$ is eventually periodic, as explained before.
Case 2: $\alpha \in \chi\left(S^{2}, G O(\mathcal{P})\right)$ and $\left(\left[f^{n}(\alpha)\right]_{f^{-1}(\mathcal{P})}\right)_{n=0}^{\infty}$ is eventually cyclical. Then α is eventually periodic by Lemma 10, and the point $\alpha \cap \mathcal{J}$ is eventually periodic.

Case 3: $\alpha \in \chi\left(S^{2}, G O(\mathcal{P})\right)$ and $\left(\left[f^{n}(\alpha)\right]_{f^{-1}(\mathcal{P})}\right)_{n=0}^{\infty}$ is not eventually cyclical. Let us build from α a chord β fitting case 1 or 2.

By Lemma 11 there exist $N \geq 0$ and $Q \geq 1$ such that $\left[f^{N+Q}(\alpha)\right]_{\mathcal{P}}=\left[f^{N}(\alpha)\right]_{\mathcal{P}}$. Set $\beta_{0}:=f^{N}(\alpha)$. By Lemma 7, there exists a chord $\beta_{1} \in\left[\beta_{0}\right]_{f^{-Q}(\mathcal{P})}$ such that $\left[f^{i}\left(\beta_{1}\right)\right]_{f^{-1}(\mathcal{P})}=\left[f^{i}\left(\beta_{0}\right)\right]_{f^{-1}(\mathcal{P})}$ for any $0 \leq i \leq Q-1$, and $f^{Q}\left(\beta_{1}\right)=\beta_{0}$. Thus $\left[f^{Q+i}\left(\beta_{1}\right)\right]_{f-1}(\mathcal{P})=\left[f^{i}\left(\beta_{1}\right)\right]_{f^{-1}(\mathcal{P})}$ for any $0 \leq i \leq Q-1$, and $\beta_{1} \in\left[f^{2 Q}\left(\beta_{1}\right)\right]_{\mathcal{P}}$. We build inductively a sequence of chords $\left(\beta_{q}\right)_{q=0}^{\infty}$ such that:
(i) $\beta_{q+n} \in\left[\beta_{q}\right]_{f-2^{q} Q_{(\mathcal{P})}}$ for any $n \geq 0$, and
(ii) $\left[f^{j Q+i}\left(\beta_{q}\right)\right]_{f-1}(\mathcal{P})=\left[f^{i}\left(\beta_{q}\right)\right]_{f^{-1}(\mathcal{P})}$ for any $0 \leq j \leq 2^{q}-1$ and $0 \leq i \leq Q-1$.

Assertion 12. The sequence $\left(\beta_{q}\right)_{q=0}^{\infty}$ converges to a chord β whose point $\beta \cap \mathcal{J}$ is eventually periodic.
Proof. The convergence follows from (i) and Lemma 8. The limit β is a chord since χ is compact. If $\beta \notin \chi\left(S^{2}, G O(\mathcal{P})\right)$ then β fits case 1. If $\beta \in \chi\left(S^{2}, G O(\mathcal{P})\right)$, then we get for the limit $\left[f^{j Q+i}(\beta)\right]_{f^{-1}(\mathcal{P})}=\left[f^{i}(\beta)\right]_{f-1}(\mathcal{P})$ for every $j \in \mathbb{N}$ and $0 \leq i \leq Q-1$. Hence $\left(\left[f^{i}(\beta)\right]_{f^{-1}(\mathcal{P})}\right)_{i=0}^{\infty}$ is cyclical, and β fits case 2 .

Thus there exists an eventually periodic point in $\partial B_{1} \cap \partial B_{2}$.
To finish the proof, let us explain now the density. The chord β is in $\chi\left(S^{2}, f^{-Q}(\mathcal{P})\right)$. Applying Lemma 7 to $\beta \in$ $\left[f^{N}(\alpha)\right]_{f^{-1}(\mathcal{P})}$, we obtain a chord $\gamma \in[\alpha]_{f-(N+Q)(\mathcal{P})}$ such that $\gamma \cap \mathcal{J}$ is eventually periodic. Using Lemma 11 , we can have N as large as we want. Thus we can build a sequence $\left(\gamma_{n}\right)_{n \geq 0} \subset \chi$ converging to α, such that every $\gamma_{n} \cap \mathcal{J}$ is eventually periodic. Since ∂B_{1} and ∂B_{2} are locally connected, the sequence $\left(\gamma_{n} \cap \mathcal{J}\right)_{n \geq 0}$ converge to $\alpha \cap \mathcal{J}$.

References

[1] L. Carleson, T.W. Gamelin, Complex Dynamics, second edition, Springer, 1995.
[2] R. Mañé, On a theorem of Fatou, Bol. Soc. Bras. Mat. 24 (1993) 1-11.
[3] C.L. Petersen, Local connectivity of some Julia sets containing a circle with an irrational rotation, Acta Math. 177 (1996) 163-224.
[4] K.M. Pilgrim, Cylinders for iterated rational maps, PhD thesis, University of California at Berkeley, CA, USA, 1994.
[5] F. Przytycki, M. Urbański, Conformal Fractals: Ergodic Theory Methods, The London Mathematical Society Lecture Note Series, vol. 371, 2010.

[^0]: E-mail address: bastien.rossetti@math.univ-toulouse.fr.
 http://dx.doi.org/10.1016/j.crma.2016.09.004
 1631-073X/© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

