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r é s u m é

Nous donnons des conditions suffisantes pour que l’intersection entre les frontières de 
deux bassins immédiats attractifs d’une fraction rationnelle contienne au moins un point 
périodique.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

For a rational map R : Ĉ→ Ĉ, J (R) denotes the Julia set of R , P(R) the set {Rn(c) : R ′(c) = 0 ; n ≥ 1} and Pb(R) the set 
of x ∈P(R) that are not in the closure of a connected component of Ĉ\J (R). A point z ∈ Ĉ is said to be eventually periodic
if there exists a n ∈ N such that Rn(z) is periodic. By sink we mean a connected component of an attracting immediate 
basin.

Theorem 1. Let f be a rational map with two distinct sinks B1 and B2 (not necessarily in the same cycle) such that ∂ B1 ∩ ∂ B2 �= ∅. 
Assume that B1 and B2 are simply connected, and ∂ B1 and ∂ B2 are locally connected.

1. If the intersection ∂ B1 ∩ ∂ B2 contains no critical point with infinite orbit and is disjoint from the ω-limit set of every recurrent 
critical point, then ∂ B1 ∩ ∂ B2 contains a periodic point.

2. Assume furthermore that each component of Ĉ\J ( f ) that is eventually mapped to B1 or to B2 is simply connected. If ∂ B1 ∩ ∂ B2
contains no accumulation point of Pb( f ) nor P( f ) ∩ (∂ B1 ∪ ∂ B2), then the subset of eventually periodic points in ∂ B1 ∩ ∂ B2 is 
non-empty and dense in ∂ B1 ∩ ∂ B2 .
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As a particular case of part 2 of Theorem 1, if �P( f ) < +∞ then the set of eventually periodic points in ∂ B1 ∩ ∂ B2 is 
non-empty and dense in ∂ B1 ∩ ∂ B2. Nevertheless, the theorem does not require P( f ) to be finite.

Here is an example of a non-empty intersection between two sink boundaries with no periodic point in the intersection. 
Let us consider Fθ (z) = ρθ z2(z − 3)/(1 − 3z), where θ ∈ R\Q and ρθ ∈ S1 (S1 denotes the unit circle in C) is such that 
Fθ : S1 → S1 has rotation number θ . The map Fθ : C → C has been studied in [3]. The map Fθ has two attracting fixed 
points 0 and ∞. The intersection between the boundaries of the corresponding sinks is non-empty and included in S1. This 
intersection contains no periodic point since Fθ |S1 is topologically conjugate to z �→ e2iπθ z. One notes that in this example 
the intersection contains the point 1, which is a critical point with an infinite orbit.

To prove the theorem, we assume that B1 and B2 are fixed, for otherwise we work with an iterate of f . Since there will 
not be confusion, we will note J =J ( f ), P =P( f ) and Pb =Pb( f ).

Proof of part 1. We assume that ∂ B1 ∩ ∂ B2 does not contain a critical point with finite orbit nor a parabolic point, for 
otherwise ∂ B1 ∩ ∂ B2 would contain a periodic point.

A point x ∈ ∂ Bi is said to be multiple if it belongs to the impression of at least two prime ends in Bi . Using the expansion 
of f on ∂ Bi , it is easy to show that a multiple point of ∂ Bi in ∂ B1 ∩ ∂ B2 is eventually periodic. Thus we assume that 
∂ B1 ∩ ∂ B2 contains no multiple point of ∂ B1 nor ∂ B2.

In this context we show, using Theorem 3, that f |∂ B1∩∂ B2 is distance-expanding with respect to the spherical metric, that 
is there exist λ > 1, η > 0 and N ≥ 0 such that for any x, y ∈ ∂ B1 ∩ ∂ B2, if d(x, y) ≤ η then d( f N (x), f N (y)) ≥ λd(x, y). Then 
we find a periodic point in ∂ B1 ∩ ∂ B2 using the Theorem 4 dealing with periodic points for distance-expanding maps.

Lemma 2. The restriction f |∂ B1∩∂ B2 is distance-expanding with respect to the spherical metric.

Proof. By Theorem 3 below, there exists an integer N ≥ 0 such that minx∈∂ B1∩∂ B2 ||( f N )′(x)|| > 1. By continuity of the map 
x �→ ||( f N)′(x)||, there exist λ > 1 and a neighborhood U of ∂ B1 ∩ ∂ B2 such that minx∈U ||( f N )′(x)|| ≥ λ. By compactness of 
∂ B1 ∩ ∂ B2, there exists η > 0 such that if d(x, y) ≤ η, then the geodesic 	 between f N (x) and f N(y) lifts to a path γ from 
x to y with γ ⊂ U . Thus we get d( f N (x), f N (y)) = length(	) ≥ λ.length(γ ) ≥ λd(x, y). �
Theorem 3. ([2]) Let g be a rational map of degree at least 2, and � ⊂ J (g) be a compact forward invariant set containing no 
critical point nor parabolic point. If � is disjoint from the ω-limit set of every recurrent critical point, then there exists N ∈N such that 
minz∈� ||(gn)′(z)|| > 1 for every n ≥ N.

Theorem 4. ([5], chapter 4) Let (X, ρ) be a compact metric space. If T : X → X is continuous, open and distance-expanding, then 
there exists α > 0 such that the following holds: if there exist x ∈ X and L ≥ 1 such that ρ(x, T L(x)) ≤ α, then X contains a periodic 
point.

Lemma 5. The restriction f |∂ B1∩∂ B2 is open.

Proof. Let O  ⊂ ∂ B1 ∩ ∂ B2 and assume f (O ) is not open.
There exists a sequence (yn)n≥0 ⊂ (∂ B1 ∩∂ B2)\ f (O ) converging to some y ∈ f (O ). Let x ∈ O be such that f (x) = y. Since 

∂ B1 ∩ ∂ B2 contains no critical point, there exist a neighborhood U of x and a neighborhood V of y such that f : U → V is 
a homeomorphism. Thus for n large enough yn ∈ V , the point xn = f −1(yn) ∩ U is well defined and xn → x.

We show now that xn ∈ (∂ B1 ∩ ∂ B2)\O so that O is not open. It is clear that xn /∈ O since f (xn) /∈ f (O ). For any n, there 
exists a Fatou component Bn

i such that f (Bn
i ) = Bi and xn ∈ ∂ Bn

1 ∩ ∂ Bn
2. The following assertion finishes the proof of the 

lemma.

Assertion 6. For n large enough Bn
i = Bi , i ∈ {1, 2}.

Proof. Otherwise, for some i0 ∈ {1, 2} there exists a Fatou component B such that B �= Bi0 , f (B) = Bi0 and x ∈ ∂ B . The 
boundary ∂ B has finitely many connected components, thus each one of them is locally connected. Let B̃ be either B or 
Bi0 . There exists a connected component U B̃ of U ∩ B̃ such that x ∈ ∂U B̃ . Since f (x) is simple in ∂ Bi0 , there exists a unique 
connected component V Bi0

of V ∩ Bi0 such that f (x) ∈ ∂V Bi0
. Hence f (U B̃) = V Bi0

. Since B �= Bi0 , we have U Bi0
∩ U B = ∅

and f (U Bi0
) = f (U B), which contradicts the injectivity of f |U . �

Now we apply Theorem 4 to finish the proof of part 1. Let w be an accumulation point of the orbit of some z ∈ ∂ B1 ∩∂ B2. 
There exist P > Q ≥ 0 such that f P (z), f Q (z) ∈ B(w; α/2), where α is the constant in Theorem 4. Hence d( f Q (z), f P (z)) =
d( f Q (z), f P−Q ( f Q (z))) ≤ α, and we get a periodic point in ∂ B1 ∩ ∂ B2.

The proof of part 2 uses ideas and techniques developed by K. Pilgrim in his thesis ([4], chapter 5). In case where f is 
hyperbolic and �P < +∞, part 2 is a corollary of his work.
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We assume that �P > 2, for otherwise f is conjugate to z �→ zd for some d ∈ Z, and the conclusion follows. Up to make 
a quasi-conformal deformation, we also assume that all the critical points in 

⋃
j≥0 f − j(B1 ∪ B2) have a finite orbit (see [1], 

theorem VI 5.1; this is why we assume that each component of Ĉ\J that is eventually mapped to B1 or to B2 is simply 
connected).

Let dk ≥ 2 be the degree of f |Bk and let φk : D → Bk be an isomorphism conjugating f with zdk . For t ∈ R, set Rk(t) :=
φk({re2iπt : 0 ≤ r < 1}). Since ∂ Bk is locally connected, φk extends continuously to φk : D→ Bk .

Denote χ the set of chords, that is the set of R1(t) ∪ R2(t′) such that R1(t) ∩ R2(t′) �= ∅. If α ∈ χ is periodic, then the 
point α ∩J ∈ ∂ B1 ∩ ∂ B2 is periodic. For any chord α and any set X ⊂ Ĉ, [α]X will denote the isotopy class of α rel X . For 
any distinct α, β ∈ χ , the complement Ĉ\(α ∪ β) has at least two connected components and at most three, with points of 
J in each of them. For any m ≥ 0, [α] f −m(P) = [β] f −m(P) if and only if one connected component of Ĉ\(α ∪ β) contains all 
but two points of f −m(P) (these two points being the extremities of the chords).

Set G O (P) := ⋃
z∈P

⋃
m∈Z f m(z). From the hypothesis of part 2, the set G O (P) ∩ (∂ B1 ∩ ∂ B2) is finite. Thus if α ∈ χ is 

such that α ∩J ∈ G O (P), then the point α ∩J is eventually periodic. We denote χ(S2, G O (P)) the set {α ∈ χ : α ∩J /∈
G O (P)}. For any n ≥ 0 we denote χ(S2, f −n(P)) the set {α ∈ χ : α ∩J /∈ f −n(P)}.

The proof of part 2 is as follows. We equip χ with the Hausdorff distance dH , so that it is a compact metric space. Pick 
α ∈ χ(S2, G O (P)). If the sequence ([ f j(α)] f −1(P)) j≥0 is eventually cyclical then α is eventually periodic (Lemma 10). Other-

wise, noting that ([ f j(α)]P ) j≥0 contains twice the same element (Lemma 11), we build a sequence (βn)n≥0 ⊂ χ(S2, G O (P))

by a series of adjustments (Lemma 7) such that βn converges (Lemma 8) to a chord β with the following property: either 
β ∩J ∈ G O (P), or ([ f j(β)] f −1(P)) j≥0 is eventually cyclical. This proves the existence of a periodic point in ∂ B1 ∩ ∂ B2. The 
density part will follow from the fact that we can build β as close as we want to α.

Let α ∈ χ(S2, f −m(P)) (resp. χ(S2, G O (P))). A lift of α is the closure of a connected component of f −1(α̊). If a lift of α
is a chord, then it belongs to χ(S2, f −(m+1)(P)) (resp. χ(S2, G O (P))).

Lemma 7. Let N ≥ 1, α ∈ χ(S2, G O (P)) and βN ∈ χ(S2, P) be such that βN ∈ [ f N(α)]P . There exists a unique chord β0 isotopic to 
α rel f −1(P), such that f N (β0) = βN and [ f i(β0)] f −1(P) = [ f i(α)] f −1(P) for every 0 ≤ i ≤ N − 1. Furthermore, β0 ∈ [α] f −N (P) .

Proof. Since f N−1(α) is a lift of f N(α), there exists a unique lift βN−1 of βN such that βN−1 ∈ [ f N−1(α)] f −1(P) . In 
particular, βN−1 ∈ [ f N−1(α)]P . For each 1 ≤ i ≤ N , we construct inductively a unique βN−i ∈ [ f N−i(α)] f −1(P) such that 
f i(βN−i) = βN and f k(βN−i) ∈ [ f k( f N−i(α))] f −1(P) for any 0 ≤ k ≤ i − 1. Note that βN−i ∈ [ f N−i(α)] f −i(P) . �
Lemma 8. For any ε > 0, there exists N ∈ N such that: ∀α, β ∈ χ(S2, f −N (P)), if [α] f −N (P) = [β] f −N (P) then dH (α, β) ≤ ε. As a 
consequence, if [α] f −n(P) = [β] f −n(P) for every n ∈N then α = β .

It follows from the following assertion:

Assertion 9. For every ε > 0 there exists η > 0 such that : for any α, β ∈ χ(S2, G O (P)), if dH (α, β) > ε then in at least two 
connected components of Ĉ\(α ∪ β) lie an open ball centered at a point of J and with radius η.

Proof. By contradiction, assume that there exists ε > 0, a sequence (ηn)n≥0 ⊂ R∗+ tending to 0, and a sequence 
((αn, βn))n≥0 ⊂ χ(S2, G O (P))2 such that, for any n ≥ 0: dH (αn, βn) ≥ ε and there does not exist two connected components 
of Ĉ\(αn ∪ βn) in which lies an open ball centered at a point of J and with radius ηn . By compactness of χ(S2, G O (P))2, 
we choose an accumulation point (α, β) of ((αn, βn))n≥0 and up to extraction (αn, βn) → (α, β). We have dH (α, β) ≥ ε. If 
Ĉ\(α ∪ β) has three connected components, then we note U1 one of the two connected components that are Jordan do-
mains and we note U2 the connected component that is not a Jordan domain. If Ĉ\(α ∪ β) has two connected components, 
then we note them U1 and U2. In any case, there exist η > 0 and zi ∈ J ∩ Ui such that B(zi; η) ⊂ Ui , i ∈ {1, 2}. For n large 
enough, B(z1; η/2) and B(z2; η/2) are included in two distinct connected components of Ĉ\(αn ∪βn). This is a contradiction 
as soon as ηn < η/2. �
Proof of Lemma 8. Let ε > 0 and η as in the assertion. Since �P > 2, there exists N ≥ 0 such that each one of the two balls 
of the assertion contains a point of f −N (P). Hence there is a point of f −N (P) in at least two connected components of 
Ĉ\(α ∪ β), thus [α] f −N (P) �= [β] f −N (P) . �
Lemma 10. For any α ∈ χ(S2, G O (P)), if the sequence ([ f n(α)] f −1(P))

∞
n=0 is cyclical, then α is periodic.

Proof. Assume that there exists Q ≥ 1 such that [ f n+Q (α)] f −1(P) = [ f n(α)] f −1(P) for any n ≥ 0. In particular, f n+Q (α) ∈
[ f n(α)]P . By Lemma 7, there exists a unique chord βn ∈ [α] f −1(P) such that f n(βn) = f n+Q (α) and for all 0 ≤ i ≤ n, 
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[ f i(βn)] f −1(P) = [ f i(α)] f −1(P) . This chord is f Q (α). Thanks to Lemma 7, we also have f Q (α) ∈ [α] f −n(P) . Since this is true 
for any n ≥ 0, we conclude by Lemma 8 that f Q (α) = α. �
Lemma 11. For any α ∈ χ(S2, G O (P)), there exist M, N ∈ N distinct such that [ f M(α)]P = [ f N (α)]P .

Proof. Assume that for any m, n ≥ 0 distinct, we have [ f m(α)]P �= [ f n(α)]P . Let us show that the set Pb or the set P ∩
(∂ B1 ∪ ∂ B2) accumulate on ∂ B1 ∩ ∂ B2, which contradicts the hypothesis of part 2 of Theorem 1.

Since (χ, dH ) is compact, up to extraction the sequence ( f n(α))n≥0 accumulates on a chord β . Since for any k, k′ distinct 
at least two connected components of Ĉ − ( f k(α) ∪ f k′

(α)) contain a point of P , one can construct a non-stationary 
sequence (zn)n≥0 ⊂P , which accumulates on a point z ∈ β .

Assume that (zn)n≥0 ∩ (P\Pb) is infinite and up to extraction that (zn)n≥0 ⊂ P\Pb . There exist finitely many distinct 
connected components V 1, . . . , V N of Ĉ\J , which are distinct from B1 and B2 and such that (zn)n≥0 ⊂ B1 ∪ B2 ∪ V 1 ∪ . . . ∪
V N . Each V j is included in Ĉ\χ , but by construction there is an infinite subset of (zn)n≥0 whose elements are pairwise 
separated by chords, thus there is an infinite subset of (zn)n≥0 included in B1 ∪ B2. Since we assume that the extremities 
of the chords are the only points of P in B1 ∪ B2, we conclude that there is an infinite subset of (zn)n≥0 included in 
P ∩ (∂ B1 ∪ ∂ B2).

Hence, up to extraction, we have (zn)n≥0 ⊂ Pb or (zn)n≥0 ⊂ P ∩ (∂ B1 ∪ ∂ B2). In particular, (zn)n≥0 ⊂ J , and z =
limn→∞ zn = β ∩J ∈ ∂ B1 ∩ ∂ B2. �
Proof of part 2. Let α be a chord. We have three cases.

Case 1: α ∩J ∈ G O (P). Thus α ∩J is eventually periodic, as explained before.

Case 2: α ∈ χ(S2, G O (P)) and ([ f n(α)] f −1(P))
∞
n=0 is eventually cyclical. Then α is eventually periodic by Lemma 10, and 

the point α ∩J is eventually periodic.

Case 3: α ∈ χ(S2, G O (P)) and ([ f n(α)] f −1(P))
∞
n=0 is not eventually cyclical. Let us build from α a chord β fitting case 1 

or 2.
By Lemma 11 there exist N ≥ 0 and Q ≥ 1 such that [ f N+Q (α)]P = [ f N (α)]P . Set β0 := f N (α). By Lemma 7, there 

exists a chord β1 ∈ [β0] f −Q (P) such that [ f i(β1)] f −1(P) = [ f i(β0)] f −1(P) for any 0 ≤ i ≤ Q − 1, and f Q (β1) = β0. Thus 
[ f Q +i(β1)] f −1(P) = [ f i(β1)] f −1(P) for any 0 ≤ i ≤ Q − 1, and β1 ∈ [ f 2Q (β1)]P . We build inductively a sequence of chords 
(βq)

∞
q=0 such that:

(i) βq+n ∈ [βq] f −2q Q (P) for any n ≥ 0, and

(ii) [ f j Q +i(βq)] f −1(P) = [ f i(βq)] f −1(P) for any 0 ≤ j ≤ 2q − 1 and 0 ≤ i ≤ Q − 1.

Assertion 12. The sequence (βq)
∞
q=0 converges to a chord β whose point β ∩J is eventually periodic.

Proof. The convergence follows from (i) and Lemma 8. The limit β is a chord since χ is compact. If β /∈ χ(S2, G O (P))

then β fits case 1. If β ∈ χ(S2, G O (P)), then we get for the limit [ f j Q +i(β)] f −1(P) = [ f i(β)] f −1(P) for every j ∈ N and 
0 ≤ i ≤ Q − 1. Hence ([ f i(β)] f −1(P))

∞
i=0 is cyclical, and β fits case 2. �

Thus there exists an eventually periodic point in ∂ B1 ∩ ∂ B2.
To finish the proof, let us explain now the density. The chord β is in χ(S2, f −Q (P)). Applying Lemma 7 to β ∈

[ f N (α)] f −1(P) , we obtain a chord γ ∈ [α] f −(N+Q )(P) such that γ ∩J is eventually periodic. Using Lemma 11, we can have 
N as large as we want. Thus we can build a sequence (γn)n≥0 ⊂ χ converging to α, such that every γn ∩ J is eventually 
periodic. Since ∂ B1 and ∂ B2 are locally connected, the sequence (γn ∩J )n≥0 converge to α ∩J . �
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