

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Dynamical systems

Periodic points in the intersection of attracting immediate basins boundaries

Points périodiques à l'intersection entre les frontières de bassins immédiats attractifs

Bastien Rossetti

Laboratoire Émile-Picard, Université Paul-Sabatier, 31062 Toulouse, France

Article history: Received 2 April 2014 Accepted after revision 13 September 2016 Available online 15 December 2016 Presented by the Editorial Board	We give conditions under which the intersection between two attracting immediate basins boundaries of a rational map contains at least one periodic point. © 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
	RÉSUMÉ
	Nous donnons des conditions suffisantes pour que l'intersection entre les frontières de deux bassins immédiats attractifs d'une fraction rationnelle contienne au moins un point périodique. © 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND licenses (http://creativecommons.org/licenses/by-nc-nd/4.0/).

For a rational map $R : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$, $\mathcal{J}(R)$ denotes the Julia set of R, $\mathcal{P}(R)$ the set $\{R^n(c) : R'(c) = 0 ; n \ge 1\}$ and $\mathcal{P}_b(R)$ the set of $x \in \mathcal{P}(R)$ that are not in the closure of a connected component of $\hat{\mathbb{C}} \setminus \mathcal{J}(R)$. A point $z \in \hat{\mathbb{C}}$ is said to be *eventually periodic* if there exists a $n \in \mathbb{N}$ such that $R^n(z)$ is periodic. By *sink* we mean a connected component of an attracting immediate basin.

Theorem 1. Let f be a rational map with two distinct sinks B_1 and B_2 (not necessarily in the same cycle) such that $\partial B_1 \cap \partial B_2 \neq \emptyset$. Assume that B_1 and B_2 are simply connected, and ∂B_1 and ∂B_2 are locally connected.

- 1. If the intersection $\partial B_1 \cap \partial B_2$ contains no critical point with infinite orbit and is disjoint from the ω -limit set of every recurrent critical point, then $\partial B_1 \cap \partial B_2$ contains a periodic point.
- 2. Assume furthermore that each component of $\hat{\mathbb{C}} \setminus \mathcal{J}(f)$ that is eventually mapped to B_1 or to B_2 is simply connected. If $\partial B_1 \cap \partial B_2$ contains no accumulation point of $\mathcal{P}_b(f)$ nor $\mathcal{P}(f) \cap (\partial B_1 \cup \partial B_2)$, then the subset of eventually periodic points in $\partial B_1 \cap \partial B_2$ is non-empty and dense in $\partial B_1 \cap \partial B_2$.

http://dx.doi.org/10.1016/j.crma.2016.09.004

E-mail address: bastien.rossetti@math.univ-toulouse.fr.

¹⁶³¹⁻⁰⁷³X/© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

As a particular case of part 2 of Theorem 1, if $\#\mathcal{P}(f) < +\infty$ then the set of eventually periodic points in $\partial B_1 \cap \partial B_2$ is non-empty and dense in $\partial B_1 \cap \partial B_2$. Nevertheless, the theorem does not require $\mathcal{P}(f)$ to be finite.

Here is an example of a non-empty intersection between two sink boundaries with no periodic point in the intersection. Let us consider $F_{\theta}(z) = \rho_{\theta} z^2(z-3)/(1-3z)$, where $\theta \in \mathbb{R} \setminus \mathbb{Q}$ and $\rho_{\theta} \in S^1$ (S^1 denotes the unit circle in \mathbb{C}) is such that $F_{\theta} : S^1 \to S^1$ has rotation number θ . The map $F_{\theta} : \mathbb{C} \to \mathbb{C}$ has been studied in [3]. The map F_{θ} has two attracting fixed points 0 and ∞ . The intersection between the boundaries of the corresponding sinks is non-empty and included in S^1 . This intersection contains no periodic point since $F_{\theta|S^1}$ is topologically conjugate to $z \mapsto e^{2i\pi\theta} z$. One notes that in this example the intersection contains the point 1, which is a critical point with an infinite orbit.

To prove the theorem, we assume that B_1 and B_2 are fixed, for otherwise we work with an iterate of f. Since there will not be confusion, we will note $\mathcal{J} = \mathcal{J}(f)$, $\mathcal{P} = \mathcal{P}(f)$ and $\mathcal{P}_b = \mathcal{P}_b(f)$.

Proof of part 1. We assume that $\partial B_1 \cap \partial B_2$ does not contain a critical point with finite orbit nor a parabolic point, for otherwise $\partial B_1 \cap \partial B_2$ would contain a periodic point.

A point $x \in \partial B_i$ is said to be *multiple* if it belongs to the impression of at least two prime ends in B_i . Using the expansion of f on ∂B_i , it is easy to show that a multiple point of ∂B_i in $\partial B_1 \cap \partial B_2$ is eventually periodic. Thus we assume that $\partial B_1 \cap \partial B_2$ contains no multiple point of ∂B_1 nor ∂B_2 .

In this context we show, using Theorem 3, that $f_{|\partial B_1 \cap \partial B_2}$ is distance-expanding with respect to the spherical metric, that is there exist $\lambda > 1$, $\eta > 0$ and $N \ge 0$ such that for any $x, y \in \partial B_1 \cap \partial B_2$, if $d(x, y) \le \eta$ then $d(f^N(x), f^N(y)) \ge \lambda d(x, y)$. Then we find a periodic point in $\partial B_1 \cap \partial B_2$ using the Theorem 4 dealing with periodic points for distance-expanding maps.

Lemma 2. The restriction $f_{|\partial B_1 \cap \partial B_2}$ is distance-expanding with respect to the spherical metric.

Proof. By Theorem 3 below, there exists an integer $N \ge 0$ such that $\min_{x \in \partial B_1 \cap \partial B_2} ||(f^N)'(x)|| > 1$. By continuity of the map $x \mapsto ||(f^N)'(x)||$, there exist $\lambda > 1$ and a neighborhood U of $\partial B_1 \cap \partial B_2$ such that $\min_{x \in U} ||(f^N)'(x)|| \ge \lambda$. By compactness of $\partial B_1 \cap \partial B_2$, there exists $\eta > 0$ such that if $d(x, y) \le \eta$, then the geodesic Γ between $f^N(x)$ and $f^N(y)$ lifts to a path γ from x to y with $\gamma \subset U$. Thus we get $d(f^N(x), f^N(y)) = \text{length}(\Gamma) \ge \lambda.\text{length}(\gamma) \ge \lambda d(x, y)$. \Box

Theorem 3. ([2]) Let g be a rational map of degree at least 2, and $\Lambda \subset \mathcal{J}(g)$ be a compact forward invariant set containing no critical point nor parabolic point. If Λ is disjoint from the ω -limit set of every recurrent critical point, then there exists $N \in \mathbb{N}$ such that $\min_{z \in \Lambda} ||(g^n)'(z)|| > 1$ for every $n \ge N$.

Theorem 4. ([5], chapter 4) Let (X, ρ) be a compact metric space. If $T : X \to X$ is continuous, open and distance-expanding, then there exists $\alpha > 0$ such that the following holds: if there exist $x \in X$ and $L \ge 1$ such that $\rho(x, T^{L}(x)) \le \alpha$, then X contains a periodic point.

Lemma 5. The restriction $f_{|\partial B_1 \cap \partial B_2}$ is open.

Proof. Let $0 \subset \partial B_1 \cap \partial B_2$ and assume f(0) is not open.

There exists a sequence $(y_n)_{n\geq 0} \subset (\partial B_1 \cap \partial B_2) \setminus f(O)$ converging to some $y \in f(O)$. Let $x \in O$ be such that f(x) = y. Since $\partial B_1 \cap \partial B_2$ contains no critical point, there exist a neighborhood U of x and a neighborhood V of y such that $f: U \to V$ is a homeomorphism. Thus for n large enough $y_n \in V$, the point $x_n = f^{-1}(y_n) \cap U$ is well defined and $x_n \to x$.

We show now that $x_n \in (\partial B_1 \cap \partial B_2) \setminus O$ so that O is not open. It is clear that $x_n \notin O$ since $f(x_n) \notin f(O)$. For any n, there exists a Fatou component B_i^n such that $f(B_i^n) = B_i$ and $x_n \in \partial B_1^n \cap \partial B_2^n$. The following assertion finishes the proof of the lemma.

Assertion 6. For *n* large enough $B_i^n = B_i$, $i \in \{1, 2\}$.

Proof. Otherwise, for some $i_0 \in \{1, 2\}$ there exists a Fatou component *B* such that $B \neq B_{i_0}$, $f(B) = B_{i_0}$ and $x \in \partial B$. The boundary ∂B has finitely many connected components, thus each one of them is locally connected. Let \tilde{B} be either *B* or B_{i_0} . There exists a connected component $U_{\tilde{B}}$ of $U \cap \tilde{B}$ such that $x \in \partial U_{\tilde{B}}$. Since f(x) is simple in ∂B_{i_0} , there exists a unique connected component $V_{B_{i_0}}$ of $V \cap B_{i_0}$ such that $f(x) \in \partial V_{B_{i_0}}$. Hence $f(U_{\tilde{B}}) = V_{B_{i_0}}$. Since $B \neq B_{i_0}$, we have $U_{B_{i_0}} \cap U_B = \emptyset$ and $f(U_{B_{i_0}}) = f(U_B)$, which contradicts the injectivity of $f_{|U}$. \Box

Now we apply Theorem 4 to finish the proof of part 1. Let w be an accumulation point of the orbit of some $z \in \partial B_1 \cap \partial B_2$. There exist $P > Q \ge 0$ such that $f^P(z), f^Q(z) \in B(w; \alpha/2)$, where α is the constant in Theorem 4. Hence $d(f^Q(z), f^P(z)) = d(f^Q(z), f^{P-Q}(f^Q(z))) \le \alpha$, and we get a periodic point in $\partial B_1 \cap \partial B_2$.

The proof of part 2 uses ideas and techniques developed by K. Pilgrim in his thesis ([4], chapter 5). In case where f is hyperbolic and $\#P < +\infty$, part 2 is a corollary of his work.

We assume that $\#\mathcal{P} > 2$, for otherwise f is conjugate to $z \mapsto z^d$ for some $d \in \mathbb{Z}$, and the conclusion follows. Up to make a quasi-conformal deformation, we also assume that all the critical points in $\bigcup_{j\geq 0} f^{-j}(B_1 \cup B_2)$ have a finite orbit (see [1], theorem VI 5.1; this is why we assume that each component of $\hat{\mathbb{C}} \setminus \mathcal{J}$ that is eventually mapped to B_1 or to B_2 is simply connected).

Let $d_k \ge 2$ be the degree of $f_{|B_k}$ and let $\phi_k : \mathbb{D} \to B_k$ be an isomorphism conjugating f with z^{d_k} . For $t \in \mathbb{R}$, set $R_k(t) := \phi_k(\{re^{2i\pi t} : 0 \le r < 1\})$. Since ∂B_k is locally connected, ϕ_k extends continuously to $\overline{\phi_k} : \overline{\mathbb{D}} \to \overline{B_k}$.

Denote χ the set of *chords*, that is the set of $\overline{R_1(t)} \cup \overline{R_2(t')}$ such that $\overline{R_1(t)} \cap \overline{R_2(t')} \neq \emptyset$. If $\alpha \in \chi$ is periodic, then the point $\alpha \cap \mathcal{J} \in \partial B_1 \cap \partial B_2$ is periodic. For any chord α and any set $X \subset \hat{\mathbb{C}}$, $[\alpha]_X$ will denote the isotopy class of α rel X. For any distinct $\alpha, \beta \in \chi$, the complement $\hat{\mathbb{C}} \setminus (\alpha \cup \beta)$ has at least two connected components and at most three, with points of \mathcal{J} in each of them. For any $m \ge 0$, $[\alpha]_{f^{-m}(\mathcal{P})} = [\beta]_{f^{-m}(\mathcal{P})}$ if and only if one connected component of $\hat{\mathbb{C}} \setminus (\alpha \cup \beta)$ contains all but two points of $f^{-m}(\mathcal{P})$ (these two points being the extremities of the chords).

Set $GO(\mathcal{P}) := \bigcup_{z \in \mathcal{P}} \bigcup_{m \in \mathbb{Z}} f^m(z)$. From the hypothesis of part 2, the set $GO(\mathcal{P}) \cap (\partial B_1 \cap \partial B_2)$ is finite. Thus if $\alpha \in \chi$ is such that $\alpha \cap \mathcal{J} \in GO(\mathcal{P})$, then the point $\alpha \cap \mathcal{J}$ is eventually periodic. We denote $\chi(S^2, GO(\mathcal{P}))$ the set $\{\alpha \in \chi : \alpha \cap \mathcal{J} \notin GO(\mathcal{P})\}$. For any $n \ge 0$ we denote $\chi(S^2, f^{-n}(\mathcal{P}))$ the set $\{\alpha \in \chi : \alpha \cap \mathcal{J} \notin f^{-n}(\mathcal{P})\}$.

The proof of part 2 is as follows. We equip χ with the Hausdorff distance d_H , so that it is a compact metric space. Pick $\alpha \in \chi(S^2, GO(\mathcal{P}))$. If the sequence $([f^j(\alpha)]_{f^{-1}(\mathcal{P})})_{j\geq 0}$ is eventually cyclical then α is eventually periodic (Lemma 10). Otherwise, noting that $([f^j(\alpha)]_{\mathcal{P}})_{j\geq 0}$ contains twice the same element (Lemma 11), we build a sequence $(\beta_n)_{n\geq 0} \subset \chi(S^2, GO(\mathcal{P}))$ by a series of adjustments (Lemma 7) such that β_n converges (Lemma 8) to a chord β with the following property: either $\beta \cap \mathcal{J} \in GO(\mathcal{P})$, or $([f^j(\beta)]_{f^{-1}(\mathcal{P})})_{j\geq 0}$ is eventually cyclical. This proves the existence of a periodic point in $\partial B_1 \cap \partial B_2$. The density part will follow from the fact that we can build β as close as we want to α .

Let $\alpha \in \chi(S^2, f^{-m}(\mathcal{P}))$ (resp. $\chi(S^2, GO(\mathcal{P}))$). A *lift of* α is the closure of a connected component of $f^{-1}(\alpha)$. If a lift of α is a chord, then it belongs to $\chi(S^2, f^{-(m+1)}(\mathcal{P}))$ (resp. $\chi(S^2, GO(\mathcal{P}))$).

Lemma 7. Let $N \ge 1$, $\alpha \in \chi(S^2, GO(\mathcal{P}))$ and $\beta_N \in \chi(S^2, \mathcal{P})$ be such that $\beta_N \in [f^N(\alpha)]_{\mathcal{P}}$. There exists a unique chord β_0 isotopic to α rel $f^{-1}(\mathcal{P})$, such that $f^N(\beta_0) = \beta_N$ and $[f^i(\beta_0)]_{f^{-1}(\mathcal{P})} = [f^i(\alpha)]_{f^{-1}(\mathcal{P})}$ for every $0 \le i \le N - 1$. Furthermore, $\beta_0 \in [\alpha]_{f^{-N}(\mathcal{P})}$.

Proof. Since $f^{N-1}(\alpha)$ is a lift of $f^N(\alpha)$, there exists a unique lift β_{N-1} of β_N such that $\beta_{N-1} \in [f^{N-1}(\alpha)]_{f^{-1}(\mathcal{P})}$. In particular, $\beta_{N-1} \in [f^{N-1}(\alpha)]_{\mathcal{P}}$. For each $1 \le i \le N$, we construct inductively a unique $\beta_{N-i} \in [f^{N-i}(\alpha)]_{f^{-1}(\mathcal{P})}$ such that $f^i(\beta_{N-i}) = \beta_N$ and $f^k(\beta_{N-i}) \in [f^k(f^{N-i}(\alpha))]_{f^{-1}(\mathcal{P})}$ for any $0 \le k \le i - 1$. Note that $\beta_{N-i} \in [f^{N-i}(\alpha)]_{f^{-i}(\mathcal{P})}$. \Box

Lemma 8. For any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that: $\forall \alpha, \beta \in \chi(S^2, f^{-N}(\mathcal{P}))$, if $[\alpha]_{f^{-N}(\mathcal{P})} = [\beta]_{f^{-N}(\mathcal{P})}$ then $d_H(\alpha, \beta) \le \varepsilon$. As a consequence, if $[\alpha]_{f^{-n}(\mathcal{P})} = [\beta]_{f^{-n}(\mathcal{P})}$ for every $n \in \mathbb{N}$ then $\alpha = \beta$.

It follows from the following assertion:

Assertion 9. For every $\varepsilon > 0$ there exists $\eta > 0$ such that : for any $\alpha, \beta \in \chi(S^2, GO(\mathcal{P}))$, if $d_H(\alpha, \beta) > \varepsilon$ then in at least two connected components of $\hat{\mathbb{C}} \setminus (\alpha \cup \beta)$ lie an open ball centered at a point of \mathcal{J} and with radius η .

Proof. By contradiction, assume that there exists $\varepsilon > 0$, a sequence $(\eta_n)_{n \ge 0} \subset \mathbb{R}^*_+$ tending to 0, and a sequence $((\alpha_n, \beta_n))_{n \ge 0} \subset \chi(S^2, GO(\mathcal{P}))^2$ such that, for any $n \ge 0$: $d_H(\alpha_n, \beta_n) \ge \varepsilon$ and there does not exist two connected components of $\hat{\mathbb{C}} \setminus (\alpha_n \cup \beta_n)$ in which lies an open ball centered at a point of \mathcal{J} and with radius η_n . By compactness of $\chi(S^2, GO(\mathcal{P}))^2$, we choose an accumulation point (α, β) of $((\alpha_n, \beta_n))_{n \ge 0}$ and up to extraction $(\alpha_n, \beta_n) \to (\alpha, \beta)$. We have $d_H(\alpha, \beta) \ge \varepsilon$. If $\hat{\mathbb{C}} \setminus (\alpha \cup \beta)$ has three connected components, then we note U_1 one of the two connected components that are Jordan domains and we note U_2 the connected component that is not a Jordan domain. If $\hat{\mathbb{C}} \setminus (\alpha \cup \beta)$ has two connected components, then we note them U_1 and U_2 . In any case, there exist $\eta > 0$ and $z_i \in \mathcal{J} \cap U_i$ such that $B(z_i; \eta) \subset U_i$, $i \in \{1, 2\}$. For n large enough, $B(z_1; \eta/2)$ and $B(z_2; \eta/2)$ are included in two distinct connected components of $\hat{\mathbb{C}} \setminus (\alpha_n \cup \beta_n)$. This is a contradiction as soon as $\eta_n < \eta/2$. \Box

Proof of Lemma 8. Let $\varepsilon > 0$ and η as in the assertion. Since $\sharp \mathcal{P} > 2$, there exists $N \ge 0$ such that each one of the two balls of the assertion contains a point of $f^{-N}(\mathcal{P})$. Hence there is a point of $f^{-N}(\mathcal{P})$ in at least two connected components of $\hat{\mathbb{C}} \setminus (\alpha \cup \beta)$, thus $[\alpha]_{f^{-N}(\mathcal{P})} \neq [\beta]_{f^{-N}(\mathcal{P})}$. \Box

Lemma 10. For any $\alpha \in \chi(S^2, GO(\mathcal{P}))$, if the sequence $([f^n(\alpha)]_{f^{-1}(\mathcal{P})})_{n=0}^{\infty}$ is cyclical, then α is periodic.

Proof. Assume that there exists $Q \ge 1$ such that $[f^{n+Q}(\alpha)]_{f^{-1}(\mathcal{P})} = [f^n(\alpha)]_{f^{-1}(\mathcal{P})}$ for any $n \ge 0$. In particular, $f^{n+Q}(\alpha) \in [f^n(\alpha)]_{\mathcal{P}}$. By Lemma 7, there exists a unique chord $\beta_n \in [\alpha]_{f^{-1}(\mathcal{P})}$ such that $f^n(\beta_n) = f^{n+Q}(\alpha)$ and for all $0 \le i \le n$,

 $[f^i(\beta_n)]_{f^{-1}(\mathcal{P})} = [f^i(\alpha)]_{f^{-1}(\mathcal{P})}$. This chord is $f^Q(\alpha)$. Thanks to Lemma 7, we also have $f^Q(\alpha) \in [\alpha]_{f^{-n}(\mathcal{P})}$. Since this is true for any $n \ge 0$, we conclude by Lemma 8 that $f^Q(\alpha) = \alpha$. \Box

Lemma 11. For any $\alpha \in \chi(S^2, GO(\mathcal{P}))$, there exist $M, N \in \mathbb{N}$ distinct such that $[f^M(\alpha)]_{\mathcal{P}} = [f^N(\alpha)]_{\mathcal{P}}$.

Proof. Assume that for any $m, n \ge 0$ distinct, we have $[f^m(\alpha)]_{\mathcal{P}} \neq [f^n(\alpha)]_{\mathcal{P}}$. Let us show that the set \mathcal{P}_b or the set $\mathcal{P} \cap (\partial B_1 \cup \partial B_2)$ accumulate on $\partial B_1 \cap \partial B_2$, which contradicts the hypothesis of part 2 of Theorem 1.

Since (χ, d_H) is compact, up to extraction the sequence $(f^n(\alpha))_{n\geq 0}$ accumulates on a chord β . Since for any k, k' distinct at least two connected components of $\hat{\mathbb{C}} - (f^k(\alpha) \cup f^{k'}(\alpha))$ contain a point of \mathcal{P} , one can construct a non-stationary sequence $(z_n)_{n\geq 0} \subset \mathcal{P}$, which accumulates on a point $z \in \beta$.

Assume that $(z_n)_{n\geq 0} \cap (\mathcal{P} \setminus \mathcal{P}_b)$ is infinite and up to extraction that $(z_n)_{n\geq 0} \subset \mathcal{P} \setminus \mathcal{P}_b$. There exist finitely many distinct connected components V_1, \ldots, V_N of $\hat{\mathbb{C}} \setminus \mathcal{J}$, which are distinct from B_1 and B_2 and such that $(z_n)_{n\geq 0} \subset \overline{B_1} \cup \overline{B_2} \cup \overline{V_1} \cup \ldots \cup \overline{V_N}$. Each V_j is included in $\hat{\mathbb{C}} \setminus \mathcal{X}$, but by construction there is an infinite subset of $(z_n)_{n\geq 0}$ whose elements are pairwise separated by chords, thus there is an infinite subset of $(z_n)_{n\geq 0}$ included in $\overline{B_1} \cup \overline{B_2}$. Since we assume that the extremities of the chords are the only points of \mathcal{P} in $B_1 \cup B_2$, we conclude that there is an infinite subset of $(z_n)_{n\geq 0}$ included in $\mathcal{P} \cap (\partial B_1 \cup \partial B_2)$.

Hence, up to extraction, we have $(z_n)_{n\geq 0} \subset \mathcal{P}_b$ or $(z_n)_{n\geq 0} \subset \mathcal{P} \cap (\partial B_1 \cup \partial B_2)$. In particular, $(z_n)_{n\geq 0} \subset \mathcal{J}$, and $z = \lim_{n\to\infty} z_n = \beta \cap \mathcal{J} \in \partial B_1 \cap \partial B_2$. \Box

Proof of part 2. Let α be a chord. We have three cases.

Case 1: $\alpha \cap \mathcal{J} \in GO(\mathcal{P})$. Thus $\alpha \cap \mathcal{J}$ is eventually periodic, as explained before.

Case 2: $\alpha \in \chi(S^2, GO(\mathcal{P}))$ and $([f^n(\alpha)]_{f^{-1}(\mathcal{P})})_{n=0}^{\infty}$ is eventually cyclical. Then α is eventually periodic by Lemma 10, and the point $\alpha \cap \mathcal{J}$ is eventually periodic.

Case 3: $\alpha \in \chi(S^2, GO(\mathcal{P}))$ and $([f^n(\alpha)]_{f^{-1}(\mathcal{P})})_{n=0}^{\infty}$ is not eventually cyclical. Let us build from α a chord β fitting case 1 or 2.

By Lemma 11 there exist $N \ge 0$ and $Q \ge 1$ such that $[f^{N+Q}(\alpha)]_{\mathcal{P}} = [f^N(\alpha)]_{\mathcal{P}}$. Set $\beta_0 := f^N(\alpha)$. By Lemma 7, there exists a chord $\beta_1 \in [\beta_0]_{f^{-Q}(\mathcal{P})}$ such that $[f^i(\beta_1)]_{f^{-1}(\mathcal{P})} = [f^i(\beta_0)]_{f^{-1}(\mathcal{P})}$ for any $0 \le i \le Q - 1$, and $f^Q(\beta_1) = \beta_0$. Thus $[f^{Q+i}(\beta_1)]_{f^{-1}(\mathcal{P})} = [f^i(\beta_1)]_{f^{-1}(\mathcal{P})} = [f^i(\beta_1)]_{f^{-1}(\mathcal{P})}$ for any $0 \le i \le Q - 1$, and $\beta_1 \in [f^{2Q}(\beta_1)]_{\mathcal{P}}$. We build inductively a sequence of chords $(\beta_q)_{q=0}^{\infty}$ such that:

(i) $\beta_{q+n} \in [\beta_q]_{f^{-2^q}Q(\mathcal{P})}$ for any $n \ge 0$, and (ii) $[f^{jQ+i}(\beta_q)]_{f^{-1}(\mathcal{P})} = [f^i(\beta_q)]_{f^{-1}(\mathcal{P})}$ for any $0 \le j \le 2^q - 1$ and $0 \le i \le Q - 1$.

Assertion 12. The sequence $(\beta_q)_{q=0}^{\infty}$ converges to a chord β whose point $\beta \cap \mathcal{J}$ is eventually periodic.

Proof. The convergence follows from (i) and Lemma 8. The limit β is a chord since χ is compact. If $\beta \notin \chi(S^2, GO(\mathcal{P}))$ then β fits case 1. If $\beta \in \chi(S^2, GO(\mathcal{P}))$, then we get for the limit $[f^{jQ+i}(\beta)]_{f^{-1}(\mathcal{P})} = [f^i(\beta)]_{f^{-1}(\mathcal{P})}$ for every $j \in \mathbb{N}$ and $0 \le i \le Q - 1$. Hence $([f^i(\beta)]_{f^{-1}(\mathcal{P})})_{i=0}^{\infty}$ is cyclical, and β fits case 2. \Box

Thus there exists an eventually periodic point in $\partial B_1 \cap \partial B_2$.

To finish the proof, let us explain now the density. The chord β is in $\chi(S^2, f^{-Q}(\mathcal{P}))$. Applying Lemma 7 to $\beta \in [f^N(\alpha)]_{f^{-1}(\mathcal{P})}$, we obtain a chord $\gamma \in [\alpha]_{f^{-(N+Q)}(\mathcal{P})}$ such that $\gamma \cap \mathcal{J}$ is eventually periodic. Using Lemma 11, we can have N as large as we want. Thus we can build a sequence $(\gamma_n)_{n\geq 0} \subset \chi$ converging to α , such that every $\gamma_n \cap \mathcal{J}$ is eventually periodic. Since ∂B_1 and ∂B_2 are locally connected, the sequence $(\gamma_n \cap \mathcal{J})_{n\geq 0}$ converge to $\alpha \cap \mathcal{J}$. \Box

References

- [1] L. Carleson, T.W. Gamelin, Complex Dynamics, second edition, Springer, 1995.
- [2] R. Mañé, On a theorem of Fatou, Bol. Soc. Bras. Mat. 24 (1993) 1-11.
- [3] C.L. Petersen, Local connectivity of some Julia sets containing a circle with an irrational rotation, Acta Math. 177 (1996) 163–224.
- [4] K.M. Pilgrim, Cylinders for iterated rational maps, PhD thesis, University of California at Berkeley, CA, USA, 1994.
- [5] F. Przytycki, M. Urbański, Conformal Fractals: Ergodic Theory Methods, The London Mathematical Society Lecture Note Series, vol. 371, 2010.