Dynamical systems

On the Anosov character of the Pappus–Schwartz representations

Sur le caractère Anosov des représentations de Pappus–Schwartz

Viviane Pardini Valério

Universidade Federal de Minas Gerais – ICEx – Departamento de Matemática, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, CEP 31.270-901, Caixa Postal 702, Brazil

A R T I C L E I N F O

Article history:
Received 16 April 2016
Accepted after revision 13 September 2016
Available online 19 September 2016
Presented by Claire Voisin

A B S T R A C T

In the paper Pappus’s Theorem and The Modular Group (1993) [4], R.E. Schwartz observed that the classical Pappus theorem gives rise to an action of the modular group on the space of marked boxes. He inferred from this a 2-dimensional family of faithful representations of the modular group into the group of projective symmetries. These representations have a dynamical behavior very similar to the one of Anosov representations, even if they are never Anosov themselves. In this note, we announce the main result of V. Pardini Valério (2016) [3], which elucidates this Anosov character of the Schwartz representations by proving that their restrictions to the index-2 subgroup are limits of Anosov representations.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

E-mail address: vivipardini@ufmg.br.

http://dx.doi.org/10.1016/j.crma.2016.09.005
1631-073X/© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
1. Pappus theorem and marked boxes

Let V be a 3-dimensional vector space and $\mathbb{P}(V)$ the associated projective spaces with V.

Theorem 1.1 (Pappus). If the points a_1, a_2, a_3 are colinear and the points b_1, b_2, b_3 are colinear in $\mathbb{P}(V)$, then the points $c_3 = a_1b_2 \cap a_2b_1$, $c_2 = a_1b_3 \cap a_3b_1$, $c_1 = a_2b_3 \cap a_3b_2$ are also colinear in $\mathbb{P}(V)$.

An important fact is that the Pappus Theorem, on certain conditions, can be iterated infinitely many times (see Fig. 1).

![Fig. 1. Iteration of the Pappus Theorem; marked box Θ in $\mathbb{P}(V)$.](image)

A **marked box** Θ is a special pair of 6-tuples having the incidences relatives shown in Fig. 1. If $\Theta = ((p, q, r, s; t, b), (P, Q, R, S; T, B))$, then $p, q, r, s, t, b \in \mathbb{P}(V)$, $P, Q, R, S, T, B \in \mathbb{P}(V^*)$, $T \cap B \notin \{p, q, r, s, t, b\}$, $S = bp, R = bq, P = ts, Q = tr, T = pq$ and $B = rs$. Let CM be the set of marked boxes.

The marked box $\Theta = ((p, q, r, s; t, b), (P, Q, R, S; T, B))$ is **convex** if the following two conditions hold: p and q separate t and $T \cap B$ on the line T, and r and s separate b and $T \cap B$ on the line B. The **convex interior** of Θ is the open convex quadrilateral whose vertices, in cyclic order, are p, q, r and s (for more details, see [3, section 2.2]). We denote it by $\hat{\Theta}$.

1.1. The action of the group of projective symmetries on CM

Let V be a 3-dimensional vector space and V^* its dual vector space. Projective transformations and dualities generate the group G of projective symmetries of the flag variety \mathcal{F}. Projective transformations alone define an index-2 subgroup $\mathcal{H} \cong PGL(3, \mathbb{R})$ of G.

Given a projective transformation T, and using the notation $x = T(x)$ for every point or line x in $\mathbb{P}(V)$, and for any marked box $\Theta = ((p, q, r, s; t, b), (P, Q, R, S; T, B))$, define (see Fig. 1):

$T(\Theta) = ((p, q, r, s; t, b), (P, Q, R, S; T, B)) \in CM$.

Similarly, given a duality D, and denoting $x^* = D(x)$ for $x \in \mathbb{P}(V)$, and $X^* = D^*(X)$ for X being a projective line, define (pay attention to the maybe surprising Schwartz re-ordering):

$D(\Theta) = ((P^*, Q^*, S^*, R^*; T^*, B^*), (q^*, p^*, r^*, s^*; t^*, b^*)) \in CM$.

1.2. The group of elementary transformations of marked boxes

Let $\Theta = ((p, q, r, s; t, b), (P, Q, R, S; T, B)) \in CM$. Pappus’ Theorem gives us two new elements of CM that are images of Θ by two special permutations τ_1 and τ_2 on CM (see Fig. 2). These permutations are defined by

$\tau_1(\Theta) = ((p, q, Q, R, P; s, t, (qs)(pr)), (P, Q, Q, P, S; T, (Q)(P, S)))$,

$\tau_2(\Theta) = ((Q, R, P, S, r, (qs)(pr), b), (p, q, s, Q, R, (P, S, B))$.

1. In this brief note, we abusively do not distinguish overmarked boxes from marked boxes as in [3] and [4].
Theorem 3.2. \[
\rho/\Theta_1(\gamma)(/\Theta_1(\gamma)) = (\rho/\Theta_1(\gamma)(\Theta(\gamma)) \quad (\rho_\Theta-\text{equivariant property}).
\]

Proof. The proof follows basically from the fact that the actions of PSL\(2, \mathbb{Z}\) and \(\Theta\) on \(L_0\) commute with each other (Remark 1), even if the actions of \(\Theta\) and \(G\) on CM commute with each other (see [4, Theorem 2.4] and, for more details, [3, Lemma 3.1, Theorem 3.2]). Already the fact that \(\rho_\Theta : \text{PSL}(2, \mathbb{Z}) \rightarrow G\) is a faithful representation follows from the fact that the action of PSL\(2, \mathbb{Z}\) on \(L_0\) is free. \(\square\)
2.2. The Schwartz map

Two Farey geodesics have the same tail in $\partial \mathbb{H}^2$ if and only if their labels are marked boxes with the same top point. Therefore, it defines a map $\psi : \mathbb{Q} \cup \{\infty\} \to \mathbb{P}(V)$ that can be extended to an injective ρ_Θ-equivariant continuous map $\varphi_\Theta : \partial \mathbb{H}^2 \to \mathbb{P}(V)$ (see [4, Theorem 3.2]). Similarly, there is an injective ρ_Θ-equivariant continuous map $\varphi_\Theta^* : \partial \mathbb{H}^2 \to \mathbb{P}(V^*)$. The maps φ_Θ and φ_Θ^* combine to form a ρ_Θ-equivariant map:

$$\Phi := (\varphi_\Theta, \varphi_\Theta^* : \partial \mathbb{H}^2 \to \mathcal{F} \subset \mathbb{P}(V) \times \mathbb{P}(V^*)),$$

where \mathcal{F} is the flag variety. We call the composition of Φ with the canonical projection of $\partial \text{PSL}(2, \mathbb{Z})$ into $(\partial \mathbb{H}^2)$ the Schwartz map, where $\partial \text{PSL}(2, \mathbb{Z})$ is the Gromov boundary.

3. Anosov representations

The Anosov representation theory was introduced by François Labourie in [2] for representations of closed surface groups. It does not apply directly to the modular group $\text{PSL}(2, \mathbb{Z})$. However $\text{PSL}(2, \mathbb{Z})$ is Gromov-hyperbolic. Hence we use here a formulation inspired from [1], in the simple case of convex cocompact subgroups of $\text{PSL}(2, \mathbb{R})$.

3.1. Definition of Anosov representations

Given $x \in \mathbb{P}(V)$, let $Q_x(V)$ be the space of norms on tangent space $T_x \mathbb{P}(V)$ at x. Similarly, given $x \in \mathbb{P}(V^*)$, let $Q_x(V^*)$ be the space of norms on tangent space $T_x \mathbb{P}(V^*)$ at x. We denote by $Q(V)$ the bundle of base $\mathbb{P}(V)$ with fiber $Q_x(V)$ on $x \in \mathbb{P}(V)$. Similarly, we denote by $Q(V^*)$ the bundle of base $\mathbb{P}(V^*)$ with fiber $Q_x(V^*)$ on $x \in \mathbb{P}(V^*)$. Let $\Omega(\phi^t)$ be the nonwandering set of the geodesic flow ϕ^t on $T^1(\Gamma \setminus \mathbb{H}^2)$.

Definition 3.1. Let Γ be a convex cocompact discrete subgroup of $\text{PSL}(2, \mathbb{R})$ with limit set Λ_Γ. A homomorphism $\rho : \Gamma \to \mathcal{H} \cong \text{PSL}(3, \mathbb{R})$ is an **Anosov representation** if there are

(i) a Γ-equivariant map

$$\Phi = (\varphi, \varphi^* : \Lambda_\Gamma \to \mathcal{F} \subset \mathbb{P}(V) \times \mathbb{P}(V^*)),$$

(ii) two maps $\nu_+ : \Omega(\phi^t) \to Q(V)$ and $\nu_- : \Omega(\phi^t) \to Q(V^*)$ such that, for every nonwandering geodesic $c : \mathbb{R} \to \mathbb{H}^2$ with extremities $c_-, c_+ \in \Lambda_\Gamma$ we have that

- for all $v \in T_{\phi^t(c)} \mathbb{P}(V)$ the size of v for the norm $\nu_+(c(t), c'(t))$, increases exponentially with t;
- for all $v \in T_{\phi^t(c)} \mathbb{P}(V^*)$ the size of v for the norm $\nu_-(c(t), c'(t))$, decreases exponentially with t.

The group Γ of this definition is a Gromov-hyperbolic group. Since it is convex cocompact, its Gromov boundary $\partial \Gamma$ is Γ-equivariantly homeomorphic to its limit set Λ_Γ.

In the sequel, we will consider Anosov representations of a finite index subgroup of $\text{PSL}(2, \mathbb{Z})$, which is not convex cocompact. But we replace simply $\text{PSL}(2, \mathbb{Z})$ by a convex cocompact discrete subgroup of $\text{PSL}(2, \mathbb{R})$ obtained by “opening the cusps”, thus we build an example on a 3-fold symmetric 3-punctured sphere having geodesic boundaries of small length.

3.2. Schwartz representations are not Anosov

The Schwartz representation ρ_Θ preserves a topological circle in the flag variety, on which it is topologically conjugated to the usual action of $\text{PSL}(2, \mathbb{Z})$ on the conformal boundary of the hyperbolic plane. This property is very similar to the one associated with Anosov representations of surface groups into $\text{PSL}(3, \mathbb{R})$. However, ρ_Θ cannot be Anosov since the Gromov boundary of $\text{PSL}(2, \mathbb{Z})$ is a Cantor set and not a circle. Thus the Schwartz maps ψ and ψ^* cease to be injective, contradicting a property of Anosov representations.

4. A new family of representations

In order to show that Schwartz representations are limits of Anosov representations, we define a new group of transformations of CM.

4.1. A new group of transformations of CM

Let $\Theta = ((p, q, r, s; t, b), (P, Q, R, S; T, B))$ be a convex marked box. Let us consider the unique affine chart in $P(V)$ such that Θ is seen as the “special square” where $p = (-1, 1), q = (1, 1), r = (1, -1)$ and $s = (-1, -1)$. Let λ and μ be real numbers. Let $\Sigma_{(\lambda, \mu)} : CM \to CM$ be a new transformation of marked boxes such that the image of Θ is given by applying the matrix $\Sigma_{(\lambda, \mu)} = \begin{pmatrix} e^{\lambda} & 0 \\ 0 & e^{\mu} \end{pmatrix}$ to this special square in $P(V)$. This new transformation has some interesting properties:
(1) it commutes with elements of \(\mathcal{H} \) (projective transformations), but it does not commute with elements of \(\mathcal{G} \setminus \mathcal{H} \) (dualities) acting on \(CM \).

(2) considering the particular case where \(\mu = 2 \lambda \) and let \(\sigma_\lambda := \sigma_{(\lambda, 2\lambda)} \), then the relation \(i\sigma_\lambda = \sigma_\lambda^{-1}i \) holds.

Let us define three more new transformations on \(CM \) as follows:

\[
i^\lambda \ := \ \sigma_\lambda i \quad \tau^1_\lambda \ := \ \sigma_\lambda \tau_1 \quad \tau^2_\lambda \ := \ \sigma_\lambda \tau_2.
\]

The semigroup \(\Theta^\lambda \) of \(S(CM) \), generated by \(i^\lambda, \tau^1_\lambda \) and \(\tau^2_\lambda \), is also an isomorphic group to the modular group \((\text{PSL}(2, \mathbb{Z}) \cong \Theta \cong \Theta^\lambda) \) and, for \(\lambda = 0 \), of course \(\Theta^\lambda = \Theta \).

4.2. New representations

Given a convex marked box \(\Theta \) and a real number \(\lambda \), again let us consider the Farey lamination \(L_0 \) of \(\mathbb{H}^2 \) introduced in Remark 1; and the new group \(\Theta^\lambda \) of transformations of \(CM \). In order to circumvent the inconvenient of \(\Theta^\lambda \) not commuting with dualities acting on \(CM \), we restrict to the unique index 2 subgroup \(\text{PSL}(2, \mathbb{Z})_0 \) of \(\text{PSL}(2, \mathbb{Z}) \), isomorphic to \(\mathbb{Z}_3 \ast \mathbb{Z}_3 \). The main Theorem announced in this note is:

Theorem 4.1. Let \(\Theta \) be a convex marked box and let \(\lambda \in \mathbb{R} \). There is a representation \(\rho^\lambda_{\Theta} : \text{PSL}(2, \mathbb{Z})_0 \to \mathcal{H} \rtimes \mathcal{G} \) such that for every leaf \(e \) of \(L_0 \) and every \(\gamma \in \text{PSL}(2, \mathbb{Z})_0 \) we have:

\[
[\Theta](\gamma e) = \rho^\lambda_{\Theta}(\gamma)([\Theta](e)).
\]

Moreover, if \(\lambda \) is negative, then \(\rho^\lambda_{\Theta} \) is Anosov.

The key point of the our construction is: if \(\lambda \leq 0 \), then for any convex marked box \(\Theta \), we have \(\tau^1_\lambda(\Theta) \subseteq \Theta, \quad \tau^2_\lambda(\Theta) \subseteq \Theta, \quad \text{and} \quad \tau^1_\lambda(\Theta) \cup \tau^2_\lambda(\Theta) = \emptyset \) in \(\mathbb{P}(V) \). Furthermore, if \(\lambda \) is negative, then we have the same properties, but now for the closures of the interiors of the marked boxes. The Anosov character of the representations \(\rho^\lambda_{\Theta} \), for \(\lambda < 0 \), is a consequence of this stronger property.

Remark 2. When the marked box \(\Theta \) is symmetric, i.e. when \(t = (0, 1) \) and \(b = (0, -1) \) on the special affine chart, the Schwartz representation, restricted to the index 2 subgroup \(\text{PSL}(2, \mathbb{Z})_0 \), is the one arising by the inclusion \(\text{PSL}(2, \mathbb{Z})_0 \subset \text{PSL}(2, \mathbb{R}) \subset \text{PGL}(3, \mathbb{Z}) \) where the last inclusion is reducible, i.e. is such that \(\text{PSL}(2, \mathbb{R}) \) preserves a splitting of \(V \) as a sum of a line and a plane. The representation \(\rho^\lambda_{\Theta} \), for \(\lambda < 0 \), corresponds to the deformation of \(\text{PSL}(2, \mathbb{Z})_0 \) inside \(\text{PSL}(2, \mathbb{R}) \) consisting in opening up the cusp.

5. Conclusion

In summary, since the space of marked boxes up to projective transformations is 2-dimensional, we have defined a 3-dimensional family of representations \(\rho^\lambda_{\Theta} : \text{PSL}(2, \mathbb{Z})_0 \to \text{PGL}(3, \mathbb{R}) \) where \(\lambda \) is a real parameter. When \(\lambda \) vanishes, \(\rho^0_{\Theta} \) is the restriction of the Schwartz representation \(\rho_{\Theta} \) to \(\text{PSL}(2, \mathbb{Z})_0 \), and when \(\lambda \) is negative, \(\rho^\lambda_{\Theta} \) is Anosov. In particular, the Schwartz representations are limits of the Anosov representations in the space of all representations of \(\text{PSL}(2, \mathbb{Z})_0 \) into \(\text{PGL}(3, \mathbb{R}) \).

Acknowledgements

I would like to thank Professor Thierry Barbot, my doctoral supervisor, for his valuable teachings. I would also like to thank the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for their financial support during the realization of this work.

References