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Let � ⊂ R
2 be a countably-connected domain. In �, consider closed differential forms of 

degree 1 with components in L2(�). Further, consider sequences of periods of such forms 
around holes in �, i.e. around bounded connected components of R2 \�. For which domains 
� the collection of such a period sequences coincides with �2? We give an answer in terms of 
metric properties of holes in �.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit � ⊂ R
2 un domaine infiniment connexe. Considérons des formes différentielles 

fermées dans � de degré 1 et à composantes dans L2(�). Considérons de plus les suites 
de périodes de formes telles autour de trous dans le domaine �, c’est-à-dire autour des 
composantes connexes bornées de R2 \�. Quels sont les domaines � tels que l’ensemble de ces 
suites de periodes coïncide avec �2 ? On obtient un critère en termes de propriétés métriques 
des trous dans �.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Statement of the problem

In this paper, we announce a result to be published later [2]. Let us start with some definitions.

1.1. Interpolation of forms by their periods

Let D be the unit disk in the plane C � R
2. Suppose that connected compact sets B1, B2, · · · ⊂ D are pairwise disjoint 

and accumulate only to unit circle T. Also we assume that each B j does not separate the plane. Consider a planar countably 
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connected domain � := D \ ⋃∞
j=1 B j ; sets B1, B2, . . . are called holes in � (unbounded connected component of R2 \ � will 

have a special status).
Consider the following Hilbert space of real differential forms of degree 1 in �:

L2,1
c (�) = {ω – 1-form in �, ‖ω‖2

L2,1
c (�)

:=
∫

�

|ω|2 dλ2 < +∞,dω = 0 in the sense of distributions}.

Here, if ω = ωx dx + ωy dy, then |ω| :=
√

ω2
x + ω2

y ; λ2 is the Lebesgue measure in R2.

For any j = 1, 2, . . . , pick a closed oriented curve γ j in � such that γ j winds around hole B j once in the positive 
direction and does not wind around other holes B j′ , j′ �= j. Period functional Per j : L2,1

c (�) → R, Per j(ω) := ∫
γ j

ω is well 

defined and continuous in L2,1
c (�) (see, e.g., [3]). Now, define the period operator: for ω ∈ L2,1

c (�) put Perω := {Per j(ω)}∞j=1.

Definition 1. We say that domain � has complete interpolation property if operator Per : L2,1
c (�) → �2 is bounded and surjec-

tive.

The problem of interpolation by periods is to describe domains � possessing the complete interpolation property in 
terms of the metric characteristics of the layout of holes B j in �. By change of variable, we ensure that our problem is 
invariant under the action of a conformal mapping that does not turn � inside out.

1.2. Equilibrium currents

The question of interpolation by periods is motivated by the following higher-dimensional problem on the equilibrium 
current (see [6]). Consider a multiply-connected compact subset K , say, in R3. Let S1, S2, . . . be some sequence of, say, 
smooth compact surfaces (sections) with boundaries with ∂ S j ∩ K = ∅, S j ∩ K �= ∅, j = 1, 2, . . . . Let us search for an 
electric current �I supported on K such that div�I = 0, the flows 

∫
S j

�In have prescribed values, and the current �I minimizes 

the energy 
∫
R3

∫
R3

〈�I(x),�I(y)〉 dx dy
|x−y| among all such currents. This is a certain analog of a classical problem on the equilibrium 

charge on a compact set, but the condition div�I = 0 makes these two problems non-equivalent. We would like to work with 
such a statement for arbitrarily non-smooth compact subsets K (one of the questions is, for example, in what amount the 
minimum of energy depends on the choice of the sections).

With an electric current �I , one associates its Biot–Savart magnetic field BS�I := curl
(�I � 1/|x|

)
, where � is the convolution. 

If �f = BS�I , then, in terms of such �f , we have the following problem of interpolation in the exterior domain: to find a 
field �f in R3 \ K such that curl �f = 0, circulations 

∫
∂ S j

�fτ have prescribed values and ‖�f ‖L2(R3\K ) is minimal under these 
conditions. To the author’s knowledge, the planar version of the interpolation by periods problem was not studied before.

Before we state a metric criterion for complete interpolation property, let us give some of its equivalent reformulations.

1.3. Interpolation in the Bergman space

Let A 2(�) be the usual (unweighted) Bergman space in �. If f ∈ A 2(�) and curves γ j are as in the above, then we 
may define the complex period operator PerC as PerC f = {∮γ j

f (ζ ) dζ }∞j=1. The interpolation problem in the Bergman space 

is stated as in L2,1
c (�) (just replace Per by PerC). Domain � has the complete interpolation property for forms if and only if it has 

this property for Bergman functions. This follows from the fact that minimizers of ‖ω‖L2,1
c (�)

under given periods are harmonic 
forms in � and can be understood as analytic functions. Recall that a form ω is called harmonic if dω = 0, d ∗ ω = 0, where 
∗ is the Hodge star operator.

1.4. Estimates of harmonic functions

In this paragraph, we assume for simplicity that any B j is a closure of a domain with C∞-smooth boundary. Let 
◦

W 1,2(D)

be the Sobolev space of functions u : � → R with ‖u‖ ◦
W 1,2(D)

:= (∫
D

|∇u|2 dλ2
)1/2

< +∞ and u = 0 on T. The complete 

interpolation property of � turns out to be equivalent to the following condition: for any {a j}∞j=1 ∈ �2 , there exists a function 

u ∈ ◦
W 1,2(D) with �u = 0 in �, u|B j = a j almost everywhere for any j = 1, 2, . . . , and

C1 · ‖{a j}∞j=1‖�2 ≤ ‖u‖ ◦
W 1,2(D)

≤ C2 · ‖{a j}∞j=1‖�2 (1)

with some C1, C2 ∈ (0, +∞) not depending on {a j}∞j=1 . This is clear from the explicit form of reproducing kernels (see below) 
and Riesz basis condition for these kernels.
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1.5. Riesz basis in Hilbert homologies

We may define the L2-cohomology space in � as

H1
L2(�) := L2,1

c (�)/{ω ∈ L2,1
c (�) : ω = du for some u ∈ W 1,2

loc (�)},
and let H1,L2 (�) be the dual of its space; this is the space of Hilbert homologies in �. Any curve γ j , j = 1, 2, . . . , can be 
understood as an element of H1,L2 (�). In this language, the complete interpolation property is equivalent to the following: 
system {γ j}∞j=1 is a Riesz basis (see, e.g., [4]) in H1,L2(�).

2. A criterion

To state a necessary and sufficient condition of complete interpolation, let us give some definitions.
We say that holes B j are separated if, for any j, j′ = 1, 2, . . . , j �= j′ , we have dist(B j, B j′ ) ≥ ε · min{diam B j, diam B j′ }

with some ε > 0 not depending on j and j′ (symbols dist and diam denote distance and diameter in Euclidean metric).
Denote by BH (z, r) the open disk of radius r > 0 in hyperbolic metric 2|dz|

1−|z|2 in D and centered in some z ∈ D. Let us say 
that the holes in domain � are uniformly locally finite if there exists N = N(�) < +∞ such that any disk of the form BH (z, 1)

(z ∈ D) intersects no more than N of holes B j , j = 1, 2, . . . .
Now, for S < +∞, define a graph G(�, S). Its vertices are sets B j , j = 1, 2, . . . , and also set R2 \ D. If E1, E2 are two 

of such sets, then join them with an edge in G(�, S) if dist(E1, E2) ≤ S · min{diam E1, diam E2}. (One may also use the 
condenser capacity to define this graph.) The distance between two vertices in G(�, S) in the graph metric is the number 
of edges of the shortest path connecting these vertices.

Theorem 2 (Complete interpolation criterion). Domain � possesses the complete interpolation property if and only if the following 
conditions are satisfied.

1. Family of holes {B j}∞j=1 is uniformly locally finite.
2. Holes B j are separated; also, sup{diamH (B j) | j ∈ N} < +∞, where diamH is the hyperbolic diameter.
3. For some S < +∞, the graph G(�, S) is connected and its diameter in the graph metric is finite.

3. About the proofs

In this section, we assume that each B j is a closure of a domain with C∞-smooth boundary. Theorem 2 in the case of 
non-smooth holes is obtained by approximation of such holes by smooth ones.

3.1. Reproducing kernels

Let us point out period reproducing kernels (see also [1]).

Proposition 3. For any j = 1, 2, . . . , there exists a function v j ∈ ◦
W 1,2(D) for which �v j = 0 in �, v j = 1 almost everywhere in B j

and v j = 0 almost everywhere on B j′ for any j′ �= j.

The form κ j = −(∗dv j) is a period reproducing kernel, i.e. 〈κ j, ω〉L2,1
c (�)

= Per j(ω) for any ω ∈ L2,1
c (�).

It turns out that 〈κ j, κ j′ 〉L2,1
c (�)

< 0 if j, j′ = 1, 2, . . . , j �= j′ . This implies, in particular, that the operator Per is bounded 
provided that sup j∈N ‖ Per j ‖(

L2,1
c (�)

)∗ < +∞. We make essential use of the latter inequality; note that this estimate is 

equivalent to the following one:

sup
j∈N

Cap2

(
B j,R

2 \ (� ∪ B j)
)

< +∞. (2)

Here Cap2(·, ·) is the capacity of a condenser with two plates defined as, e.g., in [5].

3.2. Uniform local finiteness

The most difficult part of Theorem 2 is to derive the uniform local finiteness of holes from the complete interpolation 
property of �. We make use of inequality (1) by constructing a function u ∈ ◦

W 1,2(D) with the following properties: for 
each j = 1, 2, . . . , the function u is constant almost everywhere in B j , ‖u‖ ◦

W 1,2(D)
is not large, whereas the values u|B j are 

not very small; then it remains to put into (1) a function v ∈ ◦
W 1,2(D), which is harmonic in � and coincides with u in 

D \ �.



M. Dubashinskiy / C. R. Acad. Sci. Paris, Ser. I 354 (2016) 1060–1064 1063
In order to construct such u, we consider a (degenerated) metric 1�|dz| in R2. Let ρ(·, ·) be the inner metric generated 
by 1�|dz|. Define u(z), z ∈ R

2, as the distance in the metric ρ from z to T. Then u ∈ ◦
W 1,2(D) since |∇u| ≤ 1 almost 

everywhere, and u = 0 on T. Also, all the holes B j collapse into points in metric ρ and hence u is constant on any hole.
It remains to estimate u|B j from below. The following inequality easily provides uniform local finiteness:

u|B j ≥ c1 · dist(B j,T) (3)

for any j = 1, 2, . . . , and some c1 > 0 not depending on j. To prove this, we have, according to the definition of u, to 
estimate H1(� ∩ �) from below for any parameterized curve � starting in B j and ending on T (H1 is Hausdorff measure).

Under some technical assumptions on �, a simple stepwise process leads to the following lemma.

Lemma 4. There exist a sequence of points z0, w0, ξ0, z1, w1, ξ1, . . . on curve � ordered in the direction of increase of parameter of �
and also a sequence of distinct indices j0, j1, . . . ∈ N such that:

1. for m = 0, 1, . . . , an arc of curve � starting in zm and ending in wm lies entirely in hole B jm ; point wm is the point of exit of �
from B jm ; � does not return to B jm after wm;

2. |ξm − wm| = |zm − wm| for m = 0, 1, . . . ;
3. if �m, m = 0, 1, . . . , is the arc of � from zm to ξm then � ∩ (

R
2 \ �

) ⊂ ⋃
m=0,1,...

�m.

If � has the complete interpolation property, then estimate (2) for j = jm and the Cauchy–Schwartz inequality imply 
that H1(�m ∩ �) ≥ c2 · |ξm − zm|, with some c2 > 0 depending only on ‖ Per ‖L2,1

c (�)→�2 . This leads to (3), what was desired.

3.3. Boundedness of Per: poset structure

There is a partial order structure on the set of holes, which expresses the essence of the continuity of operator Per. 
Denote by Ut(E) the open Euclidean t-neighbourhood (t > 0) of a set E ⊂ R

2.

Lemma 5. Under the first and second conditions of Theorem 2, it is possible to define a partial order relation � on the set of holes B j

and also to associate a set A j ⊂ � with each hole B j , such that:

1. for each j = 1, 2, . . . , the set A j is of the form Us j (B j) \ Ut j (B j) for some t j , s j (s j > t j). Also, s j − t j ≥ c2 · diam B j , s j ≤
c1 · diam B j where c1, c2 > 0 do not depend on j. The overlapness multiplicity of sets A j is bounded from above;

2. B j′ � B j if and only if B j′ ⊂ Ut j (B j). For a fixed j0 , the number of indices j for which B j � B j0 does not exceed some constant C. 
In particular, lengths of chains in order � are bounded uniformly. If B j1 , B j2 � B j , then either B j1 � B j2 or B j2 � B j1 .

We may force c1 to be small; thence, roughly speaking, Bk ≺ B j (k �= j) if diam Bk � diam B j and dist(B j, Bk) � diam B j .
Now suppose that all A j are annular domains (this may not, in general, be true). By the first assertion of Lemma 5, A j is 

wide enough in the sense of extremal length. In this case, for any j = 1, 2, . . . , we have estimates

∫

A j

|ω|2 dλ2 ≥ c ·
⎛
⎝ ∑

j′ : B j′�B j

Per j′ ω

⎞
⎠

2

with some c > 0 not depending on ω ∈ L2,1
c (�) and j. Consecutive application of these estimates starting from the minimal 

holes in sense of order � up to maximal ones gives us the continuity of operator Per.

3.4. Surjectivity of Per

This property is provided by the first and third conditions in Theorem 2. The lower estimate on 
∫
�

|∇u|2 dλ2 in (1)
is responsible for the surjectivity of Per. To prove this inequality, we implement the connectivity of G(�, S) in the plane. 
Namely, if some holes B j and Bk are adjacent in G(�, S), then we may construct a wide “road” R jk joining B j and Bk in R2. 
This road is a planar set such that, if some function u is constant on B j and on Bk , then 

∫
R jk

|∇u|2 dλ2 ≥ c · ∣∣(u|B j ) − (u|Bk )
∣∣2

with some c > 0 not depending on j and k. Also, the overlapness multiplicity of almost all of these roads is bounded from 
above. This allows us, for u as in (1), to estimate ‖u‖ ◦

W 1,2(D)
from below by passing graph G(�, S) in breadth-first order 

and starting from its vertices adjacent to R2 \ D. The estimates of u|B j for the latter vertices are obtained by use of the 
boundedness of Hardy’s average operator.



1064 M. Dubashinskiy / C. R. Acad. Sci. Paris, Ser. I 354 (2016) 1060–1064
4. An open question

Our problem is not completely geometrically invariant. For example, an inversion with a center in one of the holes turns 
domain � inside out and throws the problem out of the studied class. Let us give a statement free of such a disadvantage.

If � is some domain in R2 (or even a Riemann surface), then consider the following property of �.

(†) In the space H1,L2(�), there exists a Riesz basis consisting of integer homologies.

Here H1,L2(�) is defined as above. By an integer homology, we mean a functional of the kind ω �→ ∫
β
ω (ω is a closed 

1-form) delivered by some closed loop β ⊂ �. The question is to describe domains (or Riemann surfaces) � having prop-
erty (†).

Let H be an abstract Hilbert space and {x j}∞j=1 be a countable system of vectors in H . Consider the following property 
of this system:

(‡) space H has a Riesz basis whose elements are linear combinations of vectors x j, j = 1, 2, . . . , with integer coefficients.

If planar domain � and curves γ j are as in Section 1, then the property (†) of � is equivalent to the property (‡) of the 
system {γ j}∞j=1 in H1,L2(�).

We do not know any investigation on such integer Riesz bases theory. Let us only note that if {e j}∞j=1 is an orthonormal 

basis in the Hilbert space H , then it is easy to see that system of the kind {a j e j}∞j=1 with a j
j→∞−−−→ +∞ does not possess 

the property (‡) in H . This observation allows us to construct domains � not having property (†). We thus may conclude 
that the property (†) is a non-trivial quasiconformal invariant of countably-connected Riemann surfaces.
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