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Since the seminal contribution of Geymonat, Müller, and Triantafyllidis, it is known that 
strong ellipticity is not necessarily conserved by homogenization in linear elasticity. This 
phenomenon is typically related to microscopic buckling of the composite material. The 
present contribution concerns the interplay between isotropy and strong ellipticity in the 
framework of periodic homogenization in linear elasticity. Mixtures of two isotropic phases 
may indeed lead to loss of strong ellipticity when arranged in a laminate manner. We show 
that if a matrix/inclusion type mixture of isotropic phases produces macroscopic isotropy, 
then strong ellipticity cannot be lost.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous savons, depuis l’article fondateur de Geymonat, Müller et Triantafyllidis, qu’en 
élasticité linéaire l’homogénéisation périodique ne conserve pas nécessairement l’ellipticité 
forte. Ce phénomène est lié au flambage microscopique des composites. Notre contribution 
consiste à examiner le rôle de l’isotropie dans ce type de pathologie. Le mélange de deux 
phases isotropes peut en effet conduire à cette perte si l’arrangement est celui d’un laminé. 
Nous montrons en revanche que, si un arrangement de type matrice/inclusion produit un 
tenseur homogénéisé isotrope, alors la forte ellipticité est conservée.
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1. Introduction

This contribution is restricted to the two-dimensional case, although most of the results that are being used remain true 
in any dimension.

In all what follows, T stands for the unit 2-torus. Consider a T-periodic heterogeneous linear elastic material character-
ized by its elasticity tensor field L, a T-periodic symmetric endomorphism on M2×2

sym , the set of 2 × 2-symmetric matrices. 
Assume that L is an L∞ , pointwise very strongly elliptic map, that is that, for some λ > 0,

M ·L(x)M ≥ λ|M|2 for all M ∈ M2×2
sym , and a.e. x ∈ T. (1.1)

Let D be an open, bounded domain of Rd , and u0 ∈ H1(D; R2). Then it is simple to establish, in view of classical homoge-
nization results, that the integral functional

H1
0(D) � u �→ Iε(u) :=

∫
D

∇(u + u0) ·L(
x

ε
)∇(u + u0)dx

�-converges for the weak topology of H1
0(D) to the homogenized integral functional

H1
0(D) � u �→ I∗(u) :=

∫
D

∇(u + u0) ·L∗∇(u + u0)dx,

where L∗ is a constant elasticity tensor that is very strongly elliptic with constant λ. It is classically given by

M ·L∗M = min

⎧⎨
⎩

∫
T

(M + ∇v) ·L(x)(M + ∇v) dx; v ∈ H1(T;R2)

⎫⎬
⎭ . (1.2)

If instead of pointwise very strong ellipticity, we only assume pointwise strong ellipticity, that is that, for some λ > 0,

M ·L(x)M ≥ λ|M|2 for all symmetrized rank one M = a ⊗ b, a,b ∈R
2, and a.e. x ∈ T,

the story is different.
In an inspirational work [2], G. Geymonat, S. Müller, and N. Triantafyllidis introduced two measures of coercivity:

� = inf

{∫
Rd ∇u ·L∇u dx∫

Rd |∇u|2 dx
; u ∈ C∞

0 (R2,R2)

}
,

�per = inf

{∫
T

∇v ·L∇v dx∫
T

|∇v|2 dx
; v ∈ H1(T;R2)

}
.

When � > 0, then homogenization occurs as in the classical setting of (1.1), while when � < 0, Iε is not bounded 
from below and there is no homogenization. Their focus was on the case when � = 0 and �per > 0. There, they showed 
that there is still homogenization towards I∗ with associated L∗ given by (1.2). However, L∗ may be strongly elliptic (that 
is, non-degenerate on rank-one matrices) or simply non-negative on such matrices, but not strongly elliptic because there 
exists a, b ∈R

2 such that a ⊗ b ·L∗a ⊗ b = 0.
The third phenomenon is referred to as loss of strong ellipticity by homogenization. To avoid confusion, we will say that a 

fourth-order tensor L is strongly elliptic if M · LM ≥ 0 for all rank-one matrices, and that it is strictly strongly elliptic if in 
addition there exists λ > 0 such that this inequality can be strengthened to M ·LM ≥ λ|M|2.

There is only one single example [3] for which one can prove that strong ellipticity is lost by homogenization. The 
associated composite material has a laminate structure made of two isotropic phases (a strong phase and a weak phase). 
Loss of strong ellipticity occurs when the strong phase buckles in compression (it is related to the failure of the cell-formula 
for nonlinear composites, cf. [4,2]). This has been rigorously proved in [1].

Buckling is by nature a very one-dimensional phenomenon. It is mechanically unlikely that any material could lose 
strong ellipticity in every rank-one direction. This simple-minded observation suggests that assuming the isotropy of L∗
may prevent loss of strong ellipticity by homogenization. The aim of the present contribution is precisely to mathematically 
corroborate the mechanical intuition.

Let us quickly describe our main result. The fact that L∗ is isotropic allows one to focus on the Lamé coefficients of L∗ . 
If they held true, the Hashin–Shtrikman (HS) bounds would prevent loss of strong ellipticity a priori. Whereas the HS bound 
on the bulk modulus does hold true, we do not know whether even the elementary harmonic lower bound for the Poisson’s 
ratio similarly holds true. The standard proof for very strongly elliptic materials proceeds by duality and cannot be used 
in our setting of strongly elliptic materials, since the energy density is not necessarily pointwise non-negative. Instead, we 
argue through a comparison argument which does not use duality.
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2. The result

Let λ1, μ1 and λ2, μ2 be the Lamé coefficients of isotropic stiffness tensors L1 and L2. In other words,

(Li)pqrs = λiδpqδrs + μi(δprδqs + δpsδqr), i, p,q, r, s ∈ {1,2}.
We assume that

0 < μ1 = −(λ2 + μ2) =: −K2 < μ2, K1 := λ1 + μ1 > 0. (2.1)

In particular λi + 2μi ≥ 0, i = 1, 2, so that both phases are strictly strongly elliptic but phase 2 is not very strongly elliptic 
because K2 < 0.

We then define

L(x) = χ(x)L1 + (1 − χ(x))L2,

where χ is the characteristic function of the inclusion (phase 1), an open subset of the torus T with Lipschitz boundary; 
assume further that

{χ = 0} := {x ∈ T; χ(x) = 0} is connected in T. (2.2)

The following result is a generalization of [1, Theorem 2.9, Case 2] because, in contrast with that result, it does not 
impose any restriction on the geometry of each phase besides representing the worst inclusion/matrix type microstructure, 
that is that for which the matrix (here phase 2) does not satisfy very strong ellipticity.

Theorem 2.1. Under assumptions (2.1), (2.2), � ≥ 0 and �per > 0.

As shown in [1, Proposition 3.4] the laminate configuration (in the periodic setting) results in a loss of ellipticity for L∗ . 
The theorem below shows that the isotropy of L∗ rules out any loss of ellipticity.

Theorem 2.2. Under assumptions (2.1), (2.2) assume further that L∗ is isotropic with bulk modulus K∗ and shear modulus μ∗ . Then 
K∗ + μ∗ > 0, that is, L∗ is strictly strongly elliptic.

We expect that Theorem 2.2 also holds in the stationary ergodic setting (for which statistical isotropy is a mild require-
ment that yields isotropy of L∗). The proof we display below fails however to cover this setting due to the use of Korn’s 
theorem on the (compact!) torus.

3. Proofs

3.1. Proof of Theorem 2.1

Step 1. � ≥ 0. We decompose L as L −L+L, where L is the isotropic stiffness tensor with Lamé constants λ, μ defined as 
follows: μ := μ1 and λ := infx{λ(x) + μ(x)} − μ1 = −2μ1. On the one hand, so defined, L is clearly strongly elliptic, since 
μ = μ1 > 0 and λ + 2μ = 0.

On the other hand, μ − μ ≥ 0, (λ + μ) − (λ + μ) ≥ 0, so that

L−L is pointwise non-negative as a quadratic form. (3.1)

This yields L ≥ L pointwise, which implies that � ≥ 0 since L is strongly elliptic, so the corresponding � is non-negative.

Step 2. �per > 0. We argue by contradiction and assume that �per = 0. Consider ∇vn a minimizing sequence of periodic 
fields with 

∫
T

|∇vn|2 dx = 1 such that

lim
n→∞

∫
T

∇vn ·L∇vn dx = 0. (3.2)

We now prove that (i) ∇vn ⇀ 0 weakly in L2(T; R2×2), then that (ii) ∇vn is strongly convergent in L2(T; R2×2). The 
combination of (i) and (ii) then yields limn→∞

∫
T

|∇vn|2 dx = 0, whence the contradiction.
The proof of (i) exploits the structure of the problem. In the spirit of the proof of [1, Theorem 2.9], we add a null 

Lagrangian 4μ1 det∇vn (which satisfies 
∫
T

det ∇vn dx ≡ 0) to the energy, so that the assumption turns into

lim
n→∞

∫
{∇vn ·L∇vn + 4μ1 det ∇vn} dx = 0. (3.3)
T
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On the one hand, since 
∫
T

|∇vn|2 dx = 1, we may assume that (along a subsequence) there exists a periodic field ∇v in 
L2(T; R2×2) such that ∇vn ⇀ ∇v weakly in L2(T; R2×2). Since � ≥ 0, the map ∇u �→ ∫

T
∇u · L∇u dx is weakly lower-

semicontinuous, which implies that∫
T

∇v ·L∇v dx = 0.

As in Step 2 of the proof of [1, Theorem 2.9], we have, pointwise for all u = (u1, u2) ∈H1(T, R2),

∇u ·L∇u + 4μ1 det∇u = P (
∂u1

∂ y1
,
∂u2

∂ y2
) + R(

∂u1

∂ y2
,
∂u2

∂ y1
),

where P and R are quadratic forms that satisfy, for some α > 0,

P (a,b) ≥ α(a + b)2χ + α(a − b)2(1 − χ), (3.4)

R(a,b) ≥ α(a − b)2χ + α(a2 + b2)(1 − χ). (3.5)

In particular, since these quadratic forms are non-negative, they vanish almost everywhere at ∇v . On the set {χ = 1}, this 
yields

∂v1

∂ y1
+ ∂v2

∂ y2
= 0, (3.6)

∂v1

∂ y2
− ∂v2

∂ y1
= 0, (3.7)

while, on the set {χ = 0},

∂v1

∂ y1
= ∂v2

∂ y2
, (3.8)

∂v1

∂ y2
= ∂v2

∂ y1
= 0. (3.9)

From (3.7) and (3.9), we deduce that there exists a potential ψ ∈ H2(T, R) such that v = (v1, v2) = ∇ψ . We start with 
proving additional properties on ψ in the matrix, that is on the set {χ = 0}. By assumption, this set is connected, so that 
from (3.9) we deduce that ψ(y) = ψ1(y1) + ψ2(y2) for some ψ1, ψ2 ∈ H2(T; R) on that set. From (3.8), we then learn that 
ψ1(y1) = ay2

1 + by1 + c and that ψ2(y2) = ay2
2 + dy2 + e for some a, b, c, d, e ∈R. We continue with the properties of ψ in 

the inclusion, that is on the set where {χ = 1}. On the one hand, taking the derivative of (3.6) w.r.t. y1 and of (3.7) w.r.t. y2, 
and using the Schwarz’s commutation rule, we obtain that −�v1 = 0, on the other hand, the formula for ψ on the set 
where {χ = 0} completes this equation with the boundary data v1(y) = 2ay1 + b. By uniqueness of the solution of this 
boundary-value problem, we then conclude that v1(y) = 2ay1 + b on T. Likewise, v2(y) = 2ay2 + d. In turn the condition ∫
T

∇v dx = 0 due to periodicity implies that ∇v ≡ 0 as claimed.

We turn now to the proof of (ii) and shall argue that if (3.2) holds, then (1 − χ)∇vn converges strongly in L2(T; R2×2)

to zero. Integrating (3.5) over the unit torus T yields in view of (3.2)

∂v1
n

∂ y2
→ 0,

∂v2
n

∂ y1
→ 0, strongly in L2({χ = 0};R2×2). (3.10)

It remains to prove that ∂v1
n/∂ y1 and ∂v2

n/∂ y2 converge strongly to zero in L2({χ = 0}; R2×2) as well. By symmetry, it 
is enough to treat the first term ∂v1

n/∂ y1. To this aim, we follow the beginning of the argument of Step 2 in the proof of 
[1, Theorem 2.9]. We get

∂v1
n

∂ y1
− ∂v2

n

∂ y2
→ 0, in L2({χ = 0};R2×2).

Consequently, with (3.10),

∂

∂ y2

∂v1
n

∂ y1
= ∂

∂ y1

∂v1
n

∂ y2
→ 0 in H−1({χ = 0}),

∂ ∂v1
n = ∂ ∂v2

n + rn( with rn → 0 in H−1({χ = 0})) = ∂ ∂v2
n + rn → 0 in H−1({χ = 0}).
∂ y1 ∂ y1 ∂ y1 ∂ y2 ∂ y2 ∂ y1
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As in the proof of [1, Theorem 2.9], application of Korn’s theorem [5] then yields

∂v1
n

∂ y1
→ 0, strongly in L2({χ = 0};R2).

Likewise ∂v2
n/∂ y2 converges strongly to zero in L2({χ = 0}; R2), and, in view of (3.10), ∇vn converges strongly to zero 

in L2({χ = 0}; R2), or, equivalently,∫
T

(1 − χ)|∇vn|2 dx → 0. (3.11)

We are now in a position to conclude. Since det ∇vn is quadratic in ∇vn , (3.11) yields (1 − χ) det ∇vn → 0 in L1(T)

while 
∫
T

det ∇vn dx = 0, so that∫
T

χ det∇vn dx → 0. (3.12)

From (3.4), (3.5),∫
T

χ

({
∂v1

n

∂ y1
+ ∂v2

n

∂ y2

)2

+
(

∂v1
n

∂ y2
− ∂v2

n

∂ y1

)2}
dx → 0.

Thus, with (3.12),∫
T

χ |∇vn|2 dx =
∫
T

χ

({
∂v1

n

∂ y1
+ ∂v2

n

∂ y2

)2

+
(

∂v1
n

∂ y2
− ∂v2

n

∂ y1

)2}
dx − 2

∫
T

χ det ∇vn dx → 0.

Combined with (3.11), this yields the desired contradiction since 
∫
T

|∇vn|2 dx = 1.

3.2. Proof of Theorem 2.2

We split the proof into two steps and prove (K∗, μ∗) ≥ (−μ1, μ1) and (K∗, μ∗) �= (−μ1, μ1) separately.

Step 1. Since � ≥ 0 and �per > 0, (1.2) defines the homogenized elasticity tensor, so that for all M ∈ M2×2 there exists 
v M ∈H1(T; R2) such that

M ·L∗M =
∫
T

(M + ∇v M) ·L(M + ∇v M) dx.

Consider L as in Subsection 3.1. Since L is constant and strongly elliptic while 
∫
T

∇v M dx = 0,∫
T

(M + ∇v M) ·L(M + ∇v M) dx = M ·LM +
∫
T

∇v M ·L∇v M dx

︸ ︷︷ ︸
≥ 0

≥ M ·LM.

Hence,

M · (L∗ −L)M ≥
∫
T

(M + ∇v M) · (L−L)(M + ∇v M) dx.

Appealing to (3.1), we conclude that M · (L∗ − L)M ≥ 0. The isotropy assumption on L∗ then permits to conclude that 
(K∗, μ∗) ≥ (−μ1, μ1).

Step 2. We argue by contradiction and assume that (K∗, μ∗) = (−μ1, μ1), so that L∗ = L. In this case all rank-one matrices 
a ⊗ a are such that

a ⊗ a ·L∗a ⊗ a = 0. (3.13)

Then,

0 =
∫

(a ⊗ a + ∇va⊗a) ·L(a ⊗ a + ∇va⊗a) dx.
T
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Adding the null-Lagrangian 4μ1 det(a ⊗a +∇φa⊗a) dx and proceeding as in Step 2 of the proof of Theorem 2.1, we conclude 
that φa⊗a ≡ cst. Hence the homogenization formula takes the form

a ⊗ a ·L∗a ⊗ a = a ⊗ a ·
⎡
⎣∫
T

L(x) dx

⎤
⎦a ⊗ a > 0

since the volume fraction of phase 1 is not 0. This contradicts (3.13) and concludes the proof.
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