
C. R. Acad. Sci. Paris, Ser. I 354 (2016) 1155–1167
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Mathematical analysis/Theory of signals

Best bases for signal spaces

Bases optimales pour des espaces de signaux

Yonathan Aflalo a, Haïm Brezis c,b, Alfred Bruckstein a, Ron Kimmel a, 
Nir Sochen d

a Computer Science Department, Technion – I.I.T., 32000 Haifa, Israel
b Department of Mathematics, Technion – I.I.T., 32000 Haifa, Israel
c Department of Mathematics, Rutgers University, USA
d Department of Applied Mathematics, Tel Aviv University, Tel Aviv 69978, Israel

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 October 2016
Accepted 3 October 2016
Available online 12 October 2016

Presented by Haïm Brézis

We discuss the topic of selecting optimal orthonormal bases for representing classes of 
signals defined either through statistics or via some deterministic characterizations, or 
combinations of the two. In all cases, the best bases result from spectral analysis of a 
Hermitian matrix that summarizes the prior information we have on the signals we want 
to represent, achieving optimal progressive approximations. We also provide uniqueness 
proofs for the discrete cases.
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r é s u m é

Dans cette note, nous abordons le problème de la recherche de bases orthonormales 
optimales en vue de représenter des signaux définis de façon, soit statistique, soit 
déterministe, ou selon une combinaison des deux. Dans tous les cas, nous montrons 
que ces bases proviennent de l’analyse spectrale d’une matrice hermitienne qui regroupe 
l’information émanant des signaux que l’on souhaite représenter. Nous prouvons aussi 
l’unicité de la base dans le cas discret.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

A fundamental problem in engineering, as well as in mathematics, is the progressive approximation of a signal via a 
sequence of linearly combined basis signals with optimal weighting coefficients. The setting is as follows. Let B denote the 
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set of all orthonormal bases of Rn and for b ∈ B write

b = (b1,b2, ..,bn).

Given a class of signals (vectors) in Rn , we want to approximate each signal f by a superposition of k weighted signals 
selected from an ordered set of given orthonormal vectors b = (b1, b2, . . . , bn) ∈ B, as follows,

f̂k =
k∑

j=1

( f ,b j)b j. (1)

This k-approximation of f should be optimal in the sense of minimizing an error measure that evaluates the size of the 
vectors

E(k) ≡ f − f̂k, (2)

over the class of signals for every k. The meaning of a minimization of the representation error must be made precise 
depending on the properties that define the specific class of signals we deal with. In case the signals are a realization of a 
stochastic process, the minimization of a representation error may require the minimization of

E‖E(k)‖2 = E(‖ f − f̂k‖2), (3)

where E is the ensemble average operator. If, say, f is selected uniformly from a given finite, but possible very large set of 
N signals, say F1, F2, . . . , F N ∈R

n , then, we can minimize the average (squared) error, that is, determine b ∈ B that solves

min
b∈B

1

N

N∑
i=1

∥∥∥∥∥∥Fi −
k∑

j=1

(Fi,b j)b j

∥∥∥∥∥∥
2

. (4)

We refer to the solution to (4) as the principal component analysis (PCA) of the set of signals F1, F2, . . . , F N . In this paper, 
we also study the representation error over the class of signals f ∈ R

n obeying the condition 1
N

∑N
i=1(Fi, f )2 ≤ 1. Hence, 

we first determine the basis b ∈ B that solves for every k the problem

min
b∈B

max
f ∈R

n

1
N

∑N
i=1(Fi, f )2 ≤ 1

∥∥∥ f − f̂k

∥∥∥ . (5)

We refer to (5) as the min–max problem. Note that throughout the discussion above, we are searching to minimize an error 
measure with respect to a basis b = (b1, b2, . . . , bn) that provides an ordered set of orthonormal vectors b1, b2, . . . , bk, . . . , bn , 
so as to be optimal for all 1 ≤ k ≤ n − 1.

We next provide a general recipe for finding optimal progressive representation bases and prove their uniqueness for 
different signal representation problems. Specifically, we will show that the best basis for the expected (average) mean 
squared error representation problem (PCA)

min
b∈B

1

N

N∑
i=1

∥∥∥∥∥∥Fi −
k∑

j=1

(Fi,b j)b j

∥∥∥∥∥∥
2

, (6)

∀k = 1, 2, . . . , n −1, coincides, after inverting the order of the basis vectors, with the optimal basis that solves the progressive 
min–max error representation problem defined by

min
b∈B

max
f ∈R

n

(R f , f ) ≤ 1

∥∥∥∥∥∥ f −
k∑

j=1

( f ,b j)b j

∥∥∥∥∥∥ , (7)

where the operator R is R f = 1
N

∑N
i=1(Fi, f )Fi , hence,

(R f , f ) = 1

N

N∑
i=1

(Fi, f )2. (8)

Note that the eigenvectors e1, e2, . . . , en of the symmetric non-negative operator R, defined by Rei = ρiei , ordered to 
correspond to the decreasing values of the eigenvalues ρi , provide the solution to the PCA problem (4) of best k-term 
approximation. That is, the optimal b is given by b j = ±e j . This is the well-known Karhunen–Loève or Principal Component 
Analysis solution to the average least squares k-term approximation (4).

The approach outlined below allows us to also analyze the regularized PCA presented in [1], and provide uniqueness 
conditions for the construction of related representation spaces. The main idea behind the analysis is defining the signal 
class via a self-adjoint operator whose eigenvectors provide the optimal and unique basis.
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2. Optimality and uniqueness for a min–max problem

Let D be a linear operator from Rn to RN , where n ≤ N . Assume that D is injective, that is

N(D) = { f ∈R
n, D f = 0} = 0. (9)

Set T = (DT D)1/2 :Rn →R
n , so that T is symmetric. Denote by

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn (10)

its eigenvalues, with corresponding eigenvectors e1, e2, .., en . Because of assumption (9), λ1 > 0. Assume, for simplicity, that

λ1 < λ2 < · · · < λn. (11)

Note that ∀ f ∈R
n ,

‖D f ‖2 = (DT D f , f ) = (T 2 f , f ) = ‖T f ‖2. (12)

Our first result is,

Theorem 2.1. For every 1 ≤ k ≤ n − 1 we have

αk ≡ min
b∈B

max
f ∈ R

n

‖D f ‖ ≤ 1

∥∥∥∥∥ f −
k∑

i=1

( f ,bi)bi

∥∥∥∥∥ = 1

λk+1
, (13)

where the minb∈B in (13) is taken over all orthonormal bases (b1, b2, .., bn) of Rn. Moreover, the only orthonormal basis that is a 
minimizer of (13) for every 1 ≤ k ≤ n − 1 is (e1, e2, .., en) modulo ±.

Proof. In view of (12), we may replace the constraint ‖D f ‖ ≤ 1 in (13) by ‖T f ‖ ≤ 1.
Step 1. We have

αk ≤ 1

λk+1
, ∀k < n. (14)

Choose bi = ei , ∀i = 1, 2, .., n in (13) and note that ∀ f ,∥∥∥∥∥ f −
k∑

i=1

( f , ei)ei

∥∥∥∥∥
2

=
∥∥∥∥∥∥

n∑
i=k+1

( f , ei)ei

∥∥∥∥∥∥
2

=
n∑

i=k+1

|( f , ei)|2, (15)

while

T f =
n∑

i=1

( f , ei)λiei,

so that,

‖T f ‖2 ≥
n∑

i=k+1

|( f , ei)|2λ2
i ≥ λ2

k+1

n∑
i=k+1

|( f , ei)|2,

and hence,∥∥∥∥∥ f −
k∑

i=1

( f , ei)ei

∥∥∥∥∥
2

≤ 1

λ2
k+1

‖T f ‖2. (16)

Step 2. Proof of the main theorem by induction on n.
Let (b1, b2, .., bn) be an orthonormal basis which is a minimizer in (13) for all k = 1, 2, .., n − 1. Choosing in particular 

k = n − 1 gives

|( f ,bn)| ≤ αn−1‖T f ‖ ∀ f . (17)

Taking f = bn in (17), and writing

bn =
n∑

(bn, ei)ei,
i=1
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yields

1 ≤ α2
n−1

n∑
i=1

|λi|2|(bn, ei)|2.

But

1 = ‖bn‖2 =
n∑

i=1

|(bn, ei)|2,

implies

n∑
i=1

(1 − λ2
i α

2
n−1)|(bn, ei)|2 ≤ 0. (18)

On the other hand,

1 − λ2
i α

2
n−1 > 0 ∀i = 1,2, ..,n − 1, (19)

and

1 − λ2
nα

2
n−1 ≥ 0 (20)

since λi < λn ≤ 1
αn−1

, by Step 1.
It follows from (18), (19), and (20), that

(bn, ei) = 0 ∀i = 1,2, ..,n − 1, (21)

and

1 − λ2
nα

2
n−1 = 0, (22)

as otherwise we would deduce that (bn, en) = 0, and thus bn = 0, that contradicts our assumption about bn . Therefore,

αn−1 = 1

λn
. (23)

Hence,

bn =
n∑

i=1

(bn, ei)ei = (bn, en)en,

and |(bn, en)| = 1, so that bn = ±en .
The space M = (en)⊥ has dimension (n − 1) and T (M) ⊂ M . Assume that the theorem holds up to n − 1. The eigenvalues 

of T |M (= T restricted to M) are λ1 < λ2 < · · · < λn−1 and b1, b2, .., bn−1 is an orthonormal basis of M . By the induction 
assumption applied in M to T |M we deduce that αk = 1

λk+1
∀k ≤ n − 2, and that bi = ±ei for i = 1, 2, .., n − 1. �

3. PCA revisited

Consider a linear symmetric operator R : Rn → R
n . Denote

ρ1 ≥ ρ2 ≥ · · · ≥ ρn (24)

its eigenvalues (no assumptions on their signs), and

e = (e1, e2, .., en)

the corresponding orthonormal basis of eigenvectors, that is,

Rei = ρiei ∀i = 1,2, ..,n. (25)

Assume, for simplicity, that

ρ1 > ρ2 > · · · > ρn. (26)
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As in Section 2, let B denote the class of all orthonormal bases of Rn and for b ∈ B write

b = (b1,b2, ..,bn).

Given b ∈ B, and k = 1, 2, .., n, set

Yk(b) =
k∑

j=1

(Rb j,b j). (27)

Note that for every b ∈ B,

Yn(b) = ρ1 + ρ2 + · · · + ρn. (28)

Indeed, write for every j = 1, 2, . . . , n

b j =
n∑

i=1

(b j, ei)ei, (29)

so that

Rb j =
n∑

i=1

ρi(b j, ei)ei, (30)

(Rb j,b j) =
n∑

i=1

ρi(b j, ei)
2, (31)

and

Yn(b) =
n∑

j=1

n∑
i=1

ρi(b j, ei)
2 =

n∑
i=1

ρi . (32)

Theorem 3.1. Assume (26) holds. For every k = 1, 2, .., n − 1, we have

Yk(e) = ρ1 + ρ2 + · · · + ρk, (33)

and for every b ∈ B,

Yk(b) ≤ ρ1 + ρ2 + · · · + ρk. (34)

Moreover,

Yk(b) = ρ1 + ρ2 + · · · + ρk ∀k = 1,2, ..,n − 1, (35)

if and only if

b j = ±e j ∀ j = 1,2, ..,n. (36)

Proof. In view of (31) we have

Yk(b) =
k∑

j=1

n∑
i=1

ρi(b j, ei)
2. (37)

Thus, Theorem 3.1 is an immediate consequence of the following

Lemma 3.1. Let e, b ∈B and let (ρi)1≤i≤n be a sequence in R satisfying (26). Then, for every k = 1, 2, . . . , n − 1

Yk ≡
k∑

j=1

n∑
i=1

ρi(b j, ei)
2 ≤ ρ1 + ρ2 + · · · + ρk. (38)

Moreover, equality in (38) holds for every k = 1, 2, . . . , n − 1, if and only if

b j = ±e j ∀ j = 1,2, . . . ,n.
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Proof. Write

Yk = Uk + Vk, (39)

where

Uk =
k∑

i=1

n∑
j=1

ρi(b j, ei)
2 (40)

and

Vk =
n∑

i=k+1

k∑
j=1

ρi(b j, ei)
2. (41)

From (41) and (24) we have

Vk ≤ ρk+1

n∑
i=k+1

k∑
j=1

(b j, ei)
2

= ρk+1

k∑
j=1

(
1 −

k∑
i=1

(b j, ei)
2

)

= ρk+1

⎛
⎝k −

k∑
i=1

k∑
j=1

(b j, ei)
2

⎞
⎠

= ρk+1

k∑
i=1

⎛
⎝1 −

k∑
j=1

(b j, ei)
2

⎞
⎠ . (42)

On the other hand, by (40),

k∑
i=1

ρi − Uk =
k∑

i=1

ρi

⎛
⎝1 −

k∑
j=1

(b j, ei)
2

⎞
⎠ .

Applying (24) once more yields

k∑
i=1

ρi − Uk ≥ ρk+1

k∑
i=1

⎛
⎝1 −

k∑
j=1

(b j, ei)
2

⎞
⎠

≥ Vk,

by (42). From (42) and (39) we deduce (38).
Assume now that equality in (38) holds for every k = 1, 2, . . . , n − 1. Taking k = 1, we have

n∑
i=1

ρi(b1, ei)
2 = ρ1,

so that

n∑
i=1

(ρi − ρ1)(b1, ei)
2 = 0.

From (26) we deduce that

(b1, ei) = 0 ∀i = 2, . . . ,n

and thus, b1 = ±e1. We are now reduced to the same question for two bases e′ = (e2, . . . , en) and b′ = (b2, . . . , bn) of Rn−1, 
and we may conclude by induction. �
Remark 3.1. If we assume only (24) instead of (26), then (34) holds. Moreover, equality in (35) holds if and only if Rb j =
ρ jb j ∀ j = 1, 2, .., n. The proof is an easy adaptation of the one presented above.
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Remark 3.2. Assertion (38) in Lemma 3.1 can also be derived from a lemma in Mirsky [4]. Applying Mirsky’s lemma (and 
following his notations) to the doubly stochastic matrix dij = (b j, ei)

2, xi = ρi and yi = 1 for 1 ≤ i ≤ k, yi = 0 for k + 1 ≤
i ≤ n, yields

n∑
i=1

k∑
j=1

ρi(b j, ei)
2 ≤

k∑
i=1

ρi, (43)

which is precisely (38).

We are now going to apply Theorem 3.1 in a PCA-type setting. Let F1, F2, .., F N ∈ R
n be given. Consider the linear 

operator R :Rn → R
n defined by

R f = 1

N

N∑
i=1

(Fi, f )Fi, f ∈R
n, (44)

so that

(R f , g) = 1

N

N∑
i=1

(Fi, f )(Fi, g), (45)

and thus R is symmetric and nonnegative. As above, denote

ρ1 ≥ ρ2 ≥ · · · ≥ ρn ≥ 0 (46)

its eigenvalues, and

e = (e1, e2, .., en)

the corresponding orthonormal basis of eigenvectors. Assume, for simplicity, that

ρ1 > ρ2 > · · · > ρn. (47)

Let B denote the class of all orthonormal bases of Rn , and for b ∈ B write

b = (b1,b2, ..,bn).

Given b ∈ B, and k = 1, 2, .., n, set

Xk(b) ≡ 1

N

N∑
i=1

∥∥∥∥∥∥Fi −
k∑

j=1

(Fi,b j)b j

∥∥∥∥∥∥
2

. (48)

Clearly, Xn(b) = 0 ∀b ∈ B.

Corollary 3.1. For every k = 1, 2, .., n − 1 we have

Xk(e) = ρk+1 + ρk+2 + · · · + ρn, (49)

and for every b ∈ B,

Xk(b) ≥ ρk+1 + ρk+2 + · · · + ρn. (50)

Moreover,

Xk(b) = ρk+1 + ρk+2 + · · · + ρn ∀k = 1,2, ..,n − 1, (51)

if and only if

b j = ±e j ∀ j = 1,2, ..,n. (52)
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Proof. From (48) we have

Xk(b) = 1

N

N∑
i=1

‖Fi‖2 − 1

N

N∑
i=1

k∑
j=1

(Fi,b j)
2

= 1

N

N∑
i=1

‖Fi‖2 −
k∑

j=1

(Rb jb j) by (45)

= 1

N

N∑
i=1

‖Fi‖2 − Yk(b) by (48). (53)

Applying (34) we deduce that

Xk(b) ≥ 1

N

N∑
i=1

‖Fi‖2 − (ρ1 + ρ2 + · · · + ρk). (54)

On the other hand, by (45) and (25) we have

n∑
j=1

(Re j, e j) =
n∑

j=1

ρ j = 1

N

n∑
j=1

N∑
i=1

(Fi, e j)
2

= 1

N

N∑
i=1

‖Fi‖2. (55)

Combining (54) and (55) yields

Xk(b) ≥
n∑

j=1

ρ j − (ρ1 + ρ2 + . . . ρk)

= ρk+1 + ρk+2 + · · · + ρn,

which is precisely (50). On the other hand,

Xk(e) =
N∑

i=1

‖Fi‖2 − Yk(e)

=
n∑

j=1

ρ j − Yk(e)

= ρk+1 + ρk+2 + · · · + ρn

by (34), that is, (49) holds. The last assertion in Corollary 3.1 follows from the fact that

Xk(b) + Yk(b) =
n∑

j=1

ρ j. �

4. Returning to min–max

Here, we apply Theorem 2.1 in the above (PCA-type) setting, that is, we start with F1, F2, . . . , F N ∈ R
n , and consider the 

operator R defined by (44). Set

D = R1/2, (56)

so that D is also symmetric and nonnegative, moreover T = (DT D)1/2 = D , and by (56),

‖D f ‖2 = (D f , D f ) = (D2 f , f ) = (R f , f ). (57)

Thus, by (45) and (57)

‖D f ‖2 = 1

N

N∑
(Fi, f )2. (58)
i=1
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We denote again by

ρ1 ≥ ρ2 ≥ · · · ≥ ρn ≥ 0

the eigenvalues of R with corresponding eigenvectors e1, e2, . . . , en . Hence, the eigenvalues of T = D

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn,

in non-decreasing order (as in Section 2) are given by

λk = ρ
1/2
n−k+1.

Assume for simplicity that

ρ1 > ρ2 > · · · > ρn > 0. (59)

Applying Theorem 2.1 yields

Corollary 4.1. For every 1 ≤ k ≤ n − 1 we have

αmin max
k = min

b∈B
max
f ∈R

n

1
N

∑N
i=1(Fi, f )2 ≤ 1

∥∥∥∥∥∥ f −
k∑

j=1

( f ,b j)b j

∥∥∥∥∥∥ = ρ
−1/2
n−k . (60)

Moreover, the only orthonormal basis b that is a minimizer of (60) for every 1 ≤ k ≤ n − 1 is (en, en−1, . . . , e1) modulo ±.

5. Relating the min–max problem to the PCA

Given F1, F2, . . . , F N ∈ R
n , denote by B the class of all orthonormal bases of Rn , and for b ∈ B write b = (b1, b2, . . . , bn). 

Then, the optimal and unique bases obtained for the two following minimization problems, namely the PCA and the min–
max, are intimately related.

Corollary 4.1 provides the solution to

bmin max = argmin
b∈B

max
f ∈R

n

1
N

∑N
i=1(Fi, f )2 ≤ 1

∥∥∥∥∥∥ f −
k∑

j=1

( f ,b j)b j

∥∥∥∥∥∥

= argmin
b∈B

max
f ∈ R

n

(R f , f ) ≤ 1

∥∥∥∥∥∥ f −
k∑

j=1

( f ,b j)b j

∥∥∥∥∥∥ , (61)

∀k = 1, 2, . . . , n − 1, with R defined by (44). On the other hand, the PCA-based progressive representation problem searches 
for the optimal basis such that ∀k = 1, 2, . . . , n − 1,

bPCA = argmin
b∈B

1

N

N∑
i=1

∥∥∥∥∥∥Fi −
k∑

j=1

(Fi,b j)b j

∥∥∥∥∥∥
2

= argmin
b∈B

k∑
j=1

(−(Rb j,b j)
)

= argmax
b∈B

k∑
j=1

(
Rb j,b j

)
. (62)

In both cases, the optimal basis is given (modulo ±) by the eigenvectors (e1, e2, . . . , en) of the operator R and 
eigenvectors are ordered according to the values of their corresponding eigenvalues. Specifically, we have shown that 
bPCA

i = ±bmin max
n+1−i , where in both cases the solution is given by the ordered eigenvectors of R, one corresponding to the 

descending and the other to the ascending sizes of the eigenvalues, for R’s having a simple spectrum. Moreover, in both 
cases, the solution is also unique.

At this point, we might be puzzled by the change in ordering of the basis vectors for the min–max error solution and 
the optimal squared average error (PCA) solution for the problems discussed so far. The reason of this result is the fact that 
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the optimization is carried out for two different classes of signals. Indeed, in the first case we are minimizing the maximal 
error for the partial k-approximation of a signal f from the class of signals defined by{

f

∣∣∣∣ 1

N

N∑
i=1

(Fi, f )2 ≤ 1

}
, (63)

whereas in the second PCA-case we are minimizing the average squared error of the k-approximation of signals selected 
from the set

{F1, F2, . . . , F N}. (64)

Suppose however we would like to do a PCA analysis for the class of signals defined by (63). To do so we need the positive 
definite symmetric autocorrelation matrix of the set of vectors F uniformly drawn from the (bounded but continuous region 
of Rn) given by (63), which is defined by

R f = E f f T, f ∼ uniform

{
f

∣∣∣∣ 1

N

N∑
i=1

(Fi, f )2 ≤ 1

}
.

We have from the condition defining the class of f ’s that

(R f , f ) =
N∑

i=1

ρi(ei, f )2 ≤ 1;

hence the vectors

s( f ) = �1/2eT f ,

have length ≤ 1 and are uniformly distributed in the unit sphere in Rn , see [3]. Here, e denotes the eigenvectors unitary 
operator e = (e1, e2, . . . , en), and �1/2 = diag(ρ

1/2
1 , ρ1/2

2 , . . . , ρ1/2
n ). Therefore, we have EssT = I (identity) implying that

�1/2eT E f f Te�1/2 = I,

or

E f f T = e�−1eT.

This shows that the PCA of the class of signals defined by (63) has the eigenvectors of R and the eigenvalues equal to 
ρ−1

1 , ρ−1
2 , . . . , ρ−1

n . Hence, we have

0 < ρ−1
1 < ρ−1

2 < · · · < ρ−1
n ,

and the ordering of the eigenvectors is exactly the same for the min–max and the PCA problems for the class of signals 
determined by (63).

In another direction, it was suggested in [1] to use

bRPCA = argmin
b∈B

⎛
⎜⎝ 1

N

N∑
i=1

∥∥∥∥∥∥Fi −
k∑

j=1

(Fi,b j)b j

∥∥∥∥∥∥
2

+ μ

k∑
j=1

‖Db j‖2

⎞
⎟⎠

= argmin
b∈B

k∑
j=1

(
μ(DT Db j,b j) − 1

N

N∑
i=1

(Fi,b j)
2

)
, (65)

∀k such that 1 ≤ k ≤ n − 1, as a regularized PCA model for data analysis, which was extremely useful for efficient shape 
representation. Here μ is a positive constant and D : Rn → R

N is a linear operator as in Section 2. Consider the operator 
Q :Rn →R

n defined by

Q f = 1

N

N∑
i=1

(Fi, f )Fi − μDT D f .

Clearly Q is symmetric and (65) becomes

bRPCA = argmax
b∈B

k∑(
Qb j,b j

)
. (66)
j=1
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We are now in a position to apply Theorem 3.1 (provided the eigenvalues of Q are simple). The solution to (66) is given by 
(±ei) where the ei ’s are the eigenvectors ordered in descending order (see (26)).

The optimality and uniqueness proofs for the subspaces introduced in this note provide novel perspective on signal 
representation. It allowed us to justify some classical tools and relate the PCA to a specific min–max problem. Finally, the 
presented framework enabled us to support the construction of the regularized PCA suggested in [1] for an appropriate 
smoothness term.
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Appendix A. Min–max in the infinite dimensional case

We now return to the setting of Section 2, this time in the infinite dimensional case. Let H be a Hilbert space equipped 
with the scalar product (u, v) and corresponding norm ‖u‖ = (u, u)1/2. Let V ⊂ H be another Hilbert space, equipped with 
the norm ‖ ‖V , such that V is a dense subspace of H and V ⊂ H with compact injection. Let D : V → H be a bounded 
linear operator such that

‖u‖V ≤ C(‖Du‖ + ‖u‖) ∀u ∈ V ,

for some constant C > 0.
Set T = (DT D)1/2 : V → H . It is easy to see that T + γ I is bijective from V onto H for every γ > 0. In particular (T +

γ I)−1 is a self-adjoint compact operator from H into itself. Thus, (T + γ I)−1 admits a spectral decomposition. Returning 
to T , we obtain an orthonormal basis e = (e1, e2, . . .) of H which consists of eigenvectors of T , that is,

ei ∈ V ∀i and T ei = λiei ∀i

with

0 ≤ λ1 ≤ λ2 ≤ . . . (A.1)

and

λi → ∞ as i → ∞. (A.2)

Example. A standard example is H = L2(�) and V = H1
0(�), where � is domain in RN , and H1

0(�) = {u ∈ L2(�); ∇u ∈
L2(�); and u = 0 on ∂�}. Taking Du = ∇u(= grad u) we have DT D = −	. Then, T = (−	)1/2 and the ei ’s are the eigen-
functions of −	 with zero Dirichlet boundary condition on ∂�; moreover, λi = μ

1/2
i ∀i where the μi ’s are the eigenvalues 

of −	.

We denote by B the class of all orthonormal bases of H . If b ∈ B write b = (b1, b2, . . .) and set for any k = 1, 2, . . .

αk(b) = sup
f ∈ V

‖D f ‖ ≤ 1

∥∥∥∥∥ f −
k∑

i=1

( f ,bi)bi

∥∥∥∥∥

= sup
f ∈ V

‖T f ‖ ≤ 1

∥∥∥∥∥ f −
k∑

i=1

( f ,bi)bi

∥∥∥∥∥ , (A.3)

using the fact that ‖D f ‖ = ‖T f ‖, ∀ f ∈ V .
Our main result in this section is

Theorem A.1. For every k ≥ 1, we have

αk(e) = 1

λk+1
, (A.4)

and for every b ∈ B

αk(b) ≥ 1

λk+1
. (A.5)
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The proof consists of two steps.
Step 1. We have, for every k ≥ 1,

αk(e) ≤ 1

λk+1
. (A.6)

The proof of Step 1 is identical to the proof of Step 1 in the finite-dimensional case (Section 2) and we will not repeat it.
Step 2. ∀b ∈ B, we have

αk(b) ≥ 1

λk+1
∀k = 1,2, ... (A.7)

Proof. We follow the same arguments as in [1], that is, we use the Courant–Fischer min–max principle, see, e.g., [2], 
page 517. It implies in particular that ∀k = 1, 2, ... , and every closed subspace � of V of codimension k, we have

min
g ∈ �

g �= 0

‖T g‖
‖g‖ ≤ λk+1. (A.8)

Fix any basis b ∈ B and set

�0 = { f ∈ V ; ( f ,bi) = 0 ∀i = 1,2, . . . ,k}
so that �0 is a closed subspace of V , of codimension k. Applying (A.8) with � = �0, we obtain some g ∈ V such that

(g,bi) = 0 ∀i = 1,2, . . . ,k (A.9)

‖g‖ = 1 (A.10)

‖T g‖ ≤ λk+1. (A.11)

Set

fε = g

λk+1 + ε
, ε > 0, (A.12)

so that fε ∈ V and, by (A.11), ‖T fε‖ ≤ 1. Inserting f = fε in (A.3) yields

αk(b) ≥
∥∥∥∥∥ fε −

k∑
i=1

( fε,bi)

∥∥∥∥∥ . (A.13)

From (A.9), (A.12) and (A.13), we deduce that

αk(b) ≥ ‖ fε‖ = 1

λk+1 + ε
,

by (A.10) and (A.12). Since ε > 0 is arbitrary, we obtain (A.7).
Proof of Theorem A.1 completed. Combining Step 1 and Step 2, we readily have that

αk(e) = 1

λk+1
,

and consequently, ∀k = 1, 2, ...

min
b∈B

sup
f ∈ V

‖T f ‖ ≤ 1

∥∥∥∥∥ f −
k∑

i=1

( f ,bi)bi

∥∥∥∥∥ = 1

λk+1
, (A.14)

and the min in (A.14) is achieved when b = e. �

Remark A.1. We still have the standing problem: is it true that if strict inequality holds in (A.1) and if b ∈ B satisfies

αk(b) = 1

λk+1
∀k = 1,2, ... (A.15)

then b = e modulo ±? In the finite-dimensional case, we have a proof of Step 2 without the Courant–Fischer min–max 
principle and we were able to use induction combined with dimensional reduction to settle uniqueness.
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