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This paper presents an existence theory for solitary waves at the interface between a thin 
ice sheet (modelled using the Cosserat theory of hyperelastic shells) and an ideal fluid 
(of finite depth and in irrotational motion) for sufficiently large values of a dimensionless 
parameter γ . We establish the existence of a minimiser of the wave energy E subject to the 
constraint I = 2μ, where I is the horizontal impulse and 0 < μ � 1, and show that the 
solitary waves detected by our variational method converge (after an appropriate rescaling) 
to solutions to the nonlinear Schrödinger equation with cubic focussing nonlinearity as 
μ ↓ 0.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Cette note présente une théorie d’existence d’ondes solitaires à l’interface entre une couche 
de glace mince (modélisée par la théorie des coques hyperélastiques de Cosserat) et 
un fluide parfait (de profondeur finie et irrotationnel), pour des valeurs suffisamment 
grandes d’un paramètre sans dimension γ . Nous montrons l’existence d’un minimiseur de 
l’énergie E de l’onde sous la contrainte I = 2μ, où I représente l’impulsion horizontale 
et 0 < μ � 1. Nous démontrons que les ondes solitaires trouvées par notre méthode 
variationnelle convergent (après un changement d’échelle approprié) vers des solutions de 
l’équation de Schrödinger cubique focalisante, lorsque μ ↓ 0.
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1. Introduction

1.1. The hydrodynamic problem

In this article, we consider the two-dimensional irrotational flow of a perfect fluid beneath a thin ice sheet modelled 
using the Cosserat theory of hyperelastic shells (Plotnikov and Toland [7]). The fluid is bounded below by a rigid horizontal 
bottom {y = 0} and above by a free surface {y = h + η(x, t)}; there is no cavitation between this surface and the ice sheet. 
The mathematical problem is to find an Eulerian velocity potential φ which satisfies the equations

φxx + φyy = 0, 0 < y < 1 + η, (1)

φy = 0, y = 0, (2)

φy = ηt + φxηx, y = 1 + η, (3)

φt + 1

2
(φ2

x + φ2
y) + η + γ H(η) = 0, y = 1 + η (4)

with

H(η) = 1

(1 + η2
x )1/2

[
1

(1 + η2
x )1/2

(
ηxx

(1 + η2
x )

3/2

)
x

]
x

+ 1

2

(
ηxx

(1 + η2
x )

3/2

)3

(see Guyenne and Parau [4]). Here we have introduced dimensionless variables, choosing h as length scale and (h/g)1/2 as 
time scale; the parameter γ is defined by the formula γ = D/(ρgh4), where D, ρ and g are respectively the coefficient 
of flexural rigidity for the ice sheet, the density of the fluid and the acceleration due to gravity. Solitary hydroelastic waves
are non-trivial solutions to these equations of the form η(x, t) = η(x + νt), φ(x, y, t) = φ(x + νt, y) with η(x + νt) → 0 as 
x + νt → ±∞.

Equations (1)–(4) admit the conserved quantities

E(η,�) = 1

2

∞∫
−∞

(
�G(η)� + η2 + γ

η2
xx

(1 + η2
x )5/2

)
dx, I(η,�) =

∞∫
−∞

ηx�dx

(‘energy’ and ‘impulse’) associated with translation invariance in t and x; the Dirichlet–Neumann operator G(η) is defined 
by G(η)� = (1 + η2

x )1/2φn|y=1+η , in which φ is the harmonic function in 0 < y < 1 + η with φy |y=0 = 0 and φ|y=1+η = �. 
A hydroelastic solitary wave corresponds to a critical point of the energy under the constraint of fixed impulse (the potential 
φ is recovered from � by solving the above boundary-value problem) and therefore a critical point of the functional E −νI , 
where the Lagrange multiplier ν gives the wave speed. Proposition 1.1 (see Groves & Wahlén [3, Theorem 2.14(i)]) confirms 
in particular that E , I are analytic functions U × H1/2

� (R) →R, where U = B M(0) is a neighbourhood of the origin in H2(R)

chosen so that U ⊆ W := {η ∈ W 1,∞(R) : 1 + infx∈R η(x) > h0} for a fixed h0 ∈ (0, 1), and H1/2
� (R), H−1/2

� (R) are the com-
pletions of S(R), S(R) = {η ∈ S(R) : ∫ ∞

−∞ η(x) dx = 0} with respect to the norms ‖η‖�,1/2 := (
∫ ∞
−∞(1 + k2)−1/2k2|η̂|2 dk)1/2, 

‖η‖�,−1/2 := (
∫ ∞
−∞(1 + k2)1/2k−2|η̂|2 dk)1/2.

Proposition 1.1. The mapping W → GL(H1/2
� (R), H−1/2

� (R)) given by η 	→ (� 	→ G(η)�) is analytic.

Restricting to small-amplitude waves, we seek minimisers of E subject to the constraint I = 2μ, where μ is a small 
positive number, and establish the following theorem.

Theorem 1.1. The following statements hold for each sufficiently large value of γ (see Remark 2).

(i) The set Dμ of minimisers of E over Sμ = {(η, �) ∈ U × H1/2
� (R) : I(η, �) = 2μ} is non-empty and lies in H4(R) × H1/2

� (R). 
Furthermore, the estimate ‖η‖2 � μ1/2 holds uniformly over Dμ .

(ii) Suppose that {(ηn, �n)} is a minimising sequence for E . There exists a sequence {xn} ⊆R with the property that a subsequence of 
{(ηn(xn + ·), �n(xn + ·))} converges in H2(R) × H1/2

� (R) to a function in Dμ .

Remark 1 (Conditional energetic stability of the set of minimisers). Suppose that (η, �) : [0, T ] → U × H1/2
� (R) is a solution to 

(1)–(4) in the sense that E(η(t), �(t)) = E(η(0), �(0)), I(η(t), �(t)) = I(η(0), �(0)) for all t ∈ [0, T ] (see Ambrose and 
Siegel [1] for a discussion of the initial-value problem). It follows from Theorem 1.1 that for each ε > 0 there exists δ > 0
such that dist ((η(0), �(0)), Dμ) < δ implies dist ((η(t), �(t)), Dμ) < ε for t ∈ [0, T ], where ‘dist’ denotes the distance in 
H2(R) × H1/2

� (R).
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Fig. 1. (a) Dispersion relation for linear hydroelastic waves. (b) Small-amplitude envelope solitary waves with speed ν = ν0 + 2(ν0 f (k0))−1μ2νNLS (where 
νNLS < 0) predicted by nonlinear Schrödinger theory.

1.2. Heuristics

The existence of small-amplitude solitary waves is predicted by studying the dispersion relation for the linearised version 
of (1)–(4). Linear waves of the form η(x, t) = cos k(x + νt) exist whenever ν = ν(k), where ν(k)2 = (1 + γ k4)/ f (k), f (k) :=
|k| coth |k|. The function k 	→ ν(k), k ≥ 0 has a unique global minimum ν0 = ν(k0) with k0 > 0 (see Fig. 1(a)). Note also 
that g(k) := 1 + γ k4 − ν2

0 f (k) ≥ 0 with equality precisely when k = ±k0, and solving the equation g′(k0) = 0 yields the 
relationships ν2

0 = 4(4 f (k0) − k0 f ′(k0)))
−1 and γ = γ0(k0), where γ0(k0) = f ′(k0)

(
k3

0(4 f (k0) − k0 f ′(k0))
)−1

, so that γ0 is a 
strictly monotone decreasing function of k0 with limk0→0 γ (k0) = ∞ and limk0→∞ γ (k0) = 0.

Bifurcations of nonlinear solitary waves are expected whenever the linear group and phase speeds are equal, so that 
ν ′(k) = 0 (see Dias and Kharif [2, §3]). We therefore expect the existence of small-amplitude solitary waves with speed 
near ν0; the waves bifurcate from a linear periodic wave train with frequency k0ν0 (see Fig. 1(b)). The appropriate model 
equation for this type of solution is the cubic nonlinear Schrödinger equation

2iAT − 1
4 g′′(k0)A X X + 3

2

(
1
2 A3 + A4

)
|A|2 A = 0, (5)

in which

η(x, t) = 1
2μ(A(X, T )eik0(x+ν0t) + c.c.) + O (μ2), X = μ(x + ν0t), T = 2k0(v0 f (k0))

−1μ2t

and the abbreviation ‘c.c.’ denotes the complex conjugate of the preceding quantity; the values of the constants A3 and A4
are A3 = − 1

3 g(2k0)
−1(A1

3)
2 − 2

3 g(0)−1(A2
3)

2 and A4 = A1
4 − ν2

0 A2
4, where

A1
3 = ν2

0 f (2k0) f (k0) + 1
2ν2

0 f (k0)
2 − 3

2ν2
0k2

0, A2
3 = ν2

0 f (k0) + 1
2ν2

0 f (k0)
2 − 1

2ν2
0k2

0,

A1
4 = − 5

12γ0k6
0, A2

4 = 1
6 f (k0)

2( f (2k0) + 2) − 1
2 k2

0 f (k0)

(see Milewski and Wang [6, §2] for a derivation of equation (5) in the present context). Note that k0 > 0; the case k0 = 0, 
which is associated with the Korteweg–de Vries scaling limit, does not arise here.

At this level of approximation, a solution to equation (5) of the form A(X, T ) = eiνNLS T ζ(X) with ζ(X) → 0 as X → ±∞, 
so that ζ is a homoclinic solution to the ordinary differential equation

− 1
4 g′′(k0)ζxx − 2νNLSζ + 3

2

(
1
2 A3 + A4

)
|ζ |2ζ = 0 (6)

with νNLS = − 9
8 α2

NLS g′′(k0)
−1

(
1
2 A3 + A4

)2
and αNLS = 2(ν0 f (k0))

−1, corresponds to a solitary wave with speed ν =
ν0 + 2(ν0 f (k0))

−1μ2νNLS.

Proposition 1.2. Suppose that 1
2 A3 + A4 < 0. The set of complex-valued homoclinic solutions to the ordinary differential equation (6)

is DNLS = {eiωζNLS(· + y) : ω ∈ [0, 2π), y ∈R}, where

ζNLS(x) = αNLS

(
−3g′′(k0)

−1
(

1
2 A3 + A4

)) 1
2

sech
(
−3αNLS g′′(k0)

−1
(

1
2 A3 + A4

)
x
)

.

Remark 2. Since A3 < 0 and limk0→0 A4 = − 1
2 , so that A4 < 0 for sufficiently small values of k0, we find that 1

2 A3 + A4 < 0
for sufficiently small values of k0, or equivalently for sufficiently large values of γ (corresponding to sufficiently shallow 
water in physical variables). Numerics indicate that 1

2 A3 + A4 < 0 for k0 < 177.33, or equivalently γ > 3.37 × 10−10.

Our second theorem confirms the heuristic argument given above.
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Theorem 1.2. Suppose that 1
2 A3 + A4 < 0. The set Dμ of minimisers of E over Sμ satisfies

sup
(η,�)∈Dμ

inf
ω∈[0,2π],x∈R‖ζη − eiωζNLS(· + x)‖1 → 0

as μ ↓ 0, where we write η+
1 (x) = 1

2 μζη(μx)eik0x and η+
1 = F−1[χ[k0−δ0,k0+δ0]η̂] with δ0 ∈ (0, 13 k0). Furthermore, the speed νμ of 

the corresponding solitary wave satisfies νμ = ν0 + 2(ν0 f (k0))
−1νNLSμ

2 + o(μ2) uniformly over (η, �) ∈ Dμ .

2. The constrained minimisation problem

We tackle the constrained minimisation problem in two steps. (i) Fix η �= 0 and minimise E(η, ·) over Tμ = {� ∈
H1/2

� (R) : I(η, �) = 2μ}. This problem (of minimising a quadratic functional over a linear manifold) admits a unique global 
minimiser �η . (ii) Minimise Jμ(η) := E(η, �η) over η ∈ U \ {0}. Because �η minimises E(η, ·) over Tμ there exists a La-
grange multiplier νη such that G(η)�η = νηηx , and straightforward calculations show that �η = νηG(η)−1ηx , νη = μ/L(η)

and

Jμ(η) = K(η) + μ2

L(η)
,

where

K(η) = 1

2

∞∫
−∞

(
η2 + γ η2

xx

(1 + η2
x )5/2

)
dx, L(η) = 1

2

∞∫
−∞

ηxG(η)−1ηx dx.

This computation also shows that the dimensionless speed of the solitary wave corresponding to a constrained minimiser 
of E over Sμ is μ/L(η).

A similar minimisation problem arises in the study of irrotational solitary water waves with weak surface tension (see 
Groves and Wahlén [3], taking ω = 0 and β < βc); there K(η) is replaced by K̃(η) = ∫ ∞

−∞
( 1

2 η2 + β((1 + η2
x )1/2 − 1)

)
dx. 

In this note we describe the modifications necessary to apply the theory of Groves and Wahlén to the hydroelastic prob-
lem. The presence of the second-order derivative necessitates on the one hand non-trivial modifications because the 
L2(R)-gradient K′(η) is not defined on the whole of U , but leads on the other hand to a more satisfactory final result 
(compare Theorem 1.1 with Theorem 1.5 of Groves & Wahlén).

Lemmata 2.1 and 2.2, in which we write W s := W ∩ Hs(R), state some basic properties of the functionals K and L (see 
Groves and Wahlén [3] for the proof of the latter), while Proposition 2.1 is a useful ‘weak–strong’ argument. Note that the 
‘linear’ estimates for Knl(η) and Lnl(η) are used only to bound the W 1,∞(R) norm of a minimising sequence for J over 
U \ {0} away from zero (see the discussion at the beginning of Section 3).

Lemma 2.1.

(i) The functional K : H2(R) →R is analytic and satisfies K(0) = 0.
(ii) There exists a constant D > 0 such that K(η) ≥ D−1‖η‖2

2 for all η ∈ U .
(iii) The L2(R)-gradient K′(η) exists for each η ∈ H4(R) and is given by the formula

K′(η) = η + γ

[
ηxx

(1 + η2
x )

5/2

]
xx

+ 5

2
γ

[
ηxη

2
xx

(1 + η2
x )7/2

]
x

.

This formula defines an analytic function K′ : H2(R) → H−2(R) which satisfies K′(0) = 0.
(iv) The estimates |K4(η)| � ‖η‖2

2‖η‖2
1,∞ , |Kr(η)| � ‖η‖3

2‖η‖2
1,∞ , |Knl(η)| � ‖η‖1,∞ hold for all η ∈ U , where Kn(η) =

1
n! dnK[0]({η}n), Kr(η) = ∑∞

n=5 Kn(η) and Knl(η) =K(η) −K2(η).
(v) The estimates

‖F−1[(1 − χS(k))g(k)−1/2F[K′
4(η)]]‖0 � ‖η‖2(‖η‖1,∞ + ‖ηxx + k2

0η‖0)
2,

‖F−1[(1 − χS(k))g(k)−1/2F[K′
r(η)]]‖0, |〈K′

4(η),η〉0|, |〈K′
r(η),η〉0| � ‖η‖2

2(‖η‖1,∞ + ‖ηxx + k2
0η‖0)

2

hold for all η ∈ H2(R), where S = [−k0 − δ0, −k0 + δ0] ∪ [k0 − δ0, k0 + δ0] and δ0 ∈ (0, 13 k0).

Proof. Assertions (i)–(iv) follow by straightforward estimates. Turning to (v), note that

K′
4(η) = 5

2γ
(
(ηxη

2
xx)x + (η2

xηxx)xx
) = 5

2γ
((

ηx(ηxx + k2
0η)2 − 2k2

0ηxη(ηxx + k2
0η) + k4

0ηxη
2) + (

η2
xηxx)xx

)

x
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so that

‖F−1[(1 − χS(k))g(k)−1/2F[K′
4(η)]]‖0 � ‖ηx(ηxx + k2

0η)2‖−1 + ‖ηxη(ηxx + k2
0η)‖0 + ‖ηxη

2‖0 + ‖η2
xηxx‖0

� ‖ηx(ηxx + k2
0η)‖0‖ηxx + k2

0η‖0 + ‖η‖2‖η‖2
1,∞

� ‖η‖2(‖η‖1,∞ + ‖ηxx + k2
0η‖0)

2,

where we have used the inequalities (1 − χS(k))g(k)−1/2 � (1 + |k|2)−1 and ‖u1u2‖−1 � ‖u1‖0‖u2‖0 (see Hörmander 
[5, Theorem 8.3.1]); the remaining estimates are obtained in a similar fashion. �
Lemma 2.2.

(i) Suppose s > 0. The functional L : W s+3/2 → R is analytic and satisfies L(0) = 0.
(ii) The estimates ‖η‖2

1/2 �L(η), L2(η) � ‖η‖2
1/2 , where L2(η) = 1

2! d
2L[0]({η}2), hold for all η ∈ U .

(iii) Suppose s > 0. The L2(R)-gradient L′(η) exists for each η ∈ W s+3/2 and defines an analytic function L′ : W s+3/2 → Hs+1/2(R)

which satisfies L′(0) = 0.
(iv) Suppose that {M(1)

n }, {M(2)
n } ⊆R and {η(1)

n }, {η(2)
n } ⊆ U are sequences with M(1)

n , M(2)
n → ∞, M(1)

n /M(2)
n → 0, {η(1)

n +η
(2)
n } ⊆ U

and suppη
(1)
n ⊆ (−2M(1)

n , 2M(1)
n ), suppη

(2)
n ⊆ R \ (−M(2)

n , M(2)
n ). The functional L has the ‘pseudolocal’ properties

L(η
(1)
n + η

(2)
n ) −L(η

(1)
n ) −L(η

(2)
n ) → 0, ‖L′(η(1)

n + η
(2)
n ) −L′(η(1)

n ) −L′(η(2)
n )‖0 → 0

and 〈L′(η(2)
n ), φ〉0 → 0 for each φ ∈ C∞

0 (R).
(v) The estimates

|L3(η)| � ‖η‖2
2(‖η‖1,∞ + ‖ηxx + k2

0η‖0), |L4(η)| � ‖η‖2
2(‖η‖1,∞ + ‖ηxx + k2

0η‖0)
2,

|Lr(η)| � ‖η‖3
2(‖η‖1,∞ + ‖ηxx + k2

0η‖0)
2, |Lnl(η)| � ‖η‖1,∞,

where Ln(η) = 1
n! d

nL[0]({η}n), Lr(η) = ∑∞
n=5 Ln(η) and Lnl(η) =L(η) −L2(η), and

‖L′
3(η)‖0 � ‖η‖2(‖η‖1,∞ + ‖ηxx + k2

0η‖0 + ‖K 0η‖∞),

‖L′
4(η)‖0 � ‖η‖2(‖η‖1,∞ + ‖ηxx + k2

0η‖0 + ‖K 0η‖∞)2,

‖L′
r(η)‖0 � ‖η‖2

2(‖η‖1,∞ + ‖ηxx + k2
0η‖0)

2,

where K0η :=F−1[ f (k)η̂], hold for all η ∈ U .

Proposition 2.1. Suppose that {ηn} ⊆ U and η ∈ U have the properties that ηn ⇀ η in H2(R) and ηn → η in L2(R) (and hence 
in Hs(R) for all s ∈ [0, 2)). The inequality K(η) ≤ limn→∞ K(ηn) holds whenever {K(ηn)} is convergent, and equality implies that 
ηn → η in H2(R).

Proof. Note that (1 + η2
nx)

−5/4ηnxx ⇀ (1 + η2
x )−5/4ηxx in L2(R), and it follows from the weak lower semicontinuity of 

‖ · ‖2
0 (and ηn → η in L2(R)) that K(η) ≤ limn→∞ K(ηn). Moreover, K(ηn) → K(η) implies that ‖(1 + η2

nx)
−5/4ηnxx‖0 →

‖(1 + η2
x )−5/4ηxx‖0, so that (1 + η2

nx)
−5/4ηnxx → (1 + η2

x )−5/4ηxx in L2(R) and hence ηnxx → ηxx in L2(R). �
Next we establish some basic properties of Jμ . The following proposition (cf. Groves and Wahlén [3, Appendix A.2]) 

shows in particular that cμ := infη∈U\{0} Jμ(η) < 2ν0μ, while Lemma 2.3 shows that its critical points have additional 
regularity.

Proposition 2.2. The continuous mapping α 	→ ν0L(η�
α), where

η�
α(x) = αζNLS(αx) cos k0x − 1

2α2 g(2k0)
−1 A1

3ζNLS(αx)2 cos 2k0x − 1
2α2 g(0)−1 A2

3ζNLS(αx)2,

is invertible, and its (continuous) inverse μ 	→ α(μ) satisfies Jμ(η�
α(μ)) = 2ν0μ + cNLSμ

3 + o(μ3), where

cNLS = −3

4
α3

NLS g′′(k0)
−1

(
1

2
A3 + A4

)2

.

Remark 3. Each η ∈ U \ {0} satisfies

K2(η) + μ2

L2(η)
= K2(η) − ν2

0L2(η) + (μ − ν0L2(η))2

L2(η)
+ 2ν0μ ≥ 1

2

∞∫
−∞

g(k)|η̂|2 dk + 2ν0μ ≥ 2ν0μ.
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Lemma 2.3. Any critical point η ∈ U \ {0} of Jμ belongs to H4(R).

Proof. Write u = (1 + η2
x )−5/2ηxx , so that ηx(1 + η2

x )3/2u2 ∈ L1(R) ⊆ H−3/4(R), and observe that

γ uxx = μ

L(η)2
L′(η) − η − 5

2γ
(
ηx(1 + η2

x )3/2u2)
x (7)

in the sense of distributions since η is a critical point of Jμ . It follows from (7) and the fact that L′(η) ∈ L2(R)

that γ uxx ∈ H−7/4(R), that is u ∈ H1/4(R). We conclude that u2 ∈ L2(R) (see Hörmander [5, Theorem 8.3.1]), so that 
ηx(1 + η2

x )3/2u2 ∈ L2(R) and hence γ uxx ∈ H−1(R), that is u ∈ H1(R).
Observing that ηx(1 +η2

x )3/2u2 ∈ H1(R), one finds from (7) that γ uxx ∈ L2(R), u ∈ H2(R) and finally η ∈ H4(R) (because 
ηxx = (1 + η2

x )5/2u). �
Theorem 1.1 is a consequence of the following result (cf. Groves & Wahlén [3, Theorem 5.2]).

Theorem 2.4. Suppose that 1
2 A3 + A4 < 0.

(i) The set Bμ of minimisers of Jμ over U \ {0} is nonempty and lies in H4(R). Moreover, each η ∈ Bμ satisfies ‖η‖2
2 ≤ 2Dν0μ.

(ii) Suppose that {ηn} is a minimising sequence for Jμ over U \ {0}. There exists a sequence {xn} ⊆ R with the property that there 
exists a subsequence of {ηn(xn + ·)} which converges in H2(R) to a function η ∈ Bμ .

Any function η ∈ U with Jμ(η) < 2ν0μ satisfies ‖η‖2
2 < 2Dν0μ, L(η) > μ/(2ν0) and L2(η) � μ (see Lemmata 2.1(ii) and 

2.2(ii)). These properties are enjoyed in particular by a minimising sequence {ηn} for Jμ over U \ {0}, which also satisfies 
Mμ(ηn) � −μ3, where Mμ(η) =Jμ(η) −K2(η) −μ2/L2(η) (Proposition 2.2), and hence ‖ηn‖1,∞ � μ3 (because |Knl(ηn)|, 
|Lnl(ηn)| � ‖ηn‖1,∞). Furthermore, we may without loss of generality assume that {ηn} is a Palais–Smale sequence, so that 
dJμ[ηn] → 0 in (H2(R))∗ , and the calculation

‖J ′(ηn)‖−2 = sup{〈J ′(ηn),φ〉0 : φ ∈ H2(R),‖φ‖2 = 1} = ‖dJμ[ηn]‖(H2(R))∗

shows that J ′(ηn) → 0 in H−2(R). Theorem 2.4 is proved by applying the concentration–compactness principle to the 
sequence {η2

nx + η2
n} ⊆ L1(R) under the additional hypothesis that cμ is a strictly sub-additive function of μ, which is 

verified in Section 3 below.
‘Vanishing’ is excluded since it implies that ‖ηn‖1,∞ → 0, which contradicts the estimate ‖ηn‖1,∞ � μ3 (see above).

‘Dichotomy’ leads to the existence of sequences {η(1)
n }, {η(2)

n } of the kind described in Lemma 2.2(iv) with
limn→∞ ‖ηn − η

(1)
n − η

(2)
n ‖2 = 0 (up to subsequences and translations), so that in particular

lim
n→∞Jμ(ηn) = lim

n→∞Jμ(1) (η
(1)
n ) + lim

n→∞Jμ(2) (η
(2)
n ),

where μ( j) = μ limn→∞ L(η
( j)
n )/ limn→∞ L(ηn) (so that μ(1) + μ(2) = μ). We thus obtain the contradiction

cμ < cμ(1) + cμ(2) ≤ lim
n→∞Jμ(1) (η

(1)
n ) + lim

n→∞Jμ(2) (η
(2)
n ) = lim

n→∞Jμ(ηn) = cμ,

which excludes ‘dichotomy’.
‘Concentration’ implies the existence of η ∈ U with ηn ⇀ η in H2(R) and ηn → η in L2(R) (up to subsequences and 

translations). Since K(ηn) ≤ Jμ(ηn) < 2ν0μ the sequence {K(ηn)} is bounded and hence admits a convergent subsequence 
(still denoted by {K(ηn)}) which satisfies K(η) ≤ limn→∞ K(ηn) (Proposition 2.1). Lemma 2.2(i) asserts that L(ηn) → L(η), 
so that Jμ(η) ≤ limn→∞ J (ηn) = cμ , which therefore holds with equality; it follows that K(ηn) →K(η) and hence ηn → η

in H2(R) (Proposition 2.1), so that η minimises Jμ over U \ {0}.

3. Strict sub-additivity

We begin by deriving sharper estimates for a ‘near minimiser’ of Jμ over U \ {0}, that is a function η̃ ∈ U \ {0} with 
‖J ′

μ(η̃)‖−2 ≤ μN for some N ∈ N and Jμ(η̃) < 2ν0μ (and hence ‖η̃‖2 � μ1/2, L(η̃), L2(η̃) ≥ μ); these estimates apply in 
particular to a minimising sequence {ηn} for Jμ over U \ {0}.

We write the equation J ′
μ(η) =K′(η) − (μ/L(η))2L′(η) for η ∈ U in the form

g(k)η̂ = F
[
J ′

μ(η) −K′
nl(η) +

(
μ

L(η)
+ ν0

)(
μ

L(η)
− ν0

)
L′

2(η) +
(

μ

L(η)

)2

L′
nl(η)

]

and decompose it into two coupled equations by defining η2 ∈ H2(R) by the formula
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η2 = F−1

[
1 − χS(k)

g(k)
F

[
J ′

μ(η) −K′
nl(η) +

(
μ

L(η)
+ ν0

)(
μ

L(η)
− ν0

)
L′

2(η) +
(

μ

L(η)

)2

L′
nl(η)

]]

(recall that (1 − χS (k))g(k)−1/2 � (1 + |k|2)−1) and η1 ∈ H2(R) by η1 = η − η2, so that supp η̂1 ∈ S and χSL′
3(η1) = 0 (see 

Groves and Wahlén [3, Proposition 4.15]). We accordingly write these equations as

g(k)η̂1 = χS(k)F[R(η) −K′
nl(η)], η3 := η2 + H(η) = F−1

[
1 − χS(k)

g(k)
F[R(η) −K′

nl(η)]
]

,

where

H(η) := F−1
[

1

g(k)
F

[
−

( μ

L(η)

)2
L′

3(η1)

]]
,

R(η) := J ′
μ(η) +

(
μ

L(η)
+ ν0

)(
μ

L(η)
− ν0

)
L′

2(η) +
(

μ

L(η)

)2

(L′
nl(η) −L′

3(η1)).

The next step is to study η1 using the scaled norm

‖|η1‖|α :=
⎛
⎝ ∞∫

−∞
(1 + μ−4α(|k| − k0)

4)|η̂1(k)|2 dk

⎞
⎠

1/2

for H2(R); we choose α > 0 as large as possible so that ‖ |η̃1‖ |α � μ1/2.

Lemma 3.1. Each near minimiser η̃ of Jμ over U \ {0} satisfies ‖H(η̃)‖2 � μ1/2+α/2‖ |η̃1‖ |α , ‖R(η̃)‖−2 � μ1/2+α‖ |η̃1‖ |2α + μN and 
‖F−1[(1 − χS (k))g(k)−1/2F [K′

nl(η̃)]]‖0 � μ1/2+α‖ |η̃1‖ |2α + μ‖η̃3‖2 .

Proof. The results for H(η̃) and R(η̃) were derived by Groves & Wahlén [3, §4.3.1], while that for K′
nl(η̃) follows from 

Lemma 2.1(v) and the estimates ‖η1‖1,∞ � μα/2‖ |η1‖ |α and ‖η1xx + k2
0η1‖0 ≤ cμα‖ |η1‖ |α (Groves and Wahlén [3, Proposi-

tion 4.1]). �
Square integrating the equation g(k)η̂1 = χ(k)F [R(η) − K′

nl(η)], multiplying by μ−4α and adding ‖η̃1‖2
0 � μ yields 

‖ |η̃1‖ |2α � μ1−2α‖ |η̃1‖ |4α + μ, which implies that ‖ |η̃1‖ |2α � μ for each α < 1; it follows that ‖η̃3‖2
2 � μ3+2α and ‖H(η̃)‖2

2 �
μ2+α for each α < 1. These estimates are used to establish the following proposition (see Groves & Wahlén [3, §4.3.2]).

Proposition 3.1. Suppose that η̃ is a near minimiser of Jμ over U \ {0}. The estimates

Ma2μ(aη̃) = −a3ν2
0L3(η̃) − a4ν2

0L4(η̃) + a3o(μ3),

〈M′
a2μ

(aη̃),aη̃〉0 + 4a2μM̃a2μ(aη̃) = −3a3ν2
0L3(η̃) − 4a4ν2

0L4(η̃) + a3o(μ3),

where M̃μ(η) = μ/L(η) − μ/L2(η), hold uniformly over a ∈ [1, 2].

Lemma 3.2. Each near minimiser η̃ of Jμ over U \ {0} satisfies the estimate

K4(η̃) = A1
4

∞∫
−∞

η̃4
1 dx + o(μ3).

Proof. We expand the right-hand side of the formula

K4(η̃) = −5

4
γ

∞∫
−∞

(∂x(η̃1 + H(η̃) + η̃3))
2∂2

x ((η̃1 + H(η̃) + η̃3))
2 dx;

terms with zero, one or two occurrences of η̃1 are O ((‖η̃1‖2 +‖H(η̃)‖2 +‖η̃3‖2)
2(‖H(η̃)‖2 +‖η̃3‖2)

2) = O (μμ2+α) = o(μ3), 
while terms with three occurrences of η̃1 are estimated by O ((‖η̃1‖1,∞ + ‖η̃1xx + k2

0η̃1‖0)‖η̃1‖2
2(‖H(η̃)‖2 + ‖η̃3‖2)

2) =
O (μ2+α‖ |η̃1‖ |) = O (μ5/2+α) = o(μ3), so that K4(η̃) = − 5

4 γ
∫ ∞
−∞ η̃2

1xη̃
2
1xx + o(μ3).

Writing η̃1 = η̃+
1 + η̃−

1 , where η̃+
1 =F−1[χ[0,∞)F [η̃1]], η̃−

1 =F−1[χ(−∞,0]F [η̃1]], we find that

‖(ik ∓ ik0)η̃
±
1 ‖2

s = ‖(|k| − k0)F[η̃1]‖2
0 ≤ 1

2

∞∫
(μ2α + μ−2α(|k| − k0)

4)|F[η̃1]|2 dk � μ2α‖|η̃1‖|2 � μ1+2α
−∞



M.D. Groves et al. / C. R. Acad. Sci. Paris, Ser. I 354 (2016) 1078–1086 1085
so that (η̃±
1 )x = ±ik0 + O (μ1+2α) in Hs(R) for each s ≥ 0. Using this estimate, one concludes that

∞∫
−∞

η̃2
1xη̃

2
1xx dx =

∞∫
−∞

(
(η̃+

1x)
2(η̃−

1xx)
2 + (η̃−

1x)
2(η̃+

1xx)
2 + 4η̃1xη̃

−
1xη̃

+
1xxη̃

−
1xx

)
dx

= 2k6
0

∞∫
−∞

(η̃+
1 )2(η̃−

1 )2 dx + o(μ)

= 1

3
k2

0

∞∫
−∞

η̃4
1 dx + o(μ). �

The corresponding estimates for L3(η̃) and L4(η̃) are derived similarly by Groves and Wahlén [3, §4.3.2].

Lemma 3.3. Each near minimiser η̃ of Jμ over U \ {0} satisfies the estimates

−ν2
0L3(η̃) = A3

∞∫
−∞

η̃4
1 dx + o(μ3), L4(η̃1) = A2

4

∞∫
−∞

η̃4
1 dx + o(μ3).

Corollary 3.4. Suppose that η̃ is a near minimiser of Jμ over U \ {0}. The estimates

Ma2μ(aη̃) = (a3 A3 + a4 A4)

∞∫
−∞

η̃4
1 dx + a3o(μ3),

〈M′
a2μ

(aη̃),aη̃〉0 + 4a2μM̃a2μ(aη̃) = (3a3 A3 + 4a4 A4)

∞∫
−∞

η̃4
1 dx + a3o(μ3)

hold uniformly over a ∈ [1, 2], and 
∫ ∞
−∞ η̃4

1 dx � μ3 .

Lemma 3.5. Suppose that η̃ is a near minimiser of Jμ over U \ {0} and 1
2 A3 + A4 < 0. There exist a0 ∈ (1, 2] and q > 2 such that 

a 	→ a−qMa2μ(aη̃), a ∈ [1, a0], is decreasing and strictly negative.

Proof. Observe that

d

da

(
a−qMa2μ(aη̃)

)
= a−(q+1)

(
−qMa2μ(aη̃) + 〈M′

a2μ
(aη̃),aη̃〉0 + 4a2μM̃a2μ(aη̃)

)

= a2−q

⎛
⎝(3 − q)A3 + a(4 − q)A4)

∫
R

η̃4
1 dx + o(μ3)

⎞
⎠

� −μ3 + o(μ3)

< 0

for a ∈ (1, a0), q ∈ (2, q0); here a0 > 1 and q0 > 2 are chosen so that (3 − q)A3 + a(4 − q)A4, which is negative for a = 1 and 
q = 2, is also negative for a ∈ (1, a0] and q ∈ (2, q0]. �
Corollary 3.6. Suppose that 1

2 A3 + A4 < 0. The strict sub-homogeneity criterion caμ < acμ holds for each a > 1 (so that in particular 
cμ is a strictly sub-additive function of μ).

Proof. It suffices to prove this inequality for a ∈ (1, a2
0]. Let {ηn} be a minimising sequence for Jμ over U \ {0}. Replacing a

by a1/2, we find from Lemma 3.5 that Maμ(a1/2ηn) ≤ a1/2qMμ(ηn) and therefore that

caμ ≤ Jaμ(ηn) ≤ a

(
K2(ηn) + μ2

L2(ηn)

)
+ a1/2qMμ(ηn) = aJμ(ηn) + (a1/2q − a)Mμ(ηn)

for a ∈ (1, a2
0]. In the limit n → ∞ this inequality yields caμ < acμ since lim supn→∞ Mμ(ηn) < 0. �
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Remark 4. Theorem 1.2 is proved by Groves & Wahlén [3, §5.2.2]; the proof additionally confirms a posteriori that the 
estimates ‖ |η̃1‖ |2α � μ, ‖η̃3‖2

2 � μ3+2α and ‖H(η̃)‖2
2 � μ2+α also hold for α = 1.
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