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We propose a new nonlinear shell model of Koiter’s type, i.e. one that combines membrane 
and flexural strains, which can be used in the case where the middle surface of the 
undeformed shell is “almost spherical”, in the sense that its Gaussian curvature Kε and 
mean curvature Hε satisfy Kε = H2

ε +O(ε2), where 2ε denotes the thickness of the shell.
© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous proposons un nouveau modèle non linéaire de coques du type de Koiter, c’est-à-
dire combinant les déformations membranaires et en flexion, qui peut être utilisé lorsque 
la surface moyenne de la coque non déformée est « presque sphérique », au sens que sa 
courbure gaussiene Kε et sa courbure moyenne Hε satisfont Kε = H2

ε + O(ε2), où 2ε
désigne l’épaisseur de la coque.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In the well-known nonlinear Koiter shell model [7], the deformation of the middle surface of a thin elastic shell subjected to 
applied forces should be the solution to a specific minimization problem (Section 3). This model is often used in numerical 
simulations of shells in spite of the fact that it is yet to be justified mathematically by an existence theorem. This situation 
has been partially remedied in 2015 by Bunoiu and the authors [1] in the particular case where the middle surface is a 
portion of a sphere that can be parametrized by a single chart and its admissible deformations are subjected to Dirichlet 
boundary conditions. We address here the situation where the middle surface of a shell is a surface without boundary (so it 
cannot be parametrized by a single chart), which is “sufficiently close to a sphere”.
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More specifically, a shell with thickness 2ε is “almost spherical” if its middle surface is a closed (compact without bound-
ary) surface S ⊂ R

3 of class C2 whose Gaussian and mean curvatures, respectively denoted Kε and Hε , satisfy

Kε = O(1) > 0, Hε = O(1), and Kε = H2
ε +O(ε2) uniformly on S.

Note that such a definition is similar in its spirit to that of a “shallow shell” given in [5]. There, a shell is deemed “shallow” 
if, when considered as imbedded in a family of shells parametrized by ε > 0, its “geometry” is likewise (in a specific sense, 
completely different from that used here) of a given order with respect to ε as ε approaches zero.

In all that follows, we study the deformation of an almost spherical shell with middle surface S ⊂ R
3 and thickness 

2ε > 0, made of a homogeneous and isotropic nonlinearly elastic material whose Lamé constants λ and μ satisfy 3λ + 2μ >
0 and μ > 0. Note that, for notational brevity, the index “ε” is not attached to “S”.

More detailed proofs will be provided in a forthcoming paper [4], where the results of this note will be also generalized 
to more general surfaces, with or without boundary.

2. Kinematics

We describe here the notions used to define the nonlinear shell models of Section 3. For more details about the notions 
from differential geometry of surfaces used here, we refer the reader to, e.g., [3] or [6].

In all that follows, except when otherwise explicitly specified, Greek indices range in the set {1, 2}, while Latin indices 
range in the set {1, 2, 3}. The summation convention with respect to repeated indices is used in conjunction with the above 
rule.

The three-dimensional Euclidean space containing the surface S is identified with R3 by choosing an origin and a Eu-
clidean basis. The Euclidean norm, the inner product, and the vector product, of vectors in R3 are respectively denoted | · |, 
·, and ∧.

A generic point in R3 is denoted by x = (xi). A generic point in R2 is denoted by y = (yα), and partial derivatives with 
respect to yα are denoted by ∂α . Vector and tensor fields are denoted by boldface letters.

Given any local chart θ ∈ C2(ω; R3) of S , where ω ⊂ R
2 is a connected open set, the vectors fields aα : S → R

3 defined 
by

aα ◦ θ := ∂αθ

span the tangent planes to S at the points contained in the image θ(ω) ⊂ S of ω under θ . Then the unit area element along 
the portion θ(ω) of S is

dS(x) := |∂1θ(y) ∧ ∂2θ(y)|dy for all x = θ(y), y ∈ ω.

Since the surface S is compact, there exists a finite number of local charts θk ∈ C2(ωk; R3), 1 ≤ k ≤ N , where ωk ⊂ R
2

are connected open sets, such that

S ⊂
N⋃

k=1

Sk, where Sk := θk(ωk).

Let αk ∈ C2(S), k ∈ {1, 2, ..., N}, denote a partition of unity subordinated to the above covering of S .
The Lebesgue integral of a dS-measurable nonnegative function f : S → R is defined in R ∪ {+∞} by

∫

S

f dS :=
N∑

k=1

∫
ωk

( f ◦ θk) (αk ◦ θk) |∂1θk ∧ ∂2θk|dy.

Then, for each 1 ≤ p < ∞, the Lp(S)-norm of a dS-measurable function f : S → R is defined by

‖ f ‖L p(S) :=
(∫

S

| f |p dS)
)1/p

.

A dS-measurable mapping ϕ : S →R
3 belongs to the Lebesgue space Lp(S; R3), 1 ≤ p < ∞, if

‖ϕ‖L p(S) := ‖|ϕ|‖L p(S) < ∞.

The tangent space TxR
3 to R3 at any given point x ∈R

3 is identified with R3. The tangent space Tx S to the surface S at 
any given point x ∈ S is identified with the plane parallel to Tx S and passing through the origin of R3.

A mapping ϕ ∈ Lp(S; R3) belongs to the Sobolev space W 1,p(S; R3), 1 ≤ p < ∞, if its tangent maps dϕ(x) : Tx S →
Tϕ(x)R

3 exist for dS-almost all x ∈ S and satisfy
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‖dϕ‖L p(S) :=
(∫

S

|dϕ|p dS
)1/p

< ∞,

where |dϕ(x)| denotes at almost all x ∈ S the operator norm of the linear mapping dϕ(x) : Tx S → Tϕ(x)R
3.

A continuous vector field a3 : S → R
3 with unit length and normal to the tangent planes to S is given once and for all. 

Then all the local bases {aα(x)} in the tangent planes Tx S , x ∈ S , considered below are positively oriented, in the sense that 
the basis {ai(x)} of R3 has the same orientation as the chosen Cartesian basis of R3. The dual basis of the basis {ai(x)} of 
R

3 is denoted {ai(x)}. Note that the two vectors {aα(x)} belong to Tx S and form the dual basis of the basis {aα(x)} in Tx S .
The first, second, and third, fundamental forms of the surface S are defined at each point x ∈ S as the bilinear forms 

I(x), II(x), III(x) : Tx S × Tx S → R defined for each (ζ , η) ∈ Tx S × Tx S by

I(x)(ζ ,η) := ζ · η,

II(x)(ζ ,η) := −da3(x)ζ · η,

III(x)(ζ ,η) := da3(x)ζ · da3(x)η.

The inverse of the first fundamental form of the surface S is the twice-contravariant symmetric tensor field I−1 whose 
components I−1(aα, aβ) in a local basis are defined by(

I−1(aα,aβ)
) := (

I(aα,aβ)
)−1

.

Let A be any second-order mixed tensor field on the surface S . Then the trace and the determinant of A are denoted 
and defined by

tr A :=
∑
α

A(aα,aα) and det A := det
(

A(aα,aβ)
)
,

and the norm of A is denoted and defined by

|A| :=
{ ∑

α,β,σ ,τ

I(aα,aσ )I−1(aβ,aτ )A(aα,aβ)A(aσ ,aτ )
}1/2

,

for any given dual bases {aα} and {aα} in the tangent spaces to the surface S .
The product of a twice-contravariant tensor field A by a twice-covariant tensor field B on the surface S is the second-

order mixed tensor field A B defined by

(A B)(aα,aβ) :=
∑
σ

A(aα,aσ )B(aσ ,aβ).

The product of two second-order mixed tensor fields F 1 and F 2 on the surface S is the second-order mixed tensor field 
F G defined by

(F 1 F 2)(a
α,aβ) :=

∑
σ

F 1(a
α,aσ )F 2(a

σ ,aβ).

The square of a second-order mixed tensor field F is denoted and defined by

F 2 := F F .

Note that all of the above definitions do not depend on the choice of the dual bases {a} and {a}.
The mean, resp. Gaussian, curvatures of the surface S are denoted and defined by

H := 1

2
tr S and K := det S,

where S := I−1II denotes the shape operator of S . If K is > 0 at all points of S , the third fundamental form of S is invertible, 
and its inverse is the twice-contravariant symmetric tensor field III−1 whose components III−1(aα, aβ) in a local basis are 
defined by

(
III−1(aα,aβ)

) := (
III(aα,aβ)

)−1
.

A mapping ϕ : S →R
3 is an immersion if it is of class W 1,1 and if the tangent map dϕ(x) : Tx S → Tϕ(x)R

3 has rank two 
for almost all x ∈ S . It follows that any immersion ϕ possesses a unique, up to a negligible subset of S , “orientation-preserving 
unit normal vector field”, hereafter denoted a3(ϕ) : S → R

3, defined at almost all x ∈ S as the unique vector a3(ϕ)(x) ∈ R
3

such that

|a3(ϕ)(x)| = 1, a3(ϕ)(x) · dϕ(x)ζ = 0 for all ζ ∈ Tx S,
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and such that, for any basis {ζ 1, ζ 2} in Tx S , the bases {dϕ(x)ζ 1, dϕ(x)ζ 2, a3(ϕ)(x)} and {ζ 1, ζ 2, a3(x)} have the same 
orientation in R

3.
In all that follows, a deformation of S is defined as an immersion ϕ ∈ W 1,1(S; R3) such that a3(ϕ) ∈ W 1,1(S; R3). Given any 

deformation ϕ : S → R
3, the pullbacks on S of the first, second, and third, fundamental forms of the immersed surface 

ϕ(S) ⊂R
3 are defined at almost all point x ∈ S as the bilinear forms I(ϕ)(x), II(ϕ)(x), III(ϕ)(x) : Tx S × Tx S → R defined for 

each (ζ , η) ∈ Tx S × Tx S by

I(ϕ)(x)(ζ ,η) := dϕ(x)ζ · dϕ(x)η,

II(ϕ)(x)(ζ ,η) := −d(a3(ϕ))(x)ζ · dϕ(x)η,

III(ϕ)(x)(ζ ,η) := d(a3(ϕ))(x)ζ · d(a3(ϕ))(x)η.

Finally, the change of first fundamental form, the change of second fundamental form, and the change of third fundamental form, 
tensor fields associated with a deformation ϕ of S are respectively denoted and defined by

G(ϕ) := 1

2
I−1(I(ϕ) − I), R(ϕ) := I−1(II(ϕ) − II), and P (ϕ) := 1

2
III−1(III(ϕ) − III).

Note that G(ϕ), R(ϕ) and P (ϕ) are second-order mixed (1-covariant and 1-contravariant) tensor fields on the surface S
and that P (ϕ) is well defined if K is > 0. Note also that, while the classical Koiter nonlinear shell model is defined in 
terms of G(ϕ) and R(ϕ), the new nonlinear shell model introduced in this paper is defined in terms of G(ϕ) and P (ϕ)

(see Section 3).

3. Two nonlinear shell models

We describe in this section two nonlinear shell models: the first one is due to W.T. Koiter [7], and the second one is new. 
We define both models directly on the surface S , without using any local coordinates to describe the middle surface S of 
the undeformed configuration of the shell. This is not usually the case in the literature, where most shell models, including 
Koiter’s, are defined in local coordinates (see, e.g., [2] and the references therein). But doing so is much more convenient in 
our case, where S cannot be described by a single local chart.

There are two basic reasons for introducing this new nonlinear shell model: it is both well posed (in the sense that there 
exists a satisfactory existence theory) and close “asymptotically” to Koiter’s when the undeformed configuration of the shell is 
almost spherical; cf. Section 4.

In Koiter’s nonlinear shell model, the unknown deformation of the middle surface S of a shell arising in response to applied 
forces should minimize the functional J defined by

J [ϕ] :=
∫

S

{
εW (G(ϕ)) + ε3

3
W (R(ϕ))

}
dS − L[ϕ]

for each ϕ ∈ �(S), where the set �(S) of admissible deformations is defined by

�(S) := {ϕ ∈ W 1,4(S;R3) is an immersion such that a3(ϕ) ∈ W 1,4(S;R3)},
and

W (F ) := 2λμ

λ + 2μ
(tr F )2 + 2μ tr (F 2)

for all second-order mixed tensor fields F , and L : �(S) →R is the potential of the applied forces acting on S .
In our new nonlinear shell model, the unknown deformation of the middle surface S of a shell arising in response to 

applied forces should minimize the new functional

J̃ [ϕ] :=
∫

S

{
εW̃ (G(ϕ)) + ε3

3
K W̃ (P (ϕ))

}
dS − L[ϕ]

for each ϕ ∈ �̃(S), where the new set �̃(S) of admissible deformations is now defined by

�̃(S) := {ϕ ∈ �(S); K (ϕ) > 0 a.e. in S},
where K (ϕ) denotes the Gaussian curvature of the surface ϕ(S),

W̃ (F ) := μ(tr F )2 + 2μ(λ − 2μ)

λ + 2μ
det F + μ(3λ + 2μ)

2(λ + 2μ)

(
2 tr F − log

(
1 + 2 tr F + 4 det F

))

for all second-order mixed tensor fields F , and L is the potential of the applied forces acting on S (the same potential as in 
Koiter’s nonlinear shell model).
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Note that, thanks to the factor K (the Gaussian curvature of S) appearing in the definition of J̃ [ϕ], this new functional 
can be also defined as

J̃ [ϕ] = ε

∫

S

W̃ (G(ϕ))dS + ε3

3

∫




W̃ (G(a3(ϕ) ◦ a−1
3 ))da − L[ϕ]

for each ϕ ∈ �̃(S), where 
 designates the unit sphere in R3 and da denotes the area element along 
.

4. Main results

We are now in a position to state the main results (Theorems 4.1 and 4.2 below) of this Note.
The first theorem shows that, if the undeformed configuration of the shell is “almost spherical” (the precise definition 

is given in the Introduction), then the total energies of the two nonlinear shell models defined in the previous section are 
“asymptotically equivalent”.

The second theorem shows that, again if the undeformed configuration of the shell is almost spherical, then the mini-
mization problem corresponding to the new nonlinear shell model defined in the previous section possesses a solution (by 
contrast, it is not known as of now whether Koiter’s nonlinear shell model has a solution). Thus the two theorems together 
show that this new model can be used instead of Koiter’s nonlinear shell model in the case where the undeformed configuration of the 
shell is almost spherical.

Theorem 4.1. Assume that the undeformed configuration of a shell is almost spherical and that the Lamé constants of the elastic 
material constituting the shell satisfy μ > 0 and 3λ + 2μ > 0. Let

c0 := 2μ
(

1 − 2|λ|
λ + 2μ

)
> 0 and C0 := 2μ

(
1 + 2|λ|

λ + 2μ

)
.

Given any smooth enough deformation ϕ : S → R
3 that satisfies K (ϕ) > 0 on S, let the tensor fields G := G(ϕ), R := R(ϕ), and 

P := P (ϕ), be defined as in Section 2. Then the stored energy function of Koiter’s nonlinear shell model (see Section 3) satisfies the 
inequalities

c0

{
ε|G|2 + ε3

3
|R|2

}
≤

{
εW (G) + ε3

3
W (R)

}
≤ C0

{
ε|G|2 + ε3

3
|R|2

}
on S,

and the stored energy function of the new nonlinear shell model (see Section 3) is such that

{
εW̃ (G) + ε3

3
K W̃ (P )

}
=

{
εW (G) + ε3

3
W (R)

}{
1 +O

(
ε + |G| + |R|)}on S.

Sketch of proof. The first two inequalities of the theorem follow by noting that

W (F ) := 2λμ

λ + 2μ
(tr F )2 + 2μ tr (F 2) ≥ c0tr (F 2) = c0|F |2

for both F := G and F := R .
The proof of the second part proceeds as follows: combining the expressions of the functions W and W̃ (Section 3), the 

polynomial expansion of the function log(1 + ·), and the Cayley–Hamilton theorem, we first deduce that

W̃ (F ) = W (F ) +O(|F )|3)
for all second-order mixed tensor field F . It follows that

{
εW̃ (G) + ε3

3
K W̃ (P )

}
=

{
εW (G) + ε3

3
K W (P )

}
+ εO(|G|3) + ε3O(|P |3).

Using the expression of the third fundamental form of a surface in terms of the first two fundamental forms, we next 
infer that P can be estimated in terms of G and R as

P = 1

2
(S R + R S) +O(|G| + |R|2),

where S := I−1II denote the shape operator of S . Hence

O(|P |3) = O(|G|3 + |R|3),
and
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(tr P )2 = (tr ((II−1 I)R))2 +O(|G|2 + |G||R| + |R|3),
tr (P 2) = 1

2

{
tr

(
(II−1 I)R)2) + tr

(
(III−1 I)R2)} +O(|G|2 + |G||R| + |R|3).

Using the assumption that the undeformed configuration of the shell is almost spherical, we next have

II−1 = K −1/2 I−1 +O(ε) and III−1 = K −1 I−1 +O(ε).

Combined with the previous estimates, this gives

(tr P )2 = K −1(tr R)2 +O(ε|R|2 + |G|2 + |G||R| + |R|3),
tr (P 2) = K −1tr (R2) +O(ε|R|2 + |G|2 + |G||R| + |R|3),

which in turn implies that

K W (P ) = W (R) +O(ε|R|2 + |G|2 + |G||R| + |R|3).
The conclusion follows by using this last estimate in the right-hand side of the above estimate of 

{
εW̃ (G) +

ε3

3 K W̃ (P )
}

. �
Theorem 4.2. Assume that the undeformed configuration of a shell is almost spherical and that the potential L of the applied forces is 
linear, continuous, and translation-invariant (in the sense that L[ϕ + v] = L[ϕ] for all v ∈R

3 and all ϕ ∈ �̃(S)).
Then the minimization problem: Find ψ ∈ �̃(S) such that

J̃ (ψ) = inf
ϕ∈�̃(S)

J̃ (ϕ)

has at least a solution.

Sketch of proof. The proof comprises five stages.
First, we establish the following coerciveness inequality for the functional J̃ : there exists a constant c1 > 0 such that, for 

each ϕ ∈ �̃(S),

J̃ [ϕ] ≥ c1ε
(
‖dϕ‖L4(S) + ‖ log(det (I−1 I(ϕ)))‖L1(S) − 1

)

+ c1ε
3
(
‖d(a3(ϕ))‖L4(S) + ‖ log(det (III−1III(ϕ)))‖L1(S) − 1

)
.

Second, we deduce from the above coerciveness inequality, combined with the Poincaré–Wirtinger inequality and the 
assumption that L is translation-invariant, that there exists an infimizing sequence (ψn)n≥1 of J̃ in the set �̃(S) such that

(ψn)n≥1 and (a3(ψn))n≥1 are bounded sequences in W 1,4(S;R3),

(log(det (I−1 I(ψn))))n≥1 and (log(det (III−1III(ψn))))n≥1 are bounded sequences in L1(S).

Third, we show that there exists a subsequence (ϕn)n≥1 of the sequence (ψn)n≥1 and two vector fields ϕ ∈ W 1,4(S; R3)

and η ∈ W 1,4(S; R3) such that

ϕn → ϕ as n → ∞ weakly in W 1,4(S;R3) and strongly in L4(S;R3),

a3(ϕn) → η as n → ∞ weakly in W 1,4(S;R3), strongly in L4(S;R3), and a.e. in S,({
det (I−1 I(ϕn))

}1/2)
n≥1 and

({
det (III−1III(ϕn))

}1/2)
n≥1 are bounded sequences in L2(S).

Fourth, we show that the vector fields ϕ and η found in the previous step are such that (see Section 3 for the notions 
used below):

ϕ is an immersion and a3(ϕ) = η a.e. on S,

where a3(ϕ) designates the orientation-preserving unit normal vector field associated with the immersion ϕ : S → R
3. To this 

end, we establish in particular the weak convergences
{

det (I−1 I(ϕn))
}1/2 → {

det (I−1 I(ϕ))
}1/2

as n → ∞ weakly in L2(S),{
det (III−1III(ϕn))

}1/2 → {
det (III−1III(ϕ))

}1/2
as n → ∞ weakly in L2(S),

by using a compensated compactness argument.
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Finally, we prove that the vector field ϕ found above minimizes the functional J̃ over the set �̃(S) by using the reflex-
ivity of the spaces L4(S; R3) and L2(S) and the weak convergences established in the previous steps. �

Note that the assumption that the undeformed configuration is almost spherical is only needed in Theorem 4.1. By 
contrast, Theorem 4.2 holds as well under the only assumption that the Gaussian curvature of S be bounded by below by a 
> 0 constant. But then the corresponding energy is no longer necessarily close to Koiter’s.
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