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We prove that a linear growth graph has finitely many horofunctions. This provides a short 
and simple proof that any finitely generated infinite group of linear growth is virtually 
cyclic.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
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r é s u m é

Nous montrons qu’un graphe à croissance linéaire admet un nombre fini d’horofonctions. 
Cela donne une preuve courte et simple que chaque groupe infini de type fini à croissance 
linéaire est virtuellement cyclique.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let � be an infinite, connected, locally finite graph, and denote by d(·, ·) the graph metric on �. Let o ∈ �. Then � is said 
to have linear volume growth if the balls about o for the metric d grow at most linearly in the radius. The graph � is said to 
have polynomial volume growth if these balls grow at most polynomially.

Given an element z ∈ � we define the Busemann function bz : � → Z via bz(y) = d(z, y) − d(z, o). Given a geodesic ray 
ω = (z1, z2, . . .) in � we define the horofunction fω : G → Z by fω(y) = limn→∞ bzn (y). It is a well-known and simple fact 
that this limit exists. Note that fω is not constant, and in fact fω(zn) = −n, which shows that fω is unbounded.

Theorem 1.1. Let � be an infinite, connected, locally finite graph of linear volume growth. Then the set of horofunctions on � is finite.

A finitely generated group G is said to have polynomial (respectively, linear) volume growth if some (and hence every) 
Cayley graph of G has polynomial (respectively, linear) volume growth. A remarkable theorem of Gromov’s states that a 
finitely generated group of polynomial volume growth contains a nilpotent subgroup of finite index [1]. As an application of 
Theorem 1.1, we give a short argument to prove the linear-growth case of Gromov’s theorem, as follows.
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Theorem 1.2. Let G be a finitely generated infinite group of linear volume growth. Then G contains a cyclic subgroup of finite index.

In fact, Gromov’s theorem implies that a group of subquadratic growth is virtually cyclic, and this has also been proved 
by elementary methods by Justin [4], van den Dries & Wilkie [6], and Imrich & Seifter [3], the last two of these giving 
bounds on the index of the cyclic subgroup in terms of the volume growth. Nonetheless, the present proof is completely 
different to all of those and rather short, so we record it here.

We prove Theorem 1.1 in Section 2. The proof of Theorem 1.2 is in Section 3.
Let us mention a related (probably much more difficult) question.

Conjecture 1.3. Let G be a Cayley graph of polynomial volume growth. Then the set of horofunctions on G is countable.

Proving this conjecture would provide an alternative proof to Gromov’s theorem (by using a variant of Lemma 3.1 below). 
This has been suggested by Karlsson [5]. One method to prove this conjecture could be using the structure of finitely 
generated nilpotent groups, and relying on Gromov’s theorem, but that would somehow miss the point. (For example, in 
[7] Walsh shows that nilpotent groups always have a finite orbit in the space of horofunctions. It seems that this can 
be extended to virtually nilpotent groups as well.) It would be interesting to prove this conjecture even in the quadratic 
growth case without using Gromov’s theorem, since that would imply a new proof of the characterization of recurrent 
groups (which are finite extensions of Z or Z2).

2. Horofunctions on a graph of linear growth

For a graph �, we say that � is N-partite on a sequence (�n)n∈N of disjoint sets �n if � has vertex set 
⋃

n∈N �n and the 
neighbours of every x ∈ �n lie in �n−1 ∪ �n+1. We call the sets �n the partite sets of �. We call a path in � monotone if it 
has at most one vertex in each �n .

The proof of Theorem 1.1 essentially rests on the following graph-theoretic result.

Proposition 2.1. Let � be an N-partite graph whose partite sets all have cardinality k ≥ 1. Then there exist monotone paths γ1, . . . , γk
in � such that every infinite monotone path in � has infinite intersection with some γ j .

Recall that in a bipartite graph on two finite sets X1, X2 of equal cardinality, a matching is a subgraph in which each 
element of X1 is connected to precisely one element of X2, and vice versa. Hall’s Marriage Theorem [2] states that if there is 
no matching then there exists some subset Y ⊂ X1 such that the neighbourhood of Y in X2 has strictly smaller cardinality 
than Y itself.

Lemma 2.2. If for each n ∈N there is a matching in � between �n and �n+1 then � satisfies Proposition 2.1.

Proof. It is easy to see that the existence of such matchings implies that the vertices of � may be partitioned into k
monotone paths, and that this is sufficient to satisfy the proposition. �

Given an N-partite graph � and a sequence N = (n j) j ⊂ N, we may define a new graph on �N := ⋃
j �n j by placing an 

edge between x ∈ �n j and x′ ∈ �n j+1 if and only if there exists a monotone path between x and x′ in �. (Note that �N is an 
N-partite graph with partite sets �n j .) The following is then immediate.

Lemma 2.3. If there exists a sequence N = (n j) j such that �N satisfies Proposition 2.1, then the conclusion of Proposition 2.1 holds for 
� as well.

Proof of Proposition 2.1. We proceed by induction on k. The base case k = 1 is easy, so we assume that k > 1. We may also 
delete every element of � that does not lie in any infinite monotone path; the only potential problem with this is that the 
�n may no longer all have the same cardinality, but, using Lemma 2.3, we may fix this by passing to a subsequence.

Let N = (n j) j be a sequence and consider the N-partite graph �N . If for every j there exists a matching (in the graph 
�N ) between �n j and �n j+1 , then we are done by combining Lemmas 2.2 and 2.3.

Thus, we assume that a sequence as above does not exist. Specifically, by Hall’s Marriage Theorem, there exists n such 
that for any m > n, there exist Um ⊂ �n and Vm ⊂ �m such that 1 ≤ |Vm| < |Um| ≤ k, and such that every monotone 
path from Um to �m ends in Vm . Without loss of generality we assume that the sets Vm are minimal with respect to 
these properties, and hence that every element v ∈ Vm lies in some monotone path from Um to �m . By passing to a 
subsequence of m > n, we have an infinite sequence n < m1 < m2 < · · · such that |Vm j | = |Vm1 | all have the same size and 
Um j = Um1 = U are all the same fixed subset.

Let M = (m j) j and consider the graph �M . We claim that �M satisfies Proposition 2.1, which will suffice by Lemma 2.3. 
We move to proving this claim.
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Every monotone path in � starting in U and ending in �m j must end in Vm j . Thus, by minimality of Vm j , any monotone 
path in � starting in Vm j and ending in �m j+1 must end in Vm j+1 . In particular, in the graph �M , any infinite monotone 
path γ must satisfy the following dichotomy: either γ ∩ Vm j = ∅ for all j, or there exists j0 such that for all j > j0 we 
have γ ∩ Vm j �=∅.

Let �A be the induced subgraph of �M on the vertex set 
⋃

j Vm j , and �B the induced subgraph on the vertex set 
⋃

j(�m j \ Vm j ). Note that �A is N-partite with partite sets (�A) j = Vm j , all of size v = |Vm1 | < k. Also, �B is N-partite 
with partite sets (�B) j = �m j \ Vm j , which all have size w = k − v < k. Thus, any infinite monotone path in �M induces 
an infinite monotone path in either �A or in �B . By induction, there exist infinite monotone paths α1, . . . , αv in �A such 
that any infinite monotone path in �A must intersect one of these infinitely many times. Similarly, there are such paths 
β1, . . . , βw in �B . Thus, any infinite monotone path in �M must intersect one of α1, . . . , αv , β1, . . . , βw infinitely many 
times. This completes the proof. �
Proof of Theorem 1.1. Note that if � has linear growth then, writing Br for the ball of radius r about o, there is some k ∈ N

and an infinite increasing sequence m1, m2, . . . such that |Bmn \Bmn−1| = k for every n. Define �n = Bmn\Bmn−1, and define 
an N-partite graph �̂ on �1, �2, . . . by joining x ∈ �n to x′ ∈ �n+1 if and only if there is a path in � from x to x′ of length 
mn+1 − mn .

Define a map α from the set of geodesic rays in � starting at o to the set of monotone paths in �̂ (in the sense of 
Proposition 2.1) in the natural way. Specifically, if ω is a geodesic ray in � starting at o then α(ω) is the unique monotone 
path in �̂ passing through the same elements of 

⋃
n �n as ω. Note that α is surjective onto the set of monotone paths in �̂, 

and also that if α(ω) and α(ω′) have infinite intersection then so do ω and ω′ .
Let γ1, . . . , γk be as given by Proposition 2.1, and pick, using the surjectivity of α, geodesic rays ω1, . . . , ωk in � starting 

at o such that α(ωi) = γi . If β is a geodesic ray in �, the tail of β coincides with the tail of some geodesic ray β ′ in 
� starting at o (see Lemma 2.4 below). However, α(β ′) has infinite intersection with some γi by Proposition 2.1, and 
so β has infinite intersection with ωi . This implies in particular that fβ = fωi , and so fω1 , . . . , fωk is a complete set of 
horofunctions. �

For completeness we include a short argument for the following standard lemma.

Lemma 2.4. If γ = (x0, x1, x2, . . .) is a geodesic ray starting at x0 then there exists some N such that (xN , xN+1, . . .) coincides with 
the tail of a geodesic ray ω starting at o.

Proof. The sequence d(xn, o) − d(xn, x0) is non-increasing in n, since

d(xn+1, x0) = d(xn, x0) + 1 (1)

and |d(xn+1, o) − d(xn, o)| ≤ 1 for every n. The triangle inequality also implies that d(xn, o) − d(xn, x0) is bounded below 
by −d(o, x0). The sequence (d(xn, o) − d(xn, x0))

∞
n=1 is therefore eventually constant, say for n ≥ N . Combined with (1), this 

implies that d(xn+1, o) = d(xn, o) + 1 for n ≥ N . The infinite path ω having initial segment some geodesic path from o to xN , 
followed by xN+1, xN+2, . . . , is therefore a geodesic ray starting at o. �
3. The linear-growth case of Gromov’s theorem

A group G acts on the space { f : G → R | f (1) = 0} by x · f (y) = f (x−1 y) − f (x−1). Note that for a Busemann function 
bz we have x · bz = bxz , and hence for a horofunction fω we have x · fω = fxω .

The following observation we learned from Anders Karlsson.

Lemma 3.1. If the set of horofunctions on a group G contains a finite orbit then G has a finite-index subgroup admitting a surjective 
homomorphism onto Z.

Proof. Letting G act on the finite orbit, G contains a finite-index subgroup H that fixes some element fω of the orbit. Thus 
for h ∈ H, g ∈ G we have fω(g) = h−1 · fω(g) = fω(hg) − fω(h), which implies that fω is a homomorphism H → Z and that 
fω(H g) = fω(H) + fω(g) for every g ∈ G . In particular, if fω(H) = {0} then fω is constant on the finitely many cosets of H , 
contradicting the fact that horofunctions are unbounded. We conclude that the image fω(H) is a non-trivial subgroup of Z, 
and thus admits a surjective homomorphism onto Z. �
Remark 3.2. Essentially the same argument shows more generally that if � is a graph of linear growth and G < Aut (�) acts 
transitively on the vertices of � then G has a finite-index subgroup admitting a surjective homomorphism onto Z.

Proof of Theorem 1.2. Theorem 1.1 implies that G has a finite set of horofunctions. The set of horofunctions is invariant, 
so in this case it contains a finite orbit. Lemma 3.1 therefore implies that there exists N � G of finite index such that N
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admits a surjective homomorphism onto Z. Let K � N be the kernel of this homomorphism. Since N is finite index in G it 
is finitely generated of linear growth. Since N/K ∼= Z, it must be that K is finite. Hence, N is finite-by-Z, which by standard 
methods implies that N is also Z-by-finite. Thus, G contains a finite-index infinite cyclic subgroup. �
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