Combinatorics/Geometry

Harmonic-counting measures and spectral theory of lens spaces

Mesures de comptage harmonique et théorie spectrale des espaces lenticulaires

Hossein Mohades, Bijan Honari
Faculty of Mathematics, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave., 15914, Tehran, Iran

ARTICLE INFO

Article history:

Received 13 April 2016
Accepted after revision 17 October 2016
Available online 9 November 2016
Presented by the Editorial Board

Abstract

In this article, associated with each lattice $T \subseteq \mathbb{Z}^{n}$, the concept of a harmonic-counting measure v_{T} on a sphere S^{n-1} is introduced and is applied to determine the asymptotic behavior of the cardinality of the set of independent eigenfunctions of the Laplace-Beltrami operator on a lens space L corresponding to the elements of the associated lattice T of L lying in a cone.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Dans cette Note, on associe à tout réseau $T \subseteq \mathbb{Z}^{n}$ une mesure de comptage harmonique ν_{T} sur la sphère S^{n-1}. On l'utilise pour déterminer le comportement asymptotique du cardinal d'un ensemble de fonctions propres indépendantes de l'opérateur de Laplace-Beltrami sur un espace lenticulaire L, correspondant aux éléments du réseau T de L appartenant à un cône.
© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Counting the number of points of a lattice in a convex body has been well studied by many mathematicians including Minkowski, Ehrhart and Stanley. The asymptotic behavior of such counting functions leads to the definition of lattice-counting-measures on the sphere $S^{n-1}[3,4,10]$. In this paper we define the parallel notion of a harmonic-counting measure. We say that a polynomial $P \in \mathbb{C}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ is harmonic if $\Delta(P)=0$ where $\Delta=\sum_{i=1}^{n}\left(\frac{\partial^{2}}{\partial x_{i}^{2}}+\frac{\partial^{2}}{\partial y_{i}^{2}}\right)$. The restrictions of the harmonic homogeneous polynomials to $S^{2 n-1}$ are the eigenfunctions of the Laplace-Beltrami operator on $\left(S^{2 n-1}, g\right)$,

[^0]where g is the metric induced by the Euclidean inner product of $\mathbb{R}^{2 n}$. Let us identify $\mathbb{R}^{2 n}$ with \mathbb{C}^{n}, and let H denote the set of harmonic homogeneous polynomials which are invariant under the action
$$
\left(z_{1}, z_{2}, \ldots, z_{n}\right) \rightarrow\left(e^{2 i \pi \frac{p_{1}}{q}} z_{1}, \ldots, e^{2 i \pi \frac{p_{n}}{q}} z_{n}\right)
$$
of the homotopy group of the lens space $\mathfrak{L}\left(p_{1}, \ldots, p_{n} ; q\right)$. It is proved that there is a correspondence between H and the set of eigenfunctions of the Laplace-Beltrami operator of this lens space [5,6,8]. In [8] the lattice associated with the lens space $\mathfrak{L}\left(p_{1}, \ldots, p_{n} ; q\right)$ is defined as $T=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n} \mid \sum_{j=1}^{n} a_{j} p_{j} \equiv 0(\bmod q)\right\}$. This lattice is used to provide a criterion for isospectrality of lens spaces (Theorem 3.6 of [8]). See also [7]. Let
\[

z_{\sigma(j)}^{\left|a_{j}\right|}= $$
\begin{cases}z_{j}^{a_{j}} & \text { if } a_{j} \geq 0 \\ \bar{z}_{j}^{-a_{j}} & \text { otherwise }\end{cases}
$$
\]

and let $H_{s,\left(a_{1}, \ldots, a_{n}\right)}=$

$$
\left\{h \in H \mid \operatorname{deg} h=s, h=k\left(\left|z_{1}\right|^{2}, \ldots,\left|z_{n}\right|^{2}\right) \prod_{i=1}^{n} z_{\sigma(i)}^{\left|a_{i}\right|} \text { for some } k \in \mathbb{C}\left[x_{1}, \cdots, x_{n}\right]\right\}
$$

be the vector space of harmonic homogeneous polynomials of degree s associated with $\left(a_{1}, \ldots, a_{n}\right) \in T$. In [9] we used these subspaces to provide a proof of Theorem 3.6. of [8]. In this paper we use the dimension of the vector space $H_{s,\left(a_{1}, \ldots, a_{n}\right)}$ to define a multiplicity for each point $\left(a_{1}, \ldots, a_{n}\right)$ of the lattice T. Counting points with such multiplicities we are led to the definition of harmonic-counting measures. In fact we consider the asymptotic behavior of the function,

$$
F_{T \cap K}(t)=\sum_{s=0}^{t} \sum_{x \in T \cap K(s)} \operatorname{dim} H_{s, x}
$$

where $T \cap K(s)$ denotes the set of elements in the intersection of T and the spherical cone K with l_{1} norm equal to s, to provide a measure ν_{T} on S^{n-1}. The measure ν_{T} is a tool to compare the cardinality of harmonic homogeneous polynomials (or eigenfunctions of a lens space) associated with lattice points in two different cones. In Theorem 2.5 we calculate the values of the measure ν_{T}. This theorem provides more information than Weyl's law for Laplace-Beltrami operator in the case of lens spaces. (See Remark 1.) Using Theorem 2.5 we can see that the number of independent eigenfunctions of the Laplace-Beltrami operator associated with the integral points of an l_{1}-spherical sector of radius t is asymptotically $\frac{B(n-1, n+1)}{(n-2)!2^{n-1}} t^{n-1}$ times the number of lattice points in this region, where B is the beta function.

2. Preliminaries on lens spaces

2.1. Lattices

In this paper a lattice T is a subgroup of the group \mathbb{Z}^{n}. T is of rank n if $T \otimes \mathbb{R}=\mathbb{R}^{n}$.

Definition 2.1. A preliminary lattice group T is defined as

$$
T=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n} \mid \sum_{j=1}^{n} a_{j} p_{j} \equiv 0(\bmod q)\right\}
$$

where integers $\left\{p_{1}, \ldots, p_{n}\right\}$ are prime to the positive integer q.
The measures defined in this article can be used in general lattices, but we limit ourselves to preliminary lattices that are useful for the study of lens spaces. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for T. A matrix A whose columns are v_{1}, \ldots, v_{n} is called a generating matrix of T. Another matrix B is a generating matrix of T if and only if there is a unimodular matrix U such that $A=U B$. An essential parallelepiped of a lattice $T \subset \mathbb{R}^{n}$ is a parallelepiped $P_{T}=\left\{\sum_{i=1}^{n} a_{i} v_{i} \mid 0 \leq a_{i} \leq 1, i=1, \cdots, n\right\}$. Let K be a cone in \mathbb{R}^{n} whose apex is the origin.

2.2. Harmonic-counting measure

Let $N_{T \cap K}(s)$ be the number of elements in $T \cap K$ with l_{1}-norm s. For a cone $K \subset \mathbb{R}^{n}$ set

$$
F_{T \cap K}(t)=\sum_{s=0}^{t} \sum_{r=0}^{\left[\frac{s}{2}\right]}\binom{r+n-2}{n-2} N_{T \cap K}(s-2 r)
$$

Definition 2.2. The cone constructed from a set $U \subseteq \mathbb{R}^{n}$ is the set $\left\{t x \mid t \in \mathbb{R}^{+}, x \in U\right\}$. This set is denoted by $C(U)$.
Definition 2.3. The harmonic-counting measure associated with the lattice T, is a measure ν_{T} on the Borel σ-algebra of S^{n-1} which is defined as

$$
\begin{equation*}
v_{T}(U):=\lim _{t \rightarrow \infty} \frac{F_{T \cap C(U)}(t)}{t^{2 n-1}} \tag{1}
\end{equation*}
$$

By Lemma 3.2 of [8],

$$
\operatorname{dim} H_{s,\left(a_{1}, \ldots, a_{n}\right)}=\left\{\begin{array}{cr}
\binom{r+n-2}{n-2} & \left\|\left(a_{1}, \ldots, a_{n}\right)\right\|_{l_{1}}=s-2 r \tag{2}\\
0 & \text { otherwise }
\end{array}\right.
$$

which is equal to the number of independent harmonic homogeneous polynomials of degree s associated with the element $\left(a_{1}, \ldots, a_{n}\right)$. So the resulting measure is named harmonic-counting measure.

In order to study the asymptotic behavior of the function $F_{T \cap K}(t)$, we need the asymptotic behavior of $N_{\mathbb{Z}^{n} \cap K}(t)$. It is a well-known fact that $\sum_{t=0}^{s} N_{\mathbb{Z}^{n} \cap K}(t) \sim \alpha_{K} s^{n}$ where α_{K} is the volume of the intersection of K and the l_{1}-sphere of radius 1 (Ehrhart-Stanley-Minkowski). This provides a combinatorial approach to a well-known measure μ_{T} on the sphere S^{n-1} [3]. Precisely

$$
\begin{equation*}
\mu_{T}(U)=\lim _{s \rightarrow \infty} \frac{\sum_{t=0}^{s} N_{\mathbb{Z}^{n} \cap A^{-1} C(U)}(t)}{s^{n}} \tag{3}
\end{equation*}
$$

is a finite measure, where A is the generating matrix of T.

2.3. Lens spaces

Let q be a positive integer, and let p_{1}, \ldots, p_{n} be integers that are prime to q. Let

$$
R(\theta)=\left(\begin{array}{rr}
\cos \theta & -\sin \theta \tag{4}\\
\sin \theta & \cos \theta
\end{array}\right) \sim e^{i \theta}
$$

and

$$
\begin{equation*}
g=R\left(2 \pi p_{1} / q\right) \oplus \cdots \oplus R\left(2 \pi p_{n} / q\right) \tag{5}
\end{equation*}
$$

Suppose that $G \subset O(2 n)$ is the finite cyclic group generated by g. If G (as a group of isometries) acts freely on $S^{2 n-1}$, then the manifold $S^{2 n-1} / G$, denoted by $\mathfrak{L}\left(p_{1}, \ldots, p_{n} ; q\right)$, is called a lens space. Let $\operatorname{spec}(M)$ denote the set of eigenvalues of the Laplace-Beltrami operator. $G_{1} \subseteq G$ implies $\operatorname{spec}\left(S^{2 n-1} / G\right) \subseteq \operatorname{spec}\left(S^{2 n-1} / G_{1}\right)$. In particular $\operatorname{spec}\left(S^{2 n-1} / G\right) \subseteq \operatorname{spec}\left(S^{2 n-1}\right)$. The Laplace-Beltrami eigenvalues of the manifold $S^{2 n-1}$ are of the form $k(k+2 n-2), k \in \mathbb{N} \cup\{0\}[5,6]$.

Definition 2.4. Let p_{1}, \ldots, p_{n} be integers that are prime to q. The lens space associated with a lattice $T=\left\{\left(a_{1}, \ldots, a_{n}\right) \in\right.$ $\left.\mathbb{Z}^{n} \mid \sum_{j=1}^{n} a_{j} p_{j} \equiv 0(\bmod q)\right\}$ is the space $S^{2 n-1} / G([8]$ Definition 3.2).

A nice relation between lattices and isospectrality is:
Theorem 2.1 (Lauret, Miatello and Rossetti ([8], Theorem 3.6)). Two lens spaces $\mathfrak{L}_{1}=S^{2 n-1} / G_{1}$ and $\mathfrak{L}_{2}=S^{2 n-1} / G_{2}$ are isospectral if and only if for the associated lattices T_{1} and T_{2}, $\operatorname{card}\left(\overline{B_{l_{1}}(0, k)} \cap T_{1}\right)=\operatorname{card}\left(\overline{B_{l_{1}}(0, k)} \cap T_{2}\right)$ for each $k \in \mathbb{N}$ where $B_{l_{1}}(0, k)$, is the l_{1}-ball of radius k centered at 0 .

As a result we have the next corollary (also see [5]).
Corollary 2.2. Two isospectral lens spaces have the same dimension and the same homotopy group.
Theorem 2.3. Let \mathfrak{L}_{1} and \mathfrak{L}_{2} be homotopy equivalent n-dimensional lens spaces with associated lattices T_{1} and T_{2}. Then $\mu_{T_{1}}=\mu_{T_{2}}$
Proof. It is well-known that for an arbitrary convex polytope $\Omega \subset \mathbb{R}^{n}$ we have $\lim _{s \rightarrow \infty} \frac{\operatorname{card}\left(\mathbb{Z}^{n} \cap s \Omega\right)}{s^{n}}=\operatorname{Vol}(\Omega)$ [2]. If A is a generating matrix of the lattice T and K is the part of $\overline{B_{l_{1}}(0,1)}$ opposite to $U \subseteq S^{n-1}$, then $\operatorname{card}(T \cap s K)=\operatorname{card}\left(\mathbb{Z}^{n} \cap s A^{-1} K\right)$. Therefore

$$
\begin{equation*}
\mu_{T}(U)=\lim _{s \rightarrow \infty} \frac{\operatorname{card}\left(\mathbb{Z}^{n} \cap s A^{-1} K\right)}{s^{n}}=\operatorname{Vol}\left(A^{-1} K\right)=\operatorname{det} A^{-1} \operatorname{Vol}(K) \tag{6}
\end{equation*}
$$

On the other hand it is well known that by Theorem 2.1, the values of $\operatorname{det} A_{1}^{-1}$ and $\operatorname{det} A_{2}^{-1}$ are equal to q^{-1}. Therefore, these measures are equivalent.

Theorem 2.4. v_{T} is a finite measure and its total value, $v_{T}\left(S^{n-1}\right)$, is equal to

$$
\frac{1}{q}(2 \pi)^{1-2 n} \omega_{2 n-1} \operatorname{Vol}\left(S^{2 n-1}\right)
$$

where ω_{n} is the volume of the unit ball in \mathbb{R}^{n}.
This is a corollary of Theorem 2.5. Here we provide another proof for preliminary lattices using the properties of lens spaces.

Proof. Let T be a preliminary lattice and let \mathfrak{L} be its associated lens space. According to [8] (or [9]) the number of independent eigenfunctions of the Laplace-Beltrami operator on a lens space with eigenvalue $s(s+(2 n-1)-1)$ is equal to

$$
\sum_{r=0}^{\left[\frac{s}{2}\right]}\binom{r+n-2}{n-2} N_{T \cap \mathbb{R}^{n}}(s-2 r)
$$

By Weyl's law [1] we have

$$
\lim _{x \rightarrow \infty} \frac{N(x)}{x^{\frac{2 n-1}{2}}}=(2 \pi)^{-(2 n-1)} \omega_{2 n-1} \operatorname{Vol}(\mathfrak{L})
$$

where $N(x)$ denotes the number of eigenvalues less than x and $2 n-1$ is the dimension of the lens space \mathfrak{L}. So

$$
\begin{align*}
\lim _{t \rightarrow \infty} \frac{F_{T \cap \mathbb{R}^{n}(t)}}{t^{2 n-1}} & =\lim _{t \rightarrow \infty} \frac{N(t(t+2 n-2))}{t^{2 n-1}}=\lim _{t \rightarrow \infty} \frac{N(t(t+2 n-2))}{(t(t+2 n-2))^{\frac{2 n-1}{2}}} \tag{7}\\
& =(2 \pi)^{-(2 n-1)} \omega_{2 n-1} \operatorname{Vol}\left(S^{2 n-1} / G\right) .
\end{align*}
$$

$S^{2 n-1}$ is a q-sheeted covering space of $S^{2 n-1} / G$ and therefore $\operatorname{Vol}\left(S^{2 n-1} / G\right)=\frac{1}{q} \operatorname{Vol}\left(S^{2 n-1}\right)$.
Now we compute the value of $\nu_{T}(U)$ where U is a Borel subset of the sphere S^{n-1}. Let A be the generating matrix of T. Also let

$$
\alpha(U)=\operatorname{Vol}\left(A^{-1}(C(U)) \cap B_{l_{1}}(0,1)\right)
$$

Theorem 2.5. The value of $\nu_{T}(U)$ is equal to

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{F_{T \cap C(U)}(t)}{t^{2 n-1}}=\frac{B(n-1, n+1)}{(n-2)!2^{n-1}} \alpha(U) \tag{8}
\end{equation*}
$$

where the beta function is defined as $B(z, t)=\int_{0}^{1} x^{z-1}(1-x)^{t-1} \mathrm{~d} x$.
Proof. We have

$$
\begin{equation*}
F_{T \cap C(U)}(t)=\sum_{s=0}^{t} \sum_{r=0}^{\left[\frac{s}{2}\right]}\binom{r+n-2}{n-2} N_{T \cap C(U)}(s-2 r), \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\sum_{s=0}^{t} N_{T \cap C(U)}(s)=\alpha(U) t^{n}+O\left(t^{n-1}\right) \tag{10}
\end{equation*}
$$

By changing the order of summation in (9), we have

$$
F_{T \cap C(U)}(t)=\sum_{r=0}^{\left[\frac{t}{2}\right]}\left(\binom{r+n-2}{n-2} \sum_{i=0}^{t-2 r} N_{T \cap C(U)}(i)\right)
$$

So by (10),

$$
\begin{align*}
& \frac{1}{t^{2 n-1}} \sum_{r=0}^{\left[\frac{t}{2}\right]}\left(\binom{r+n-2}{n-2} \alpha(U)(t-2 r)^{n}-M(t-2 r)^{n-1}\right) \leq \\
& \frac{1}{t^{2 n-1}} \sum_{r=0}^{\left[\frac{t}{2}\right]}\left(\binom{r+n-2}{n-2} \sum_{i=0}^{t-2 r} N_{T \cap C(U)}(i)\right) \leq \tag{**}\\
& \frac{1}{t^{2 n-1}} \sum_{r=0}^{\left[\frac{t}{2}\right]}\left(\binom{r+n-2}{n-2}\left(\alpha(U)(t-2 r)^{n}+M(t-2 r)^{n-1}\right)\right) .
\end{align*}
$$

Now we have

$$
\begin{aligned}
& \frac{1}{t^{2 n-1}} \sum_{r=0}^{\left[\frac{t}{2}\right]}\left(\binom{r+n-2}{n-2} \alpha(U)(t-2 r)^{n}-M(t-2 r)^{n-1}\right) \\
& =\alpha(U) \frac{1}{(n-2)!} \frac{1}{t^{2 n-1}} \sum_{r=0}^{\left[\frac{t}{2}\right]}\left(r^{n-2}(t-2 r)^{n}+O\left(t^{2 n-3}\right)\right) \\
& =\left(\alpha(U) \frac{1}{(n-2)!} \frac{1}{t^{2 n-1}} \sum_{r=0}^{\left[\frac{t}{2}\right]} r^{n-2}(t-2 r)^{n}\right)+\alpha(U) \frac{1}{(n-2)!} \frac{1}{t^{2 n-1}} O\left(t^{2 n-2}\right) \\
& =\left(\alpha(U) \frac{1}{(n-2)!} \frac{1}{2^{n-1}} \frac{2}{t} \sum_{r=0}^{\left[\frac{t}{2}\right]}\left(\frac{2 r}{t}\right)^{n-2}\left(1-\frac{2 r}{t}\right)^{n}\right)+\alpha(U) \frac{1}{(n-2)!} \frac{1}{t^{2 n-1}} O\left(t^{2 n-2}\right)
\end{aligned}
$$

Also we have

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{2}{t} \sum_{i=0}^{\left[\frac{t}{2}\right]} g\left(\frac{2 i}{t}\right)=\int_{0}^{1} g(x) \mathrm{d} x \tag{11}
\end{equation*}
$$

Applying (11), we see that the limits of the left and the right parts of $(* *)$ are equal to

$$
\frac{\alpha(U)}{(n-2)!2^{n-1}} \int_{0}^{1} x^{n-2}(1-x)^{n} \mathrm{~d} x
$$

So,

$$
\lim _{t \rightarrow \infty} \frac{\sum_{r=0}^{\left[\frac{t}{2}\right]}\left(\binom{r+n-2}{n-2} \sum_{i=0}^{t-2 r} N_{T \cap C(U)}(i)\right)}{t^{2 n-1}}=\frac{\alpha(U)}{(n-2)!2^{n-1}} B(n-1, n+1)
$$

This shows that the normalization of ν_{T} is a uniform measure with respect to surface area on each face of $B_{l_{1}}(0,1)$.
Remark 1. When \mathfrak{L} is the lens space associated with the preliminary lattice T, the set of independent eigenfunctions of the Laplace-Beltrami operator on \mathfrak{L} associated with the elements of $T \cap C(U) \cap B_{l_{1}}(0, m(m+2 n-2))$ is the same as $F_{C(U) \cap T}(m)$. Thus the number of independent eigenfunctions with eigenvalues less than $s(s+(2 n-1)-1)$ is equal to $F_{T \cap \mathbb{R}^{n}(s)}$. So, Theorem 2.5 provides more information than Weyl's law which asymptotically computes the number of independent eigenfunctions with eigenvalues less than $t=s(s+(2 n-1)-1)$. Also, Theorem 2.5 shows that the number of independent eigenfunctions of the Laplace-Beltrami operator associated with the integral points of $C(U) \cap B_{l_{1}}(0, t)$ is asymptotically $\frac{B(n-1, n+1)}{(n-2)!2^{n-1}} t^{n-1}$ times the number of lattice points in $C(U) \cap B_{l_{1}}(0, t)$.

Remark 2. Harmonic-counting measures are constant multiples of lattice counting measures where the constant is an explicit function of the dimension of the lattice.

Remark 3. Let T be the lattice associated with the Lens space \mathfrak{L}. Let $P \in \mathbb{C}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ be a harmonic polynomial which is invariant under the action of the homotopy group of the lens space and let $z_{j}=x_{j}+i y_{j}, j=1, \ldots, n$. Then P can be written uniquely as the sum of harmonic polynomials of the form $k\left(\left|z_{1}\right|^{2}, \cdots,\left|z_{n}\right|^{2}\right) \prod_{i=1}^{n} z_{\sigma(i)}^{\left|a_{i}\right|}$ where $\left(a_{1}, \cdots, a_{n}\right) \in T$ and

$$
z_{\sigma(j)}^{\left|a_{j}\right|}= \begin{cases}z_{j}^{a_{j}} & \text { if } a_{j} \geq 0 \\ \bar{z}_{j}^{-a_{j}} & \text { otherwise }\end{cases}
$$

(See [9].) Theorem 2.5 asymptotically determines the number of independent homogeneous polynomials k such that $k\left(\left|z_{1}\right|^{2}, \cdots,\left|z_{n}\right|^{2}\right) \prod_{i=1}^{n} z_{\sigma(i)}^{\left|a_{i}\right|}$ is harmonic for some $\left(a_{1}, \cdots, a_{n}\right) \in C(U) \cap T$.

References

[1] I. Chavel, Eigenvalues in Riemannian Geometry, vol. 115, Academic Press, 1984.
[2] P.L. Clark, Geometry of numbers with applications to number theory, Notes available at: www.math.uga/edu/pete/geometryofnumbers.pdf.
[3] M. Duchin, S. Lelièvre, C. Mooney, The geometry of spheres in free Abelian groups, Geom. Dedic. 161 (1) (2012).
[4] E. Ehrhart, Sur les polyèdres rationnels homothétiques à n dimensions, C. R. Acad. Sci. Paris 254 (1962) 616-618.
[5] A. Ikeda, On the spectrum of a Riemannian manifold of positive constant curvature, Osaka J. Math. 17 (1) (1980) 75-93.
[6] A. Ikeda, Riemannian manifolds p-isospectral but not $p+1$-isospectral, in: Geometry of Manifolds (Matsumoto, 1988), Perspect. Math., vol. 8, 1989, pp. 383-417.
[7] E.A. Lauret, Spectra of orbifolds with cyclic fundamental groups, Ann. Glob. Anal. Geom. 50 (2016) 1-28.
[8] E.A. Lauret, R.J. Miatello, J.P. Rossetti, Spectra of lens spaces from 1-norm spectra of congruence lattices, Int. Math. Res. Not. IMRN (4) (2016) $1054-1089$.
[9] H. Mohades, B. Honari, On a relation between spectral theory of lens spaces and Ehrhart theory, arXiv:1601.04256, 2016.
[10] R.P. Stanley, Decompositions of rational convex polytope, Ann. Discrete Math. 6 (1980) 333-342.

[^0]: E-mail addresses: hoseinmohades@aut.ac.ir (H. Mohades), honari@aut.ac.ir (B. Honari).
 http://dx.doi.org/10.1016/j.crma.2016.10.016
 1631-073X/© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

