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In this article, associated with each lattice T ⊆ Z
n , the concept of a harmonic-counting 

measure νT on a sphere Sn−1 is introduced and is applied to determine the asymptotic 
behavior of the cardinality of the set of independent eigenfunctions of the Laplace–Beltrami 
operator on a lens space L corresponding to the elements of the associated lattice T of L
lying in a cone.
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r é s u m é

Dans cette Note, on associe à tout réseau T ⊆ Z
n une mesure de comptage harmonique νT

sur la sphère Sn−1. On l’utilise pour déterminer le comportement asymptotique du cardinal 
d’un ensemble de fonctions propres indépendantes de l’opérateur de Laplace–Beltrami sur 
un espace lenticulaire L, correspondant aux éléments du réseau T de L appartenant à un 
cône.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Counting the number of points of a lattice in a convex body has been well studied by many mathematicians including 
Minkowski, Ehrhart and Stanley. The asymptotic behavior of such counting functions leads to the definition of lattice-
counting-measures on the sphere Sn−1 [3,4,10]. In this paper we define the parallel notion of a harmonic-counting measure. 
We say that a polynomial P ∈C[x1, . . . , xn, y1, . . . , yn] is harmonic if �(P ) = 0 where � = ∑n

i=1(
∂2

∂x2
i
+ ∂2

∂ y2
i
). The restrictions 

of the harmonic homogeneous polynomials to S2n−1 are the eigenfunctions of the Laplace–Beltrami operator on (S2n−1, g), 
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where g is the metric induced by the Euclidean inner product of R2n . Let us identify R2n with Cn , and let H denote the set 
of harmonic homogeneous polynomials which are invariant under the action

(z1, z2, ..., zn) → (e2iπ p1
q z1, ..., e2iπ pn

q zn)

of the homotopy group of the lens space L(p1, ..., pn; q). It is proved that there is a correspondence between H and the 
set of eigenfunctions of the Laplace–Beltrami operator of this lens space [5,6,8]. In [8] the lattice associated with the lens 
space L(p1, ..., pn; q) is defined as T = {(a1, ..., an) ∈ Z

n| ∑n
j=1 a j p j ≡ 0 (mod q)}. This lattice is used to provide a criterion 

for isospectrality of lens spaces (Theorem 3.6 of [8]). See also [7]. Let

z
|a j |
σ ( j) =

{
z

a j

j if a j ≥ 0

z̄
−a j

j otherwise,

and let Hs,(a1,...,an) =

{h ∈ H|deg h = s,h = k(|z1|2, . . . , |zn|2)
n∏

i=1

z|ai |
σ (i) for some k ∈ C[x1, · · · , xn]},

be the vector space of harmonic homogeneous polynomials of degree s associated with (a1, ..., an) ∈ T . In [9] we used these 
subspaces to provide a proof of Theorem 3.6. of [8]. In this paper we use the dimension of the vector space Hs,(a1 ,...,an) to 
define a multiplicity for each point (a1, ..., an) of the lattice T . Counting points with such multiplicities we are led to the 
definition of harmonic-counting measures. In fact we consider the asymptotic behavior of the function,

F T ∩K (t) =
t∑

s=0

∑
x∈T ∩K (s)

dimHs,x,

where T ∩ K (s) denotes the set of elements in the intersection of T and the spherical cone K with l1 norm equal to s, to 
provide a measure νT on Sn−1. The measure νT is a tool to compare the cardinality of harmonic homogeneous polynomials 
(or eigenfunctions of a lens space) associated with lattice points in two different cones. In Theorem 2.5 we calculate the 
values of the measure νT . This theorem provides more information than Weyl’s law for Laplace–Beltrami operator in the 
case of lens spaces. (See Remark 1.) Using Theorem 2.5 we can see that the number of independent eigenfunctions of 
the Laplace–Beltrami operator associated with the integral points of an l1-spherical sector of radius t is asymptotically 
B(n−1,n+1)

(n−2)!2n−1 tn−1 times the number of lattice points in this region, where B is the beta function.

2. Preliminaries on lens spaces

2.1. Lattices

In this paper a lattice T is a subgroup of the group Zn . T is of rank n if T
⊗

R =R
n .

Definition 2.1. A preliminary lattice group T is defined as

T = {(a1, ...,an) ∈ Z
n|

n∑
j=1

a j p j ≡ 0 (mod q)}

where integers {p1, ..., pn} are prime to the positive integer q.

The measures defined in this article can be used in general lattices, but we limit ourselves to preliminary lattices that 
are useful for the study of lens spaces. Let {v1, ..., vn} be a basis for T . A matrix A whose columns are v1, ..., vn is called 
a generating matrix of T . Another matrix B is a generating matrix of T if and only if there is a unimodular matrix U such 
that A = U B . An essential parallelepiped of a lattice T ⊂R

n is a parallelepiped P T = {∑n
i=1 ai vi |0 ≤ ai ≤ 1, i = 1, · · · , n}. Let 

K be a cone in Rn whose apex is the origin.

2.2. Harmonic-counting measure

Let NT ∩K (s) be the number of elements in T ∩ K with l1-norm s. For a cone K ⊂ R
n set

F T ∩K (t) =
t∑

s=0

[ s
2 ]∑

r=0

(
r + n − 2

n − 2

)
NT ∩K (s − 2r).
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Definition 2.2. The cone constructed from a set U ⊆R
n is the set {tx|t ∈R

+, x ∈ U }. This set is denoted by C(U ).

Definition 2.3. The harmonic-counting measure associated with the lattice T , is a measure νT on the Borel σ -algebra of 
Sn−1 which is defined as

νT (U ) := lim
t→∞

F T ∩C(U )(t)

t2n−1
. (1)

By Lemma 3.2 of [8],

dimHs,(a1,...,an) =
{ ( r + n − 2

n − 2

)
‖ (a1, ...,an) ‖l1= s − 2r

0 otherwise
(2)

which is equal to the number of independent harmonic homogeneous polynomials of degree s associated with the element 
(a1, ..., an). So the resulting measure is named harmonic-counting measure.

In order to study the asymptotic behavior of the function F T ∩K (t), we need the asymptotic behavior of NZn∩K (t). It is a 
well-known fact that 

∑s
t=0 NZn∩K (t) ∼ αK sn where αK is the volume of the intersection of K and the l1-sphere of radius 1 

(Ehrhart–Stanley–Minkowski). This provides a combinatorial approach to a well-known measure μT on the sphere Sn−1 [3]. 
Precisely

μT (U ) = lim
s→∞

∑s
t=0 NZn∩A−1C(U )(t)

sn
(3)

is a finite measure, where A is the generating matrix of T .

2.3. Lens spaces

Let q be a positive integer, and let p1, ..., pn be integers that are prime to q. Let

R(θ) =
(

cos θ − sin θ

sin θ cos θ

)
∼ eiθ (4)

and

g = R(2πp1/q) ⊕ · · · ⊕ R(2πpn/q). (5)

Suppose that G ⊂ O (2n) is the finite cyclic group generated by g . If G (as a group of isometries) acts freely on S2n−1, then 
the manifold S2n−1/G , denoted by L(p1, ..., pn; q), is called a lens space. Let spec(M) denote the set of eigenvalues of the 
Laplace–Beltrami operator. G1 ⊆ G implies spec(S2n−1/G) ⊆ spec(S2n−1/G1). In particular spec(S2n−1/G) ⊆ spec(S2n−1). The 
Laplace–Beltrami eigenvalues of the manifold S2n−1 are of the form k(k + 2n − 2), k ∈N ∪ {0} [5,6].

Definition 2.4. Let p1, ..., pn be integers that are prime to q. The lens space associated with a lattice T = {(a1, ..., an) ∈
Z

n| ∑n
j=1 a j p j ≡ 0 (mod q)} is the space S2n−1/G ([8] Definition 3.2).

A nice relation between lattices and isospectrality is:

Theorem 2.1 (Lauret, Miatello and Rossetti ([8], Theorem 3.6)). Two lens spaces L1 = S2n−1/G1 and L2 = S2n−1/G2 are isospectral 
if and only if for the associated lattices T1 and T2 , card(Bl1(0,k) ∩ T1) = card(Bl1(0,k) ∩ T2) for each k ∈ N where Bl1(0, k), is the 
l1-ball of radius k centered at 0.

As a result we have the next corollary (also see [5]).

Corollary 2.2. Two isospectral lens spaces have the same dimension and the same homotopy group.

Theorem 2.3. Let L1 and L2 be homotopy equivalent n-dimensional lens spaces with associated lattices T1 and T2 . Then μT1 = μT2

Proof. It is well-known that for an arbitrary convex polytope � ⊂ R
n we have lims→∞ card(Zn∩s�)

sn = Vol(�) [2]. If A is a 
generating matrix of the lattice T and K is the part of Bl1(0,1) opposite to U ⊆ Sn−1, then card(T ∩ sK ) = card(Zn ∩ sA−1 K ). 
Therefore

μT (U ) = lim
s→∞

card(Zn ∩ sA−1 K )

sn
= Vol(A−1 K ) = detA−1Vol(K ). (6)

On the other hand it is well known that by Theorem 2.1, the values of detA−1
1 and detA−1

2 are equal to q−1. Therefore, 
these measures are equivalent. �



1148 H. Mohades, B. Honari / C. R. Acad. Sci. Paris, Ser. I 354 (2016) 1145–1150
Theorem 2.4. νT is a finite measure and its total value, νT (Sn−1), is equal to

1

q
(2π)1−2nω2n−1Vol(S2n−1),

where ωn is the volume of the unit ball in Rn.

This is a corollary of Theorem 2.5. Here we provide another proof for preliminary lattices using the properties of lens 
spaces.

Proof. Let T be a preliminary lattice and let L be its associated lens space. According to [8] (or [9]) the number of in-
dependent eigenfunctions of the Laplace–Beltrami operator on a lens space with eigenvalue s(s + (2n − 1) − 1) is equal 
to

[ s
2 ]∑

r=0

(
r + n − 2

n − 2

)
NT ∩Rn(s − 2r).

By Weyl’s law [1] we have

lim
x→∞

N(x)

x
2n−1

2

= (2π)−(2n−1)ω2n−1Vol(L),

where N(x) denotes the number of eigenvalues less than x and 2n − 1 is the dimension of the lens space L. So

lim
t→∞

F T ∩Rn (t)

t2n−1
= lim

t→∞
N(t(t + 2n − 2))

t2n−1
= lim

t→∞
N(t(t + 2n − 2))

(t(t + 2n − 2))
2n−1

2

(7)

= (2π)−(2n−1)ω2n−1Vol(S2n−1/G).

S2n−1 is a q-sheeted covering space of S2n−1/G and therefore Vol(S2n−1/G) = 1
q Vol(S2n−1). �

Now we compute the value of νT (U ) where U is a Borel subset of the sphere Sn−1. Let A be the generating matrix of T . 
Also let

α(U ) = Vol(A−1(C(U )) ∩ Bl1(0,1)).

Theorem 2.5. The value of νT (U ) is equal to

lim
t→∞

F T ∩C(U )(t)

t2n−1
= B(n − 1,n + 1)

(n − 2)!2n−1
α(U ), (8)

where the beta function is defined as B(z, t) = ∫ 1
0 xz−1(1 − x)t−1 dx.

Proof. We have

F T ∩C(U )(t) =
t∑

s=0

[ s
2 ]∑

r=0

(
r + n − 2

n − 2

)
NT ∩C(U )(s − 2r), (9)

where

t∑
s=0

NT ∩C(U )(s) = α(U )tn + O (tn−1). (10)

By changing the order of summation in (9), we have

F T ∩C(U )(t) =
[ t

2 ]∑
r=0

((
r + n − 2

n − 2

) t−2r∑
i=0

NT ∩C(U )(i)
)
.

So by (10),
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1
t2n−1

∑[ t
2 ]

r=0

((
r + n − 2

n − 2

)
α(U )(t − 2r)n − M(t − 2r)n−1

)
≤

1
t2n−1

∑[ t
2 ]

r=0

((
r + n − 2

n − 2

)∑t−2r
i=0 NT ∩C(U )(i)

)
≤

1
t2n−1

∑[ t
2 ]

r=0

((
r + n − 2

n − 2

)
(α(U )(t − 2r)n + M(t − 2r)n−1)

)
.

(∗∗)

Now we have

1

t2n−1

[ t
2 ]∑

r=0

((
r + n − 2

n − 2

)
α(U )(t − 2r)n − M(t − 2r)n−1

)

= α(U )
1

(n − 2)!
1

t2n−1

[ t
2 ]∑

r=0

(rn−2(t − 2r)n + O (t2n−3))

= (α(U )
1

(n − 2)!
1

t2n−1

[ t
2 ]∑

r=0

rn−2(t − 2r)n) + α(U )
1

(n − 2)!
1

t2n−1
O (t2n−2)

= (α(U )
1

(n − 2)!
1

2n−1

2

t

[ t
2 ]∑

r=0

(
2r

t
)n−2(1 − 2r

t
)n) + α(U )

1

(n − 2)!
1

t2n−1
O (t2n−2).

Also we have

lim
t→∞

2

t

[ t
2 ]∑

i=0

g(
2i

t
) =

1∫
0

g(x)dx. (11)

Applying (11), we see that the limits of the left and the right parts of (∗∗) are equal to

α(U )

(n − 2)!2n−1

1∫
0

xn−2(1 − x)n dx.

So,

lim
t→∞

∑[ t
2 ]

r=0

((
r + n − 2

n − 2

)∑t−2r
i=0 NT ∩C(U )(i)

)
t2n−1

= α(U )

(n − 2)!2n−1
B(n − 1,n + 1). �

This shows that the normalization of νT is a uniform measure with respect to surface area on each face of Bl1 (0, 1).

Remark 1. When L is the lens space associated with the preliminary lattice T , the set of independent eigenfunctions of the 
Laplace–Beltrami operator on L associated with the elements of T ∩ C(U ) ∩ Bl1(0, m(m +2n −2)) is the same as FC(U )∩T (m). 
Thus the number of independent eigenfunctions with eigenvalues less than s(s + (2n − 1) − 1) is equal to F T ∩Rn (s). So, 
Theorem 2.5 provides more information than Weyl’s law which asymptotically computes the number of independent eigen-
functions with eigenvalues less than t = s(s + (2n − 1) − 1). Also, Theorem 2.5 shows that the number of independent 
eigenfunctions of the Laplace–Beltrami operator associated with the integral points of C(U ) ∩ Bl1(0, t) is asymptotically 
B(n−1,n+1)

(n−2)!2n−1 tn−1 times the number of lattice points in C(U ) ∩ Bl1 (0, t).

Remark 2. Harmonic-counting measures are constant multiples of lattice counting measures where the constant is an ex-
plicit function of the dimension of the lattice.

Remark 3. Let T be the lattice associated with the Lens space L. Let P ∈ C[x1, . . . , xn, y1, . . . , yn] be a harmonic polynomial 
which is invariant under the action of the homotopy group of the lens space and let z j = x j + iy j , j = 1, . . . , n. Then P can 
be written uniquely as the sum of harmonic polynomials of the form k(|z1|2, · · · , |zn|2) ∏n

i=1 z|ai |
σ(i) where (a1, · · · , an) ∈ T

and
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z
|a j |
σ ( j) =

{
z

a j

j if a j ≥ 0

z̄
−a j

j otherwise.

(See [9].) Theorem 2.5 asymptotically determines the number of independent homogeneous polynomials k such that 
k(|z1|2, · · · , |zn|2) ∏n

i=1 z|ai |
σ(i) is harmonic for some (a1, · · · , an) ∈ C(U ) ∩ T .
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