
C. R. Acad. Sci. Paris, Ser. I 355 (2017) 65–79
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Partial differential equations

Stability of ODE blow-up for the energy critical semilinear 

heat equation

Stabilité de l’explosion type EDO pour l’équation de la chaleur énergie 

critique

Charles Collot a, Frank Merle b,c, Pierre Raphaël a

a Laboratoire Jean-Alexandre-Dieudonné, Université de Nice–Sophia Antipolis, France
b Laboratoire Laga, Université de Cergy-Pontoise, France
c IHES, Bures-sur-Yvette, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 June 2016
Accepted after revision 24 October 2016
Available online 22 November 2016

Presented by Jean-Michel Coron

We consider the energy critical semilinear heat equation

∂t u = �u + |u| 4
d−2 u, x ∈R

d

in dimension d ≥ 3. We propose a self-contained proof of the stability of solutions u
blowing-up in finite time with type-I ODE blow-up

‖u‖L∞ ∼ κ(T − t)
d−2

4 , T > 0, κ :=
(

d − 2

4

) d−2
4

which adapts to the energy critical case the proof of Fermanian, Merle, Zaag [4].
© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 

article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Nous considérons l’équation de la chaleur énergie critique

∂t u = �u + |u| 4
d−2 u, x ∈R

d

en dimension d ≥ 3. Nous proposons une preuve auto-contenue de la stabilité du régime 
explosif de type EDO

‖u‖L∞ ∼ κ(T − t)
d−2

4 , T > 0, κ :=
(

d − 2

4

) d−2
4

qui adapte au cas énergie critique la preuve de Fermanian, Merle, Zaag [4].
© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 

article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction and main result

We consider the energy critical semilinear heat equation

(N LH)

{
∂t u = �u + |u|p−1u, p = pc := d+2

d−2
u(0, x) = u0(x) ∈R

, (t, x) ∈R×R
d. (1.1)

We refer to [2,15,13] for the initial value problem and a complete introduction to this kind of models. Solutions may become 
unbounded in finite time T

‖u(t)‖L∞ → +∞ as t → T ,

an explicit example being given by the constant in space ODE blow-up solution

u(t, x) = κp

(T − t)
1

p−1

, κp =
(

1

p − 1

) 1
p−1

, ∂t u = up . (1.2)

Solutions blowing up with a self similar growth

lim-sup
t→T

‖u(t)‖L∞(T − t)
1

p−1 < +∞ (1.3)

are called type-I blow-up solutions and have attracted considerable attention in the past twenty years [4,6–12]. It is in 
particular known that in the energy subcritical range 1 < p < pc, any blow-up is of type I and that the set of blow-up 
solutions is open in any reasonable topology. We consider in this paper the energy critical case p = pc, for which other 
blow-up dynamics have been constructed [5,14]. The result of this paper is that type-I blow-up is however still stable and 
described by the ODE blow-up (1.2).

Theorem 1.1 (Stability of type-I blow-up, p = pc). The set of solutions blowing-up in finite time with type-I blow-up (1.3) is open in 
W 3,∞(Rd).

Remark 1.2. The topology W 3,∞ is not essential because of the parabolic regularizing effects. In particular, Theorem 1.1
implies the corresponding stability in Lq(Rd), q ≥ 2d

d−2 , where (1.1) is also well-posed.

Theorem 1.1 is one of the key steps in the recent result of classification of the flow near the family of ground states 
(radially symmetric stationary solutions) [3]. Its proof is given in [4] in the energy subcritical range p < pc using Liou-
ville classification arguments of the constant self-similar solution. We closely follow the argument that however requires 
sharpening a number of estimates, and the purpose of this note is to present a self-contained proof of these improvements. 
Section 3 follows [4]. In Section 4, a local control of a solution by a local energy, given without a proof in [4], which is 
Proposition 4.2 here, is more subtle due to the energy critical feature.

Notations. The heat kernel is denoted by Kt(x) := 1

(4πt)
d
2

e− |x|2
4t . We forget the dependence in p in the notation of the 

constants in what follows.

2. Some known properties of type-I blow-up

A point x ∈R
d is said to be a blow-up point for u blowing up at time T if there exists (tn, xn) → (T , x) such that:

|u(tn, xn)| → +∞ as n → +∞.

A fundamental fact is the rigidity for solutions satisfying the type-I blow-up estimate (1.3) that are global backward in time.

Proposition 2.1 (Liouville-type theorem for type-I blow-up [11,12]). Let u be a solution to (1.1) on (−∞, 0] ×R
d such that ‖u‖L∞ ≤

C(−t)
1

p−1 for some constant C > 0, then there exists T ≥ 0 such that u = ± κ

(T −t)
1

p−1
, where κ is defined in (1.2).

We recall a precise description of type-I blow-up, with an asymptotic at a blow-up point and an ODE type characteriza-
tion.

Lemma 2.2 (Description of type-I blow-up [9,11,12]). Let u solve (1.1) with u0 ∈ W 2,∞ blowing up at T > 0. The three following 
properties are equivalent:
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(i) the blow-up is of type I;
(ii) ∃K > 0, |�u| ≤ 1

2
|u|p + K on R

d × [0, T ); (2.1)

(iii) ‖u‖L∞(T − t)
1

p−1 → κ as t → T . (2.2)

Moreover, if u blows up with type I at x, then

(T − t)
1

p−1 u(t, x + y
√

T − t) → ±κ as t → T (2.3)

in L2(e− |y|2
4 ) and in Ck(|y| < R) for any R > 0 and k ∈ N. If un(0) → u(0) in W 2,∞ , for large n, un blows up at time Tn with Tn → T .

Some of the above results are stated in [4,9,11,12] in the case 1 < p < pc, but are however still valid in the energy 
critical case. In particular, the only bounded solution to the self similar elliptic equation

�w + |w|p−1 w = 1

2
�w, � := 2

p − 1
+ x·∇, (2.4)

for 1 < p ≤ pc is ±κ as follows from the Pohozaev type identity [7]:

(d − 2)(pc − p)

∫

Rd

|∇w|2e− |y|2
4 dy + p − 1

2

∫

Rd

|y|2|∇w|2e− |y|2
4 dy = 0. (2.5)

3. Proof of Theorem 1.1

We argue by contradiction, following [4]. Assume the result is false. From Lemma 2.2 and from the Cauchy theory in 
W 2,∞ , the negation means the following. There exists u0 ∈ W 3,∞ such that the solution to (1.1) starting from u0 blows up 
at time 1 (without loss of generality) with:

‖u(t)‖L∞ ∼ κ (1 − t)−
1

p−1 as t → 1, (3.1)

and satisfies:

|�u| ≤ 1

2
|u|p + K on R

d × [0,1). (3.2)

There exists a sequence un of solutions to (1.1) blowing up at time Tn with:

Tn → 1 and un → u in Cloc([0,1), W 3,∞(Rd)) (3.3)

and there exists two sequences 0 ≤ tn < Tn and xn such that:

|�un| ≤ 1

2
|un|p + 2K on R

d × [0, tn), (3.4)

|�un(tn, xn)| = 1

2
|un(tn, xn)|p + 2K . (3.5)

The strategy is the following. First we centralize the problem, showing that one can take without loss of generality xn = 0. 
Then we prove that u and un become singular near 0 as (t, n) → (1, +∞). In view of Lemma 2.2, the ODE type bound (3.4)
means that un behaves approximately as a type-I blowing-up solution until tn . This intuition is made rigorous by proving 
that an appropriate renormalization of un near (tn, 0) converges to the constant in space blow-up profile (1.2). We then 
show that the inequality (3.5) passes to the limit, contradicting (3.2).

Lemma 3.1. Let u, un be solutions to (1.1), tn and xn satisfy (3.1), (3.2), (3.3), (3.4) and (3.5). Then

tn → 1 (3.6)

and there exist û and ûn solutions to (1.1) satisfying (3.1), (3.2), (3.4) and (3.5) with x̂n = 0. In addition, û blows up with type I at 
(1, 0), ûn blows up at time Tn and1 û(tn, 0) → +∞.

1 Without loss of generality for the sign.
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Proof of Lemma 3.1. Step 1 Proof of (3.6). At time tn , u satisfies the inequality (3.2), whereas un does not from (3.5). As un

converges to u in C1,2
loc ([0, 1) ×R

d) from (3.3), this forces tn to tend to 1.

Step 2 Centering and limit objects. Define ûn(t, x) = un(t, x + xn). Then ûn is a solution satisfying (3.4), (3.5) with x̂n = 0, 
and blowing up at time Tn → 1 from (3.3). From parabolic regularizing effects, (t, x) �→ u(t, xn + x) is uniformly bounded in 

C
3
2 ,3
loc ([0, 1), Rd), hence as n → +∞ using Arzela Ascoli theorem it converges to a function û that also solves (1.1), satisfies 

(3.2) and

‖û(t)‖L∞ � κ (1 − t)−
1

p−1 . (3.7)

As un converges to u in C loc([0, 1), W 3,∞(Rd)) from (3.3), ûn converges to û in C1,2
loc ([0, 1) ×R

d), establishing (3.3).

Step 3 Conditions for boundedness. We claim two facts. 1) If û does not blow up at (1, 0), then there exists r, C > 0 such 
that for all (t, y) ∈ [0, tn] × B(0, r), |ûn(t, y)| ≤ C . 2) If there exists C > 0 such that |ûn(tn, 0)| ≤ C , then û does not blow up 
at (0, 1).

Proof of the first fact. We reason by contradiction. If û does not blow up at (1, 0), there exists r, C > 0 such that for all 
(t, y) ∈ [0, 1) × B(0, r), |û(t, y)| ≤ C . Assume that there exists (x̃n, ̃tn) such that x̃n ∈ B(0, r) and |ûn(x̃n, ̃tn)| → +∞. As ûn

solves (1.1), from (3.5) one then has that:

∀t ∈ [0, t̃n], ∂t |ûn(t, x̃n)| ≤ 3

2
|ûn(t, x̃n)|p + 2K , |ûn(x̃n, t̃n)| → +∞.

This then implies that for any M > 0, there exists s > 0 such that for n large enough, |ûn(x̃n, t)| ≥ M on [max(0, ̃tn − s), ̃tn]. 
But this contradicts the convergence in C loc([0, 1) × B(0, r)) established in Step 2 to the bounded function û .

Proof of the second fact. We also prove it by contradiction. Assume that û blows up at (0, 1) and |ûn(tn, 0)| ≤ C . Then we 
claim that

∀t ∈ [0, tn), |ûn(t,0)| ≤ max((4K )
1
p , C).

Indeed, as ûn is a solution to (1.1) satisfying (3.4) one has that:

∀t ∈ [0, tn], ∂t |ûn(t,0)| ≥ 1

2
| ˜̂un(t,0)|p − 2K .

So if the bound we claim is violated at some time 0 ≤ t0 ≤ τ ′
n , then |ûn(t, 0)| is non-decreasing on [t0, τ ′

n], strictly greater 
than C , which at time tn is a contradiction. But now as this bound is independent of n, valid on [0, tn) with tn → 1, and as 
ûn(t, 0) → û(t, 0) on [0, 1), one obtains at the limit that û(t, 0) is bounded on [0, 1). From (2.3), this contradicts the blow 
up of û at (1, 0).

Step 4 End of the proof. It remains to prove the singular behavior near 0: that û blows up at (1, 0) and that |ûn(tn, 0)| →
+∞. We reason by contradiction. From Step 3 we assume that there exists C, r > 0 such that |û| +|ûn| ≤ C on [0, 1) × B(0, r). 
A standard parabolic estimate then implies that

‖û(t)‖W 3,∞(B(0,r′)) + ‖ûn(t)‖W 3,∞(B(0,r′)) ≤ C ′ (3.8)

for all t ∈ [ 1
2 , 1) for some 0 < r′ ≤ r. Let χ be a cut-off function, χ = 1 on B(0, r

′
2 ), χ = 0 outside B(0, r′). The evolution of 

ũn = χ ûn is given by:

ũn,τ − �ũn = χ |ûn|p−1ûn + �χ ûn − 2∇· (∇χ ûn
)= Fn

with ‖Fn‖W 1,∞ ≤ C from (3.8). Fix 0 < s � 1. One has:

�ûn(tn,0) = Ks ∗ (�ũn(tn − s))(0) +∑d
1

∫ s
0

[
∂xi Ks−s′ ∗ ∂xi F (tn − s + s′)

]
(0)

= �û(tn − s,0) + on→+∞(1) + os→0(1)

from (3.3), the estimate on Fn and (3.8). Similarly,

ûn(tn,0) = û(tn,0) + on→+∞(1) + os→0(1).

The equality (3.5) and the two above identities imply the following asymptotics: lim-inf |�û(tn)| − |û(tn,0)|p

2 ≥ 2K , which is 
in contradiction with (3.2). Hence û blows up at (1, 0) with type-I blow-up from (3.7) and |û(tn, 0)| → +∞. �

We return to the study of u and un introduced at the beginning of this Section to prove Theorem 1.1 by contradiction. 
From Lemma 3.1, keeping the notation u and un for û and ûn introduced there, one can assume without loss of generality 
that in addition to (3.1), (3.2), (3.3) and (3.4), u and un satisfy (3.6), and:
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|�un(tn,0)| = 1

2
|un(tn,0)|p + 2K , (3.9)

un(tn,0) → +∞, (3.10)

|u(t,0)| ∼ κ

(1 − t)
1

p−1

. (3.11)

To renormalize appropriately un near (1, 0) we do the following. Define

Mn(t) :=
(

κ

‖un(t)‖L∞

)p−1

. (3.12)

For (t̃n)n∈N a sequence of times, 0 ≤ t̃n < Tn , the renormalization near (t̃n, 0) is

vn(τ , y) := M
1

p−1
n (t̃n)un

(
t̃n + τ Mn(t̃n), M

1
2
n (t̃n)y

)
(3.13)

for (τ , y) ∈
[
− t̃n

Mn(t̃n)
, Tn−t̃n

Mn(t̃n)

)
×R

d . One has the following asymptotics.

Lemma 3.2. Assume 0 ≤ t̃n ≤ tn and ̃tn → 1. Then

‖un(t̃n)‖L∞ ∼ κ

(Tn − t̃n)
1

p−1

, i.e. Mn(t̃n) ∼ (Tn − t̃n). (3.14)

Moreover, up to a subsequence2:

vn → κ[(
lim ‖un(t̃n)‖L∞

un(t̃n,0)

)p−1 − t

] 1
p−1

in C1,2
loc ((−∞,1) ×R

d). (3.15)

Proof of Lemma 3.2. Step 1 Upper bound for Mn(t̃n). We claim that one always has ‖un(t̃n)‖L∞ ≥ κ

(Tn−t̃n)
1

p−1
, i.e.

Mn(t̃n) ≤ (Tn − t̃n). (3.16)

Indeed, if it is false, then there exists δ > 0 such that ‖un(t̃n)‖L∞ < κ

(Tn+δ−t̃n)
1

p−1
. Therefore, from a parabolic comparison 

argument, this inequality propagates for the solutions, yielding that − κ

(Tn+δ−t)
1

p−1
≤ un ≤ κ

(Tn+δ−t)
1

p−1
for all times t ≥ t̃n . 

This implies that un stays bounded up to Tn , which is a contradiction.

Step 2 Proof of (3.15). Let (xn)n∈N ∈ (Rd)N and define:

ṽn(τ , y) := M
1

p−1
n (t̃n)un

(
t̃n + τ Mn(t̃n), xn + M

1
2
n (t̃n)y

)
. (3.17)

From (3.13), ṽn is defined on 
[
− t̃n

Mn(t̃n)
, Tn−t̃n

Mn(t̃n)

)
× R

d . The lower bound, − t̃n
Mn(t̃n)

, then goes to −∞ from (3.16). ṽn is a 
solution to (1.1) satisfying:

‖ṽn(0)‖L∞ ≤ κ, (3.18)

∀(τ , y) ∈
[
− t̃n

Mn(t̃n)
,0

]
×R

d, |�ṽn| ≤ 1

2
|ṽn|p + 2K M

p
p−1

n (t̃n), (3.19)

from (3.4) and (3.13).

Precompactness of the renormalized functions. We claim that ṽn is uniformly bounded in C
3
2 ,3

loc (] − ∞, 1) ×R
d). We now prove 

this result. First, we claim that

|ṽn| ≤ max

{
(4K )

1
p M

1
p−1

n (t̃n), κ

}
. (3.20)

Indeed, as ṽn is a solution to (1.1) satisfying (3.19), one has that:

∂t |ṽn| ≥ 1

2
|ṽn|p − 2K M

p
p−1

n (t̃n).

2 With the convention that if the limit in the denominator is +∞ the limit function is 0.
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So if the bound we claim is violated, then ‖ṽn‖L∞ is strictly increasing, greater than κ , which at time 0 is a contradiction to 
(3.18). Moreover, as ‖ṽn(0)‖L∞ ≤ κ , from a comparison argument, for 0 ≤ t < 1, on has that ‖ṽn(0)‖L∞ ≤ κ(1 − t)−

1
p−1 . This 

and the above bound implies that for any T < 1, ṽn is uniformly bounded, independently of n, in L∞((− t̃n
Mn(t̃n)

, T ] × R
d). 

From standard parabolic regularization, it is uniformly bounded in C
3
2 ,3((− t̃n

Mn
+ 1, T ) ×R

d), yielding the desired result.

Rigidity at the limit. From Step 2 and Arzela Ascoli theorem, up to a subsequence, vn converges in C1,2
loc ((−∞, 0] × R

d) to a 
function v . The equation (1.1) passes to the limit and v also solves (1.1). (3.20) and (3.16) imply that |v| ≤ κ . (1.1), (3.16)
and (3.19) imply that:

∂t |v| ≥ 1

2
|v|p.

Reintegrating this differential inequality, one obtains that |v| ≤ C

|c−τ |
1

p−1
for some C, c > 0. Applying the Liouville Lemma 2.1, 

one has that v is constant in space. Up to a subsequence, v(0, xn) = κ lim un(t̃n,xn)

‖un(t̃n)‖L∞ . The particular choice xn = 0, ṽn = vn

gives in particular the desired identity (3.15).

Step 3 Lower bound on Mn . We claim that lim − inf Mn
Tn−t̃n

≥ 1. We prove it by contradiction using a blow-up cri-

terion from Section 4. From (3.12), and up to a subsequence, assume that there exists 0 < δ � 1 and xn ∈ R
d such 

that un(t̃n, xn) > (1+δ)κ

(Tn−t̃n)
1

p−1
and un(t̃n,xn)

‖un(t̃n)‖L∞ → 1. Therefore the renormalized function ṽn defined by (3.17) blows up at 

Tn−t̃n
Mn(t̃n)

≥ (1 + δ)p−1. From Step 2, v(0, ·) is uniformly bounded and converges to κ . Hence, defining the self-similar renor-

malization near ((1 + δ)p−1,0)

w(n)

0,(1+δ)p−1(t, y) = ((1 + δ)p−1 − t)
1

p−1 ṽn

(
t,
√

(1 + δ)p−1 − t y
)

,

one has that I(w0,(1+δ)p−1 (0, ·)) → I((1 +δ)p−1κ) > 0 where I is defined by (4.6). From (4.7), for n large enough, this implies 
that ṽn should have blown up before (1 + δ)p−1, which yields the desired contradiction. �

To end the proof of Theorem 1.1, we now distinguish two cases for which one has to find a contradiction (which cover 
all possible cases up to subsequence):

Case 1: lim
un(xn, tn)

‖un(tn)‖L∞
> 0, (3.21)

Case 2: lim
un(xn, tn)

‖un(tn)‖L∞
= 0. (3.22)

Proof of Theorem 1.1 in Case 1. In this case, we can renormalize at time tn . Let t̃n = tn and define vn and Mn(t̃n) by (3.13)
and (3.12). (3.15) and (3.21) imply that �vn(0, 0) → 0 and vn(0, 0) → v(0, 0) > 0. From (3.9), vn satisfies at the origin:

|�vn(0,0)| = 1

2
|vn(0,0)|p + 2K M

p
p−1

n (tn).

As Mn(tn) → 0 from (3.14), at the limit we get 0 = 1
2 v(0, 0) > 0, which is a contradiction, ending the proof of Theorem 1.1

in Case 1. �
Proof of Theorem 1.1 in Case 2. Step 1 Suitable renormalization before tn . We claim that for any 0 < κ0 � 1 one can find a 
sequence of times t̃n such that 0 ≤ t̃n ≤ tn , t̃n → 1 and such that vn defined by (3.13) satisfies up to a subsequence:

vn → κ[(
κ
κ0

)p−1 − 1 − t

] 1
p−1

in C1,2
loc (] − ∞,1) ×R

d). (3.23)

We now prove this fact. On the one hand, |u(t,0)|
‖u(t)‖L∞ → 1 as t → 1 (from (3.11) and (2.2) as u blow up with type I at 0) and 

for any 0 ≤ T <1 un converges to u in C([0, T ], L∞(Rd)) from (3.3). As tn → 1, using a diagonal argument and Lemma 3.2, 
up to a subsequence there exists a sequence of times 0 ≤ t′

n ≤ tn such that un(t′n,0)

‖u(t′n)‖L∞ → 1. On the other hand, from the 

assumption (3.22) and (3.6), lim |un(tn,0)|
‖un(tn)‖L∞ = 0 and tn → 1. From a continuity argument, for κ0 small enough, there exists a 

sequence t′
n ≤ t̃n ≤ tn such that lim un(t̃n,0)

‖un(t̃n)‖L∞ =
[(

κ
κ0

)p−1 − 1

]− 1
p−1

. From Lemma 3.2, one obtains the desired convergence 

result (3.23).
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Step 2 Local boundedness. Take t̃n and vn as in Step 1. From (3.13) and (3.14) vn blows up at time τn = Tn−t̃n
Mn(t̃n)

→ 1. Up to 

time τ ′
n = tn−t̃n

Mn(t̃n)
, 0 ≤ τ ′

n , vn satisfies:

|�vn| ≤ 1

2
|vn|p + 2K M

p
p−1

n (t̃n) (3.24)

and we recall that Mn(t̃n) → 0 from (3.14). Let R > 0 and a ∈ B(0, R). Define

w(n)
a,τn (y, t) := (τn − t)

1
p−1 vn(t,a + √

τn − t y).

Then as vn(−1) → κ0 from (3.23), one has that for n large enough

E[w(n)
a,τn (−1, ·)] = O (κ2

0 )

where the energy is defined by (4.4). One can then apply the result (4.15) of Proposition 4.2: there exists r > 0 such that 
for κ0 small enough and n large enough one has:

∀t ∈ [0, τ ′
n], ‖vn(t)‖W 2,∞(B(0,r)) ≤ C . (3.25)

Step 3 End of the proof. Let χ be a cut-off function, χ = 1 on B(0, r
2 ) and χ = 0 outside B(0, r). The evolution of ṽn = χ vn

is given by

ṽn,τ − �ṽn = χ |vn|p−1 vn + �χ vn − 2∇· (∇χ vn) = Fn

with ‖Fn‖W 1,∞ ≤ C from (3.25). Fix 0 < s � 1. One has:

�vn(τ
′
n,0) = Ks ∗ (�ṽn(τ

′
n − s))(0) +∑d

1

∫ s
0

[
∂xi Ks−s′ ∗ ∂xi F (τ ′

n − s + s′)
]
(0)

= on→+∞(1) + os→0(1)

from (3.23) and the estimate on Fn . Hence �vn(τ ′
n, 0) → 0 as n → +∞. On the other hand, lim vn(τ ′

n, 0) = v(τ ′
n, 0) > 0

from (3.23) and the fact that 0 ≤ τ ′
n ≤ 1. We recall that at time τ ′

n vn satisfies:

|�vn(τ
′
n,0)| = 1

2
|vn(τ

′
n,0)|p + 2K M

p
p−1

n (t̃n).

As M
p

p−1
n (t̃n) → 0 from (3.14) at the limit, one has 0 = 1

2 |v(τ ′
n, 0)|p > 0 which is a contradiction. This ends the proof of 

Theorem 1.1 in Case 2. �
4. A local smallness result

This section is devoted to the proof of (3.25).

4.1. Self-similar variables

We follow the method introduced in [7–9] to study type-I blow-up locally. The results and the ideas of their proof are 
either contained in [8] or similar to the results there. A sharp blow-up criterion and other preliminary bounds are given by 
Lemma 4.1 and a condition for local boundedness is given in Proposition 4.2. For u defined on [0, Tu0 ) × R

d , a ∈ R
d and 

T > 0, we define the self-similar renormalization of u at (T , a):

wa,T (y, t) := (T − t)
1

p−1 u(t,a + √
T − t y) (4.1)

for (t, y) ∈ [0, min(Tu0 , T )) ×R
d . Introducing the self-similar renormalized time:

s := −log(T − t) (4.2)

one sees that if u solves (1.1) then wa,T solves:

∂s wa,T − �wa,T − |wa,T |p−1 wa,T + 1

2
�wa,T = 0. (4.3)

Equation (4.3) admits a natural Lyapunov functional,

E(w) =
∫

d

(
1

2
|∇w(y)|2 + 1

2(p − 1)
|w(y)|2 − 1

p + 1
|w(y)|p+1

)
ρ(y)dy, (4.4)
R
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where ρ(y) := 1

(4π)
d
2

e− |y|2
4 from the fact that for its solutions there holds:

d

ds
E(w) = −

∫

Rd

w2
s ρ dy ≤ 0. (4.5)

Another quantity that will prove to be helpful is the following:

I(w) := −2E(w) + p − 1

p + 1

⎛
⎜⎝
∫

Rd

w2ρ dy

⎞
⎟⎠

p+1
2

. (4.6)

Lemma 4.1 ([7,11]). Let w be a global solution to (4.3) with E(w(0)) = E0 , then3 for s ≥ 0:

I(w(s)) ≤ 0, E0 ≥ 0 (4.7)
+∞∫
0

∫

Rd

w2
s ρ dy ds ≤ E0. (4.8)

If moreover E0 := E(w(0)) ≤ 1, then4 for any s ≥ 0:

∫

Rd

w2ρ dy ≤ C E
2

p+1
0 , (4.9)

s+1∫
s

⎛
⎜⎝
∫

Rd

(|∇w|2 + w2 + |w|p+1)ρ dy

⎞
⎟⎠

2

ds ≤ C E
p+3
p+1

0 . (4.10)

Proof of Lemma 4.1. Step 1 Proof of (4.7). We argue by contradiction and assume that I(w(s0)) > 0 for some s0 ≥ 0. The set 
S := {s ≥ s0, I(s) ≥ I(s0)} is closed by continuity. For any solution to (4.3), one has:

d

ds

⎛
⎜⎝
∫

Rd

w2ρ dy

⎞
⎟⎠= 2

∫

Rd

w ws ρ dy = −4 E(w) + 2(p − 1)

p + 1

∫

Rd

|w|p+1ρ dy. (4.11)

Therefore, for any s ∈ S , from (4.6) and Jensen inequality this gives:

d

ds

⎛
⎜⎝
∫

Rd

w2ρ dy

⎞
⎟⎠≥ −4 E(w(s)) + 2(p − 1)

p + 1

⎛
⎜⎝
∫

Rd

w2ρ dy

⎞
⎟⎠

p+1
2

= I(w(s)) > 0 (4.12)

as I(w(s)) ≥ I(w(s0)), which with (4.5) and (4.6) imply d
ds I(w(s)) > 0. Hence S is open and therefore S = [s0, +∞). From 

(4.12) and (4.5), there exists s1 such that E(w(s)) ≤ p−1
2(p+1)

(∫
Rd w2ρ dy

) p+1
2 for all s ≥ s1, implying from (4.12):

d

ds

⎛
⎜⎝
∫

Rd

w2ρ dy

⎞
⎟⎠≥ 2

p − 1

p + 1

⎛
⎜⎝
∫

Rd

w2ρ dy

⎞
⎟⎠

p+1
2

.

This quantity must then tend to +∞ in finite time, which is a contradiction.

3 From the definition (4.6) of I and (4.7) one has that for all s ≥ 0, E(w(s)) ≥ 0. Hence the right hand side in (4.8) is nonnegative.
4 Idem for the right hand side of (4.9) and (4.10).
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Step 2 End of the proof. (4.8) and (4.9) are consequences of (4.5), (4.6) and (4.7). To prove (4.10), from (4.11), (4.5), (4.9)
and Hölder, one obtains:

s+1∫
s

⎛
⎜⎝
∫

Rd

|w|p+1ρ dy

⎞
⎟⎠

2

ds ≤
s+1∫
s

⎛
⎜⎝C E2

0 + C

∫

Rd

w2
s ρ dy

∫

Rd

w2ρ dy

⎞
⎟⎠ds ≤ C E

p+3
p+1

0

as E0 ≤ 1. This identity, using (4.4), (4.5) and as E0 ≤ 1 implies (4.10). �
Proposition 4.2 (Condition for local boundedness). Let R > 0, 0 < T− < T+ and δ > 0. There exists η > 0 and 0 < r ≤ R such that, 
for any T ∈ [T−, T+] and u solution to (1.1) on [0, T ) ×R

d with u0 ∈ W 2,∞ satisfying:

∀a ∈ B(0, R), E(wa,T (0, ·)) ≤ η, (4.13)

∀(t, x) ∈ [0, T ) ×R
d, |�u(t, x)| ≤ 1

2
|u(t, x)|p + η, (4.14)

there holds

∀t ∈
[

T−
2

, T

)
, ‖u(t)‖W 2,∞(B(0,r)) ≤ δ. (4.15)

The proof of Proposition 4.2 is done at the end of this subsection. We need intermediate results: Proposition 4.3 gives 
local smallness in self-similar variables, Lemma 4.7 and its Corollary 4.8 give local boundedness in L∞ in original vari-
ables.

Proposition 4.3. For any R, s0, δ > 0, there exists η > 0 such that for any w global solution to (4.3), with w(0) ∈ W 2,∞ satisfying

E(w(0)) ≤ η and ∀(s, y) ∈ [0,+∞) ×R
d, |�w(s, y)| ≤ 1

2
|w(s, y)|p + η, (4.16)

there holds:

∀(s, y) ∈ [s0,+∞) × B(0, R), |w(s, y)| ≤ δ. (4.17)

Proof of Proposition 4.3. It is a direct consequence of Lemma 4.4 and Lemma 4.5. �
Lemma 4.4. For any R, s0, η′ > 0, there exists η > 0 such that for w a global solution to (4.3), with w(0) ∈ W 2,∞(Rd), satisfying 
(4.16), there holds

∀s ∈ [s0,+∞),

∫
B(0,R)

(|w|2 + |∇w|2)dy ≤ η′. (4.18)

Lemma 4.5. For any R, δ > 0, 0 < s0 < s1 there exists η, η′ > 0 and 0 < r ≤ R such that for w a global solution to (4.3) with 
w(0) ∈ W 2,∞ , satisfying (4.16) and (4.18), there holds:

∀(s, y) ∈ [s1,+∞) × B(0, r), |w(s, y)| ≤ δ. (4.19)

We now prove the two above lemmas. In what follows we will often have to localize the function w . Let χ be a smooth 
cut-off function, χ = 1 on B(0, 1) and χ = 0 outside B(0, 2). For R > 0 we define χR(x) = χ

( x
R

)
and:

v := χR w (4.20)

(we will forget the dependence in R in the notations to ease writing, and will write χ instead of χR ). From (4.3) the 
evolution of v is then given by:

vs − �v = χ |w|p−1 w +
([

1

p − 1
− d

2

]
χ − 1

2
∇χ ·y + �χ

)
w + ∇·

([
1

2
χ y − 2∇χ

]
w

)
. (4.21)

Proof of Lemma 4.4. We will prove that (4.18) holds at time s0, which will imply (4.18) at any time s ∈ [s0, +∞) because 
of time invariance. We take d ≥ 5 for the sake of simplicity.
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Step 1 An estimate for �w . First one notices that the results of Lemma 4.1 apply. From (4.16) and (4.3), there exists a 
constant C > 0 such that:

|w|2p ≤ C(|w|p−1 w + �w)2 + Cη2 ≤ C |ws|2 + C |y|2|∇w|2 + C w2 + Cη2.

We integrate this in time, using (4.8), (4.9), (4.10) and (4.16), yielding for s ≥ 0:
s+1∫
s

∫
B(0,2R)

|w|2p dy ds ≤ Cη + Cη
p+3
p+1 + Cη

2
p+1 + Cη2 ≤ Cη

2
p+1 . (4.22)

Injecting the above estimate in (4.16), using (4.9) and (4.10), we obtain for s ≥ 0:∫ s+1
s ‖w‖2

H2(B(0,2R))
ds ≤ ∫ s+1

s

∫
B(0,2R)

(|�w|2 + |∇w|2 + w2)dy ds

≤ ∫ s+1
s

∫
B(0,2R)

C(|w|2p + |∇w|2 + w2)dy ds + Cη2 ≤ Cη
2

p+1 .

(4.23)

Step 2 Localization. We localize at scale R and define v by (4.20). From (4.20), (4.10) and (4.9), one obtains that there exists 
s̃0 ∈ [max(0, s0 − 1), s0] such that:

‖v(s̃0)‖2
H1(Rd)

�
∫

B(0,2R)

(w(s̃0)
2 + |∇w(s̃0)|2)dy ≤ Cη

2
p+1 + Cη

p+3
p+1 ≤ Cη

2
p+1 . (4.24)

We apply Duhamel’s formula to (4.21) to find that v(s0) is given by:

v(s0) = ∫ s0
s̃0

Ks0−s ∗
{
χ |w|p−1 w +

([
1

p−1 − d
2

]
χ − 1

2 ∇χ.y + �χ
)

w
}

ds

+ ∫ s0
s̃0

∇·Ks0−s ∗
([

1
2χ y − 2∇χ

]
w
)

ds + Ks0−s̃0
∗ v(s̃0).

(4.25)

We now estimate the Ḣ1 norm of each term in the previous identity, using (4.24), (4.10), (A.2), Young and Hölder inequali-
ties:

‖Ks0−s̃0
∗ v(s̃0)‖Ḣ1(Rd) ≤ ‖v(s̃0)‖Ḣ1(Rd) ≤ Cη

1
p+1 , (4.26)

∥∥∥∫ s0
s̃0

Ks0−s ∗ {([ 1
p−1 − d

2 ]χ − ∇χ ·y
2 + �χ)w} + ∇·Ks0−s ∗ ([χ y

2 − 2∇χ ]w)

∥∥∥
Ḣ1

≤ C
∫ s0

s̃0
‖w‖H1(B(0,2R))ds + C

∫ s0
s̃0

1

|s0−s| 1
2
‖w‖H1(B(0,2R))ds

≤ Cη
p+3

4(p+1) + C

(∫ s0
s̃0

ds

|s̃1−s| 1
2 × 4

3

) 3
4 (∫ s0

s̃0
‖w‖4

H1(B(0,2R))
ds
) 1

4 ≤ Cη
p+3

4(p+1) .

(4.27)

For the non-linear term in (4.25), one first compute from (4.20) that:

∇(χ |w|p−1 w) = pχ |w|p−1∇w + ∇χ |w|p−1 w. (4.28)

For the first term in the previous identity, using Sobolev embedding, one obtains:

‖|w|p−1∇w‖
L

2d
d−2+(d−4)(p−1) (B(0,2R))

≤ C‖w‖p−1

L
2d

d−4 (B(0,2R))

‖∇w‖
L

2d
d−2 (B(0,2R))

≤ C‖w‖p
H2(B(0,2R))

.

Therefore, from (4.23) this force term satisfies:
s0∫

s̃0

‖|w|p−1∇w‖
2
p

L
2d

d−2+(d−4)(p−1) (B(0,2R))

ds ≤
s0∫

s̃0

‖w‖2
H2(B(0,2R))

ds ≤ Cη
2

p+1 .

We let (q, r) be the Lebesgue conjugated exponents of 2
p and 2d

(d−2)+(d−4)(p−1)
:

q = 2

2 − p
> 2, r = 2d

d + 2 − (d − 4)(p − 1)
> 2.

They satisfy the Strichartz relation 2
q + d

r = d
2 . Therefore, using (A.3), one obtains:

∥∥∥∥∥∥∥
s0∫

s̃

Ks0−s ∗ (pχ |w(s)|p−1∇w(s))ds

∥∥∥∥∥∥∥
≤ C

⎛
⎜⎝

s0∫
s̃

‖|w|p−1∇w‖
2
p

L
2d

d−2+(d−4)(p−1) (B(0,2R))

ds

⎞
⎟⎠

p
2

≤ Cη
p

(p+1) .
0 L2 0
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For the second term in (4.28) using (4.22), (A.2) and Hölder, one has:

∥∥∥∥∥∥∥
s0∫

s̃0

Ks0−s ∗ (∇χ |w|p−1 w)ds

∥∥∥∥∥∥∥
L2

≤ C

s0∫
s̃0

‖w‖p
L2p(B(0,2R))

≤ Cη
1

p+1 .

The two above estimates and the identity (4.28) imply the following bound:

∥∥∥∥∥∥∥
s0∫

s̃0

Ks0−s ∗ (χ |w|p−1 w)ds

∥∥∥∥∥∥∥
Ḣ1

≤ Cη
1

p+1 .

We come back to (4.25) where we found estimates for each term in the right-hand side in (4.26), (4.27) and the above 
identity, yielding ‖v(s0)‖Ḣ1 ≤ Cη

1
p+1 . From (4.20), as v is compactly supported in B(0, 2R), the above estimate implies the 

desired estimate (4.18) at time s0. �
To prove Lemma 4.5, we need the following parabolic regularization result. Its proof uses standard parabolic tools and 

we do not give it here.

Lemma 4.6 (Parabolic regularization). Let R, M > 0, 0 < s0 ≤ 1 and w be a global solution to (4.3) satisfying:

∀(s, y) ∈ [0,+∞) ×R
d, ‖w(s, y)‖H2(B(0,R)) ≤ M. (4.29)

Then there exists 0 < r ≤ R, a constant C = C(R, s0) and α > 1 such that:

∀(s, y) ∈ [s0,+∞) × B(0, r), |w(s, y)| ≤ C(M + Mα). (4.30)

Proof of Lemma 4.5. Without loss of generality we take η′ = η, s0 = 0, localize at scale R
2 by defining v by (4.20). The 

assumption (4.18) implies that for s ≥ 0:

∫

Rd

(|v(s)|2 + |∇v(s)|2)dy ≤ Cη. (4.31)

We claim that for all s ≥ s1
2 ,

‖v‖H2 ≤ Cη.

This will give the desired result (4.19) by applying Lemma 4.6 from (4.20). We now prove the above bound. By time 
invariance, we just have to prove it at time s1

2 .

Step 1 First estimate on vs . Since w is a global solution starting in W 2,∞(Rd) with E(w(0)) ≤ η, from (4.8), one obtains:

+∞∫
0

∫

Rd

|vs|2 dy ds ≤ Cη. (4.32)

Step 2 Second estimate on vs . Let u = vs . From (4.3) and (4.20), the evolution of u is given by:

us − �u = p|w|p−1u +
([

1

p − 1
− d

2

]
χ − 1

2
∇χ ·y + �χ

)
ws + ∇·

([
1

2
χ y − 2∇χ

]
ws

)
. (4.33)

We first state a non-linear estimate. Using Sobolev embedding, Hölder inequality and (4.18), one obtains:

∫

Rd

|u|2|w|p−1dy ≤ ‖u‖2

L
2d

d−2 (Rd)

‖w‖p−1

L
2d

d−2 (B(0,R))

≤ Cη
p−1

2

∫

Rd

|∇u|2dy.

We now perform an energy estimate. We multiply (4.33) by u and integrate in space using Young inequality for any κ > 0
and the above inequality:
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1
2

d
ds

[∫
Rd |u|2dy

] = −∫
Rd |∇u|2dy + ∫

Rd

([
1

p−1 − d
2

]
χ − 1

2 ∇χ ·y + �χ
)

ws u dy

+ ∫ ([ 1
2χ y − 2∇χ

]
ws

)
·∇u dy + ∫

Rd u2|w|2(p−1)dy

≤ − ∫
Rd |∇u|2dy + C

∫
B(0,R)

(w2
s + u2)dy + C

κ

∫
B(0,R)

w2
s dy

+ Cκ
∫
Rd |∇u|2dy + Cη

p−1
2
∫
Rd |∇u|2dy

≤ − ∫
Rd |∇u|2dy + C(κ)

∫
B(0,R)

w2
s dy

if κ and η have been chosen small enough. Now because of the integrability (4.32), there exists at least one s̃ ∈
[max(0, s1

2 − 1), s1
2 ] such that:∫

Rd

|vs(s̃)|2dy ≤ C(s1)η.

One then obtains from the two previous inequalities and (4.8):

∫

Rd

|vs(s)|2dy ≤
∫

Rd

|vs(s̃)|2dy + C

s1
2∫

s̃

∫
B(0,R)

w2
s dy ds ≤ Cη. (4.34)

Step 3 Estimate on �v . Applying Sobolev embedding and Hölder inequality, using the fact that 
(

2d
d−4

2

)′
= d

4 =
2d

d−2
2(p−1)

, one 

gets that for any s ≥ 0:∫

Rd

v2|w|2(p−1)dy ≤ ‖v2‖
L

2d
d−4

2 (Rd)

‖|w|2(p−1)‖
L

2d
d−2

2(p−1) (B(0,R))

= ‖v‖2

L
2d

d−4 (Rd)

‖w‖2(p−1)

L
2d

d−2 (B(0,R))

≤ C‖v‖2
Ḣ2(Rd)

‖w‖2(p−1)

H1(B(0,R))

≤ Cηp−1
∫

Rd

|�v|2dy, (4.35)

where we injected the estimate (4.18). We inject the above estimate in (4.21), using (4.20), yielding for all s ≥ 0:∫
Rd |�v|2dy ≤ C

(∫
Rd (|vs|2 + |w|2 + |∇w|2 + v2|w|2(p−1))dy

)
≤ C

∫
Rd |vs|2dy + Cη + Cηp−1

∫
Rd |�v|2dy,

where we used (4.29). Injecting (4.34), for η small enough:∫

Rd

∣∣∣�v
( s1

2

)∣∣∣2 dy ≤ C

∫

Rd

∣∣∣vs

( s1

2

)∣∣∣2 dy + Cη ≤ Cη. (4.36)

Step 4 Conclusion. From (4.31) and (4.36) we infer ‖v( s1
2 )‖Ḣ2 ≤ Cη, which is exactly the bound we had to prove. �

We now go from boundedness in L∞ in self-similar variables provided by Proposition 4.3 to boundedness in L∞ in 
original variables.

Lemma 4.7 ([9]). Let 0 ≤ a ≤ 1
p−1 and R, ε0 > 0. Let 0 < ε ≤ ε0 and u be a solution to (1.1) on [−1, 0) ×R

d satisfying

∀(t, x) ∈ [−1,0) × B(0, R), |u(t, x)| ≤ ε

|t| 1
p−1 −a

. (4.37)

For ε0 small enough, the following holds for all (t, x) ∈ [−1, 0) × B 
(
0, R

2

)
.

If
1

p − 1
− a <

1

2
, |u(t, x)| ≤ C(a)ε, (4.38)

If
1

p − 1
− a = 1

2
, |u(t, x)| ≤ Cε(1 + |ln(t)|), (4.39)

If
1

p − 1
− a >

1

2
, |u(t, x)| ≤ C(a)ε

|t| 1
p−1 −a− 1

2

. (4.40)
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Corollary 4.8. Let R > 0 and 0 < T− < T+ . There exists ε0 > 0, 0 < r ≤ R and C > 0 such that the following holds. For any 0 < ε < ε0 , 
T ∈ [T−, T+] and u solution to (1.1) on [0, T ) ×R

d satisfying

∀(t, x) ∈ [0, T ) × B(0, R), |u(t, x)| ≤ ε

(T − t)
1

p−1

, (4.41)

one has:

∀(t, x) ∈ [0, T ) × B(0, r), |u(t, x)| ≤ Cε. (4.42)

To prove Lemma 4.7, we need two technical Lemmas taken from [9], whose proof can be found there.

Lemma 4.9 ([9]). Define for 0 < α < 1 and 0 < θ < h < 1 the integral I(h) = ∫ 1
h (s − h)−αsθ ds. It satisfies:

If α + θ > 1, I(h) ≤
(

1

1 − α
+ 1

α + θ − 1

)
h1−α−θ , (4.43)

If α + θ = 1, I(h) ≤ 1

1 − α
+ |log(h)|, (4.44)

If α + θ < 1, I(h) ≤ 1

1 − α − θ
. (4.45)

Lemma 4.10 ([9]). If y, r and q are continuous functions defined on [t0, t1] with

y(t) ≤ y0 +
t∫

t0

y(s) r(s)ds +
t∫

t0

q(s)ds

for t0 ≤ t ≤ t1 , then for all t0 ≤ t ≤ t1:

y(t) ≤ e
∫ t

t0
r(τ ) dτ

⎡
⎣y0 +

t∫
t0

q(τ )e
− ∫ τ

t0
r(σ ) dσ

dτ

⎤
⎦ . (4.46)

Proof of Lemma 4.7. We only treat the case (i), as the proof is the same for the other cases. We first localize the problem, 
with χ a smooth cut-off function, with χ = 1 on B 

(
0, R

2

)
, χ = 0 outside B(0, R) and |χ | ≤ 1. We define

v := χu (4.47)

whose evolution, from (1.1), is given by:

vt = �v + |u|p−1 v + �χu − 2∇·(∇χu). (4.48)

We apply Duhamel’s formula to (4.48) to find that for t ∈ [−1, 0):

v(t) = Kt+1 ∗ v(−1) +
t∫

−1

Kt−s ∗ (|u|p−1 v + �χu − 2∇·(∇χu))ds. (4.49)

From (4.37) and (4.47), one has for free evolution term:

‖Kt+1 ∗ v(−1)‖L∞ ≤ ε. (4.50)

We now find an upper bound for the other terms in the previous equation.

Step 1 Case (i). For the linear terms, as 1
p−1 − a + 1

2 < 1, from (4.45) one has:

‖∫ t
−1 Kt−s ∗ (�χu − 2∇·(∇χu))ds‖L∞ ≤ C

∫ t
−1

1

(t−s)
1
2
‖u‖L∞(B(0,R))

≤ Cε
∫ t
−1

1

(t−s)
1
2

1

|s|
1

p−1 −a
≤ C(a)ε.

(4.51)

For the nonlinear term, as 1 − a < 1 < 1 = d−2 because d ≥ 7, we compute, using (4.37):
p−1 2 2(p−1) 8
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‖∫ t
−1 Kt−s ∗ (χ |u|p−1 v)ds‖L∞ ≤ ∫ t

−1 ‖u‖p−1
L∞(B(0,R))‖v‖L∞ ds

≤ εp−1
∫ t
−1

1

|s| 1
2
‖v‖L∞ds.

(4.52)

Gathering (4.50), (4.51) and (4.52), from (4.49), one has:

‖v(t)‖L∞ ≤ C(a)ε + εp−1

t∫
−1

1

|s| 1
2

‖v‖L∞ .

Applying (4.46) one obtains:

‖v(t)‖L∞ ≤ C(a), ε,e
∫ t
−1 |s|− 1

2 ds ≤ C(a)ε

which from (4.47) implies the bound (4.38) we had to prove. �
We can now end the proof of Proposition 4.2.

Proof of Proposition 4.2. For any a ∈ B(0, R), from (4.1), (4.13) and (4.14), wa,T satisfies E(wa,T (0, ·)) ≤ η and:

|�wa,T | ≤ 1

2
|wa,T |p + ηT

p
p−1
+ .

Applying Proposition 4.3 to wa,T , one obtains that for any η′ > 0 if η is small enough:

∀s ≥ s

(
T−
4

)
, |wa,T (s,0)| ≤ η′.

In original variables, this means:

∀(t, x) ∈ B(0, R) × [ T−
4

, T ), |u(t, x)| ≤ η′

(T − t)
1

p−1

.

Applying Corollary 4.8 for η′ small enough, there exists r > 0 such that

∀(t, x) ∈ B(0, R) × [ T−
4

, T ), |u(t, x)| ≤ Cη′.

Then, a standard parabolic estimate propagates this bound for higher derivatives, yielding the result (4.15). �
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Appendix A. Parabolic estimates

We recall here some parabolic estimates. We refer to the proof of Theorem 8.18 in [1] for a proof of the Strichartz-type 
estimate. Let d ≥ 2. We say that a couple of real numbers (q, r) is admissible if they satisfy:

q, r ≥ 2, (q, r,d) �= (2,+∞,2) and
2

q
+ d

r
= d

2
. (A.1)

For any exponent p ≥ 1, we denote by p′ = p−1
p its Lebesgue conjugated exponent.

Lemma 4.11 (Strichartz type estimates for solutions to the heat equation). Let d ≥ 2 be an integer. The two following inequalities hold. 
For any t > 0,

∀ j ∈N, ∀q ∈ [1,+∞], ‖∇ j Kt‖Lq ≤ C(d, j)

t
d

2q′ + j
2

where
1

q
+ 1

q′ = 1. (A.2)

For any (q1, r1), (q2, r2) satisfying (A.1), there exists a constant C = C(d, q1, q2) such that for any source term f ∈ Lq′
2([0, +∞),

Lr′
2 (Rd)):∥∥∥∥∥∥t �→

t∫
0

Kt−t′ ∗ f (t′)dt′
∥∥∥∥∥∥

Lq1 ([0,+∞),Lr1 (Rd))

≤ C‖ f ‖
Lq′

2 ([0,+∞),Lr′2 (Rd))
. (A.3)
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