Partial differential equations

Stability of ODE blow-up for the energy critical semilinear heat equation

Stabilité de l'explosion type EDO pour l'équation de la chaleur énergie critique

Charles Collot ${ }^{\text {a }}$, Frank Merle ${ }^{\text {b,c }}$, Pierre Raphaël ${ }^{\text {a }}$
a Laboratoire Jean-Alexandre-Dieudonné, Université de Nice-Sophia Antipolis, France
${ }^{\text {b }}$ Laboratoire Laga, Université de Cergy-Pontoise, France
${ }^{\text {c }}$ IHES, Bures-sur-Yvette, France

A R T I CLE I N F O

Article history:

Received 27 June 2016
Accepted after revision 24 October 2016
Available online 22 November 2016
Presented by Jean-Michel Coron

A B S TRACT

We consider the energy critical semilinear heat equation

$$
\partial_{t} u=\Delta u+|u|^{\frac{4}{d-2}} u, \quad x \in \mathbb{R}^{d}
$$

in dimension $d \geq 3$. We propose a self-contained proof of the stability of solutions u blowing-up in finite time with type-I ODE blow-up

$$
\|u\|_{L^{\infty}} \sim \kappa(T-t)^{\frac{d-2}{4}}, \quad T>0, \quad \kappa:=\left(\frac{d-2}{4}\right)^{\frac{d-2}{4}}
$$

which adapts to the energy critical case the proof of Fermanian, Merle, Zaag [4].
© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

R É S U M É

Nous considérons l'équation de la chaleur énergie critique

$$
\partial_{t} u=\Delta u+|u|^{\frac{4}{d-2}} u, \quad x \in \mathbb{R}^{d}
$$

en dimension $d \geq 3$. Nous proposons une preuve auto-contenue de la stabilité du régime explosif de type EDO

$$
\|u\|_{L^{\infty}} \sim \kappa(T-t)^{\frac{d-2}{4}}, \quad T>0, \kappa:=\left(\frac{d-2}{4}\right)^{\frac{d-2}{4}}
$$

qui adapte au cas énergie critique la preuve de Fermanian, Merle, Zaag [4].
© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

[^0]
1. Introduction and main result

We consider the energy critical semilinear heat equation

$$
(N L H)\left\{\begin{array}{l}
\partial_{t} u=\Delta u+|u|^{p-1} u, \quad p=p_{c}:=\frac{d+2}{d-2}, \quad(t, x) \in \mathbb{R} \times \mathbb{R}^{d} . \tag{1.1}\\
u(0, x)=u_{0}(x) \in \mathbb{R}
\end{array}\right.
$$

We refer to $[2,15,13]$ for the initial value problem and a complete introduction to this kind of models. Solutions may become unbounded in finite time T

$$
\|u(t)\|_{L^{\infty}} \rightarrow+\infty \text { as } t \rightarrow T
$$

an explicit example being given by the constant in space ODE blow-up solution

$$
\begin{equation*}
u(t, x)=\frac{\kappa_{p}}{(T-t)^{\frac{1}{p-1}}}, \kappa_{p}=\left(\frac{1}{p-1}\right)^{\frac{1}{p-1}}, \partial_{t} u=u^{p} \tag{1.2}
\end{equation*}
$$

Solutions blowing up with a self similar growth

$$
\begin{equation*}
\underset{t \rightarrow T}{\lim -\sup }\|u(t)\|_{L^{\infty}}(T-t)^{\frac{1}{p-1}}<+\infty \tag{1.3}
\end{equation*}
$$

are called type-I blow-up solutions and have attracted considerable attention in the past twenty years [4,6-12]. It is in particular known that in the energy subcritical range $1<p<p_{c}$, any blow-up is of type I and that the set of blow-up solutions is open in any reasonable topology. We consider in this paper the energy critical case $p=p_{c}$, for which other blow-up dynamics have been constructed [5,14]. The result of this paper is that type-I blow-up is however still stable and described by the ODE blow-up (1.2).

Theorem 1.1 (Stability of type-I blow-up, $p=p_{c}$). The set of solutions blowing-up in finite time with type-I blow-up (1.3) is open in $W^{3, \infty}\left(\mathbb{R}^{d}\right)$.

Remark 1.2. The topology $W^{3, \infty}$ is not essential because of the parabolic regularizing effects. In particular, Theorem 1.1 implies the corresponding stability in $L^{q}\left(\mathbb{R}^{d}\right), q \geq \frac{2 d}{d-2}$, where (1.1) is also well-posed.

Theorem 1.1 is one of the key steps in the recent result of classification of the flow near the family of ground states (radially symmetric stationary solutions) [3]. Its proof is given in [4] in the energy subcritical range $p<p_{c}$ using Liouville classification arguments of the constant self-similar solution. We closely follow the argument that however requires sharpening a number of estimates, and the purpose of this note is to present a self-contained proof of these improvements. Section 3 follows [4]. In Section 4, a local control of a solution by a local energy, given without a proof in [4], which is Proposition 4.2 here, is more subtle due to the energy critical feature.
Notations. The heat kernel is denoted by $K_{t}(x):=\frac{1}{(4 \pi t)^{\frac{d}{2}}} \mathrm{e}^{-\frac{|x|^{2}}{4 t}}$. We forget the dependence in p in the notation of the
constants in what follows.

2. Some known properties of type-I blow-up

A point $x \in \mathbb{R}^{d}$ is said to be a blow-up point for u blowing up at time T if there exists $\left(t_{n}, x_{n}\right) \rightarrow(T, x)$ such that:

$$
\left|u\left(t_{n}, x_{n}\right)\right| \rightarrow+\infty \text { as } n \rightarrow+\infty
$$

A fundamental fact is the rigidity for solutions satisfying the type-I blow-up estimate (1.3) that are global backward in time.

Proposition 2.1 (Liouville-type theorem for type-I blow-up [11,12]). Let u be a solution to (1.1) on $(-\infty, 0] \times \mathbb{R}^{d}$ such that $\|u\|_{L^{\infty}} \leq$ $C(-t)^{\frac{1}{p-1}}$ for some constant $C>0$, then there exists $T \geq 0$ such that $u= \pm \frac{\kappa}{(T-t)^{\frac{1}{p-1}}}$, where κ is defined in (1.2).

We recall a precise description of type-I blow-up, with an asymptotic at a blow-up point and an ODE type characterization.

Lemma 2.2 (Description of type-I blow-up [9,11,12]). Let u solve (1.1) with $u_{0} \in W^{2, \infty}$ blowing up at $T>0$. The three following properties are equivalent:
(i) the blow-up is of type I;
(ii) $\exists K>0, \quad|\Delta u| \leq \frac{1}{2}|u|^{p}+K$ on $\mathbb{R}^{d} \times[0, T)$;
(iii) $\|u\|_{L^{\infty}}(T-t)^{\frac{1}{p-1}} \rightarrow \kappa$ as $t \rightarrow T$.

Moreover, if u blows up with type I at x, then

$$
\begin{equation*}
(T-t)^{\frac{1}{p-1}} u(t, x+y \sqrt{T-t}) \rightarrow \pm \kappa \text { as } t \rightarrow T \tag{2.3}
\end{equation*}
$$

in $L^{2}\left(\mathrm{e}^{-\frac{|y|^{2}}{4}}\right)$ and in $C^{k}(|y|<R)$ for any $R>0$ and $k \in \mathbb{N}$. If $u_{n}(0) \rightarrow u(0)$ in $W^{2, \infty}$, for large n, u_{n} blows up at time T_{n} with $T_{n} \rightarrow T$.
Some of the above results are stated in $[4,9,11,12]$ in the case $1<p<p_{c}$, but are however still valid in the energy critical case. In particular, the only bounded solution to the self similar elliptic equation

$$
\begin{equation*}
\Delta w+|w|^{p-1} w=\frac{1}{2} \Lambda w, \quad \Lambda:=\frac{2}{p-1}+x \cdot \nabla \tag{2.4}
\end{equation*}
$$

for $1<p \leq p_{\mathrm{c}}$ is $\pm \kappa$ as follows from the Pohozaev type identity [7]:

$$
\begin{equation*}
(d-2)\left(p_{\mathrm{c}}-p\right) \int_{\mathbb{R}^{d}}|\nabla w|^{2} \mathrm{e}^{-\frac{|y|^{2}}{4}} \mathrm{~d} y+\frac{p-1}{2} \int_{\mathbb{R}^{d}}|y|^{2}|\nabla w|^{2} \mathrm{e}^{-\frac{|y|^{2}}{4}} \mathrm{~d} y=0 \tag{2.5}
\end{equation*}
$$

3. Proof of Theorem 1.1

We argue by contradiction, following [4]. Assume the result is false. From Lemma 2.2 and from the Cauchy theory in $W^{2, \infty}$, the negation means the following. There exists $u_{0} \in W^{3, \infty}$ such that the solution to (1.1) starting from u_{0} blows up at time 1 (without loss of generality) with:

$$
\begin{equation*}
\|u(t)\|_{L^{\infty}} \sim \kappa(1-t)^{-\frac{1}{p-1}} \text { as } t \rightarrow 1 \tag{3.1}
\end{equation*}
$$

and satisfies:

$$
\begin{equation*}
|\Delta u| \leq \frac{1}{2}|u|^{p}+K \text { on } \mathbb{R}^{d} \times[0,1) \tag{3.2}
\end{equation*}
$$

There exists a sequence u_{n} of solutions to (1.1) blowing up at time T_{n} with:

$$
\begin{equation*}
T_{n} \rightarrow 1 \text { and } u_{n} \rightarrow u \text { in } \mathcal{C}_{\text {loc }}\left([0,1), W^{3, \infty}\left(\mathbb{R}^{d}\right)\right) \tag{3.3}
\end{equation*}
$$

and there exists two sequences $0 \leq t_{n}<T_{n}$ and x_{n} such that:

$$
\begin{align*}
& \left|\Delta u_{n}\right| \leq \frac{1}{2}\left|u_{n}\right|^{p}+2 K \text { on } \mathbb{R}^{d} \times\left[0, t_{n}\right), \tag{3.4}\\
& \left|\Delta u_{n}\left(t_{n}, x_{n}\right)\right|=\frac{1}{2}\left|u_{n}\left(t_{n}, x_{n}\right)\right|^{p}+2 K . \tag{3.5}
\end{align*}
$$

The strategy is the following. First we centralize the problem, showing that one can take without loss of generality $x_{n}=0$. Then we prove that u and u_{n} become singular near 0 as $(t, n) \rightarrow(1,+\infty)$. In view of Lemma 2.2, the ODE type bound (3.4) means that u_{n} behaves approximately as a type-I blowing-up solution until t_{n}. This intuition is made rigorous by proving that an appropriate renormalization of u_{n} near $\left(t_{n}, 0\right)$ converges to the constant in space blow-up profile (1.2). We then show that the inequality (3.5) passes to the limit, contradicting (3.2).

Lemma 3.1. Let u, u_{n} be solutions to (1.1), t_{n} and x_{n} satisfy (3.1), (3.2), (3.3), (3.4) and (3.5). Then

$$
\begin{equation*}
t_{n} \rightarrow 1 \tag{3.6}
\end{equation*}
$$

and there exist \hat{u} and \hat{u}_{n} solutions to (1.1) satisfying (3.1), (3.2), (3.4) and (3.5) with $\hat{x}_{n}=0$. In addition, \hat{u} blows up with type I at $(1,0), \hat{u}_{n}$ blows up at time T_{n} and $^{1} \hat{u}\left(t_{n}, 0\right) \rightarrow+\infty$.

[^1]Proof of Lemma 3.1. Step 1 Proof of (3.6). At time t_{n}, u satisfies the inequality (3.2), whereas u_{n} does not from (3.5). As u_{n} converges to u in $C_{\text {loc }}^{1,2}\left([0,1) \times \mathbb{R}^{d}\right)$ from (3.3), this forces t_{n} to tend to 1 .
Step 2 Centering and limit objects. Define $\hat{u}_{n}(t, x)=u_{n}\left(t, x+x_{n}\right)$. Then \hat{u}_{n} is a solution satisfying (3.4), (3.5) with $\hat{x}_{n}=0$, and blowing up at time $T_{n} \rightarrow 1$ from (3.3). From parabolic regularizing effects, $(t, x) \mapsto u\left(t, x_{n}+x\right)$ is uniformly bounded in $C_{\text {loc }}^{\frac{3}{2}, 3}\left([0,1), \mathbb{R}^{d}\right)$, hence as $n \rightarrow+\infty$ using Arzela Ascoli theorem it converges to a function \hat{u} that also solves (1.1), satisfies (3.2) and

$$
\begin{equation*}
\|\hat{u}(t)\|_{L^{\infty}} \lesssim \kappa(1-t)^{-\frac{1}{p-1}} . \tag{3.7}
\end{equation*}
$$

As u_{n} converges to u in $C_{\text {loc }}\left([0,1), W^{3, \infty}\left(\mathbb{R}^{d}\right)\right.$) from (3.3), \hat{u}_{n} converges to \hat{u} in $C_{\text {loc }}^{1,2}\left([0,1) \times \mathbb{R}^{d}\right)$, establishing (3.3).
Step 3 Conditions for boundedness. We claim two facts. 1) If \hat{u} does not blow up at (1, 0), then there exists $r, C>0$ such that for all $(t, y) \in\left[0, t_{n}\right] \times B(0, r),\left|\hat{u}_{n}(t, y)\right| \leq C$. 2) If there exists $C>0$ such that $\left|\hat{u}_{n}\left(t_{n}, 0\right)\right| \leq C$, then \hat{u} does not blow up at $(0,1)$.
Proof of the first fact. We reason by contradiction. If \hat{u} does not blow up at $(1,0)$, there exists $r, C>0$ such that for all $(t, y) \in[0,1) \times B(0, r),|\hat{u}(t, y)| \leq C$. Assume that there exists $\left(\tilde{x}_{n}, \tilde{t}_{n}\right)$ such that $\tilde{x}_{n} \in B(0, r)$ and $\left|\hat{u}_{n}\left(\tilde{x}_{n}, \tilde{t}_{n}\right)\right| \rightarrow+\infty$. As \hat{u}_{n} solves (1.1), from (3.5) one then has that:

$$
\forall t \in\left[0, \tilde{t}_{n}\right], \quad \partial_{t}\left|\hat{u}_{n}\left(t, \tilde{x}_{n}\right)\right| \leq \frac{3}{2}\left|\hat{u}_{n}\left(t, \tilde{x}_{n}\right)\right|^{p}+2 K, \quad\left|\hat{u}_{n}\left(\tilde{x}_{n}, \tilde{t}_{n}\right)\right| \rightarrow+\infty
$$

This then implies that for any $M>0$, there exists $s>0$ such that for n large enough, $\left|\hat{u}_{n}\left(\tilde{x}_{n}, t\right)\right| \geq M$ on $\left[\max \left(0, \tilde{t}_{n}-s\right), \tilde{t}_{n}\right]$. But this contradicts the convergence in $C_{\text {loc }}([0,1) \times B(0, r))$ established in Step 2 to the bounded function \hat{u}.
Proof of the second fact. We also prove it by contradiction. Assume that \hat{u} blows up at $(0,1)$ and $\left|\hat{u}_{n}\left(t_{n}, 0\right)\right| \leq C$. Then we claim that

$$
\forall t \in\left[0, t_{n}\right),\left|\hat{u}_{n}(t, 0)\right| \leq \max \left((4 K)^{\frac{1}{p}}, C\right)
$$

Indeed, as \hat{u}_{n} is a solution to (1.1) satisfying (3.4) one has that:

$$
\forall t \in\left[0, t_{n}\right], \quad \partial_{t}\left|\hat{u}_{n}(t, 0)\right| \geq \frac{1}{2}\left|\tilde{\hat{u}}_{n}(t, 0)\right|^{p}-2 K .
$$

So if the bound we claim is violated at some time $0 \leq t_{0} \leq \tau_{n}^{\prime}$, then $\left|\hat{u}_{n}(t, 0)\right|$ is non-decreasing on [$\left.t_{0}, \tau_{n}^{\prime}\right]$, strictly greater than C, which at time t_{n} is a contradiction. But now as this bound is independent of n, valid on $\left[0, t_{n}\right)$ with $t_{n} \rightarrow 1$, and as $\hat{u}_{n}(t, 0) \rightarrow \hat{u}(t, 0)$ on $[0,1)$, one obtains at the limit that $\hat{u}(t, 0)$ is bounded on [0, 1). From (2.3), this contradicts the blow up of \hat{u} at $(1,0)$.
Step 4 End of the proof. It remains to prove the singular behavior near 0 : that \hat{u} blows up at $(1,0)$ and that $\left|\hat{u}_{n}\left(t_{n}, 0\right)\right| \rightarrow$ $+\infty$. We reason by contradiction. From Step 3 we assume that there exists $C, r>0$ such that $|\hat{u}|+\left|\hat{u}_{n}\right| \leq C$ on $[0,1) \times B(0, r)$. A standard parabolic estimate then implies that

$$
\begin{equation*}
\|\hat{u}(t)\|_{W^{3, \infty}\left(B\left(0, r^{\prime}\right)\right)}+\left\|\hat{u}_{n}(t)\right\|_{W^{3, \infty}\left(B\left(0, r^{\prime}\right)\right)} \leq C^{\prime} \tag{3.8}
\end{equation*}
$$

for all $t \in\left[\frac{1}{2}, 1\right)$ for some $0<r^{\prime} \leq r$. Let χ be a cut-off function, $\chi=1$ on $B\left(0, \frac{r^{\prime}}{2}\right), \chi=0$ outside $B\left(0, r^{\prime}\right)$. The evolution of $\tilde{u}_{n}=\chi \hat{u}_{n}$ is given by:

$$
\tilde{u}_{n, \tau}-\Delta \tilde{u}_{n}=\chi\left|\hat{u}_{n}\right|^{p-1} \hat{u}_{n}+\Delta \chi \hat{u}_{n}-2 \nabla \cdot\left(\nabla \chi \hat{u}_{n}\right)=F_{n}
$$

with $\left\|F_{n}\right\|_{W^{1, \infty}} \leq C$ from (3.8). Fix $0<s \ll 1$. One has:

$$
\begin{aligned}
\Delta \hat{u}_{n}\left(t_{n}, 0\right) & =K_{s} *\left(\Delta \tilde{u}_{n}\left(t_{n}-s\right)\right)(0)+\sum_{1}^{d} \int_{0}^{s}\left[\partial_{x_{i}} K_{s-s^{\prime}} * \partial_{x_{i}} F\left(t_{n}-s+s^{\prime}\right)\right](0) \\
& =\Delta \hat{u}\left(t_{n}-s, 0\right)+o_{n \rightarrow+\infty}(1)+o_{s \rightarrow 0}(1)
\end{aligned}
$$

from (3.3), the estimate on F_{n} and (3.8). Similarly,

$$
\hat{u}_{n}\left(t_{n}, 0\right)=\hat{u}\left(t_{n}, 0\right)+o_{n \rightarrow+\infty}(1)+o_{s \rightarrow 0}(1)
$$

The equality (3.5) and the two above identities imply the following asymptotics: lim-inf $\left|\Delta \hat{u}\left(t_{n}\right)\right|-\frac{\left|\hat{u}\left(t_{n}, 0\right)\right|^{p}}{2} \geq 2 K$, which is in contradiction with (3.2). Hence \hat{u} blows up at (1,0) with type-I blow-up from (3.7) and $\left|\hat{u}\left(t_{n}, 0\right)\right| \rightarrow+\infty$.

We return to the study of u and u_{n} introduced at the beginning of this Section to prove Theorem 1.1 by contradiction. From Lemma 3.1, keeping the notation u and u_{n} for \hat{u} and \hat{u}_{n} introduced there, one can assume without loss of generality that in addition to (3.1), (3.2), (3.3) and (3.4), u and u_{n} satisfy (3.6), and:

$$
\begin{align*}
& \left|\Delta u_{n}\left(t_{n}, 0\right)\right|=\frac{1}{2}\left|u_{n}\left(t_{n}, 0\right)\right|^{p}+2 K \tag{3.9}\\
& u_{n}\left(t_{n}, 0\right) \rightarrow+\infty \tag{3.10}\\
& |u(t, 0)| \sim \frac{\kappa}{(1-t)^{\frac{1}{p-1}}} \tag{3.11}
\end{align*}
$$

To renormalize appropriately u_{n} near $(1,0)$ we do the following. Define

$$
\begin{equation*}
M_{n}(t):=\left(\frac{\kappa}{\left\|u_{n}(t)\right\|_{L^{\infty}}}\right)^{p-1} \tag{3.12}
\end{equation*}
$$

For $\left(\tilde{t}_{n}\right)_{n \in \mathbb{N}}$ a sequence of times, $0 \leq \tilde{t}_{n}<T_{n}$, the renormalization near $\left(\tilde{t}_{n}, 0\right)$ is

$$
\begin{equation*}
v_{n}(\tau, y):=M_{n}^{\frac{1}{p-1}}\left(\tilde{t}_{n}\right) u_{n}\left(\tilde{t}_{n}+\tau M_{n}\left(\tilde{t}_{n}\right), M_{n}^{\frac{1}{2}}\left(\tilde{t}_{n}\right) y\right) \tag{3.13}
\end{equation*}
$$

for $(\tau, y) \in\left[-\frac{\tilde{t}_{n}}{M_{n}\left(\tilde{t}_{n}\right)}, \frac{T_{n}-\tilde{t}_{n}}{M_{n}\left(\tilde{t}_{n}\right)}\right) \times \mathbb{R}^{d}$. One has the following asymptotics.
Lemma 3.2. Assume $0 \leq \tilde{t}_{n} \leq t_{n}$ and $\tilde{t}_{n} \rightarrow 1$. Then

$$
\begin{equation*}
\left\|u_{n}\left(\tilde{t}_{n}\right)\right\|_{L^{\infty}} \sim \frac{\kappa}{\left(T_{n}-\tilde{t}_{n}\right)^{\frac{1}{p-1}}}, \text { i.e. } M_{n}\left(\tilde{t}_{n}\right) \sim\left(T_{n}-\tilde{t}_{n}\right) \tag{3.14}
\end{equation*}
$$

Moreover, up to a subsequence ${ }^{2}$:

$$
\begin{equation*}
v_{n} \rightarrow \frac{\kappa}{\left[\left(\lim \frac{\left\|u_{n}\left(\tilde{t}_{n}\right)\right\|_{L} \infty}{u_{n}\left(\tilde{t}_{n}, 0\right)}\right)^{p-1}-t\right]^{\frac{1}{p-1}}} \text { in } C_{\text {loc }}^{1,2}\left((-\infty, 1) \times \mathbb{R}^{d}\right) \tag{3.15}
\end{equation*}
$$

Proof of Lemma 3.2. Step 1 Upper bound for $M_{n}\left(\tilde{t}_{n}\right)$. We claim that one always has $\left\|u_{n}\left(\tilde{t}_{n}\right)\right\|_{L^{\infty}} \geq \frac{\kappa}{\left(T_{n}-\tilde{t}_{n}\right)^{\frac{1}{p-1}}}$, i.e.

$$
\begin{equation*}
M_{n}\left(\tilde{t}_{n}\right) \leq\left(T_{n}-\tilde{t}_{n}\right) \tag{3.16}
\end{equation*}
$$

Indeed, if it is false, then there exists $\delta>0$ such that $\left\|u_{n}\left(\tilde{t}_{n}\right)\right\|_{L^{\infty}}<\frac{\kappa}{\left(T_{n}+\delta-\tilde{t}_{n} \frac{1}{p-1}\right.}$. Therefore, from a parabolic comparison argument, this inequality propagates for the solutions, yielding that $-\frac{\kappa}{\left(T_{n}+\delta-t\right)^{\frac{1}{p-1}}} \leq u_{n} \leq \frac{\kappa}{\left(T_{n}+\delta-t\right)^{\frac{1}{p-1}}}$ for all times $t \geq \tilde{t}_{n}$. This implies that u_{n} stays bounded up to T_{n}, which is a contradiction.
Step 2 Proof of (3.15). Let $\left(x_{n}\right)_{n \in \mathbb{N}} \in\left(\mathbb{R}^{d}\right)^{\mathbb{N}}$ and define:

$$
\begin{equation*}
\tilde{v}_{n}(\tau, y):=M_{n}^{\frac{1}{p-1}}\left(\tilde{t}_{n}\right) u_{n}\left(\tilde{t}_{n}+\tau M_{n}\left(\tilde{t}_{n}\right), x_{n}+M_{n}^{\frac{1}{2}}\left(\tilde{t}_{n}\right) y\right) . \tag{3.17}
\end{equation*}
$$

From (3.13), \tilde{v}_{n} is defined on $\left[-\frac{\tilde{t}_{n}}{M_{n}\left(\tilde{t}_{n}\right)}, \frac{T_{n}-\tilde{t}_{n}}{M_{n}\left(\tilde{t}_{n}\right)}\right) \times \mathbb{R}^{d}$. The lower bound, $-\frac{\tilde{t}_{n}}{M_{n}\left(\tilde{t}_{n}\right)}$, then goes to $-\infty$ from (3.16). \tilde{v}_{n} is a solution to (1.1) satisfying:

$$
\begin{align*}
& \left\|\tilde{v}_{n}(0)\right\|_{L^{\infty}} \leq \kappa \tag{3.18}\\
& \forall(\tau, y) \in\left[-\frac{\tilde{t}_{n}}{M_{n}\left(\tilde{t}_{n}\right)}, 0\right] \times \mathbb{R}^{d}, \quad\left|\Delta \tilde{v}_{n}\right| \leq \frac{1}{2}\left|\tilde{v}_{n}\right|^{p}+2 K M_{n}^{\frac{p}{p-1}}\left(\tilde{t}_{n}\right), \tag{3.19}
\end{align*}
$$

from (3.4) and (3.13).
Precompactness of the renormalized functions. We claim that \tilde{v}_{n} is uniformly bounded in $\left.\left.C_{\text {loc }}^{\frac{3}{2}, 3}(]-\infty, 1\right) \times \mathbb{R}^{d}\right)$. We now prove this result. First, we claim that

$$
\begin{equation*}
\left|\tilde{v}_{n}\right| \leq \max \left\{(4 K)^{\frac{1}{p}} M_{n}^{\frac{1}{p-1}}\left(\tilde{t}_{n}\right), \kappa\right\} \tag{3.20}
\end{equation*}
$$

Indeed, as \tilde{v}_{n} is a solution to (1.1) satisfying (3.19), one has that:

$$
\partial_{t}\left|\tilde{v}_{n}\right| \geq \frac{1}{2}\left|\tilde{v}_{n}\right|^{p}-2 K M_{n}^{\frac{p}{p-1}}\left(\tilde{t}_{n}\right)
$$

[^2]So if the bound we claim is violated, then $\left\|\tilde{v}_{n}\right\|_{L^{\infty}}$ is strictly increasing, greater than κ, which at time 0 is a contradiction to (3.18). Moreover, as $\left\|\tilde{v}_{n}(0)\right\|_{L^{\infty}} \leq \kappa$, from a comparison argument, for $0 \leq t<1$, on has that $\left\|\tilde{v}_{n}(0)\right\|_{L^{\infty}} \leq \kappa(1-t)^{-\frac{1}{p-1}}$. This and the above bound implies that for any $T<1, \tilde{v}_{n}$ is uniformly bounded, independently of n, in $L^{\infty}\left(\left(-\frac{\tilde{t}_{n}}{M_{n}\left(\tilde{t}_{n}\right)}, T\right] \times \mathbb{R}^{d}\right)$. From standard parabolic regularization, it is uniformly bounded in $C^{\frac{3}{2}, 3}\left(\left(-\frac{\tilde{t}_{n}}{M_{n}}+1, T\right) \times \mathbb{R}^{d}\right)$, yielding the desired result.
Rigidity at the limit. From Step 2 and Arzela Ascoli theorem, up to a subsequence, v_{n} converges in $C_{\text {loc }}^{1,2}\left((-\infty, 0] \times \mathbb{R}^{d}\right)$ to a function v. The equation (1.1) passes to the limit and v also solves (1.1). (3.20) and (3.16) imply that $|v| \leq \kappa$. (1.1), (3.16) and (3.19) imply that:

$$
\partial_{t}|v| \geq \frac{1}{2}|v|^{p} .
$$

Reintegrating this differential inequality, one obtains that $|v| \leq \frac{C}{|c-\tau|^{\frac{1}{p-1}}}$ for some $C, c>0$. Applying the Liouville Lemma 2.1, one has that v is constant in space. Up to a subsequence, $v\left(0, x_{n}\right)=\kappa \lim \frac{u_{n}\left(\tilde{t}_{n}, x_{n}\right)}{\left\|u_{n}\left(\tilde{t}_{n}\right)\right\|_{L} \infty}$. The particular choice $x_{n}=0, \tilde{v}_{n}=v_{n}$ gives in particular the desired identity (3.15).
Step 3 Lower bound on M_{n}. We claim that \lim - inf $\frac{M_{n}}{T_{n}-\tilde{t}_{n}} \geq 1$. We prove it by contradiction using a blow-up criterion from Section 4. From (3.12), and up to a subsequence, assume that there exists $0<\delta \ll 1$ and $x_{n} \in \mathbb{R}^{d}$ such that $u_{n}\left(\tilde{t}_{n}, x_{n}\right)>\frac{(1+\delta) \kappa}{\left(T_{n}-\tilde{t}_{n}\right)^{\frac{1}{p-1}}}$ and $\frac{u_{n}\left(\tilde{t}_{n}, x_{n}\right)}{\| u_{n}\left(\tilde{t}_{n} \|_{L} L^{\infty}\right.} \rightarrow 1$. Therefore the renormalized function \tilde{v}_{n} defined by (3.17) blows up at $\frac{T_{n}-\tilde{t}_{n}}{M_{n}\left(\tilde{t}_{n}\right)} \geq(1+\delta)^{p-1}$. From Step 2, $v(0, \cdot)$ is uniformly bounded and converges to κ. Hence, defining the self-similar renormalization near $\left((1+\delta)^{p-1}, 0\right)$

$$
w_{0,(1+\delta)^{p-1}}^{(n)}(t, y)=\left((1+\delta)^{p-1}-t\right)^{\frac{1}{p-1}} \tilde{v}_{n}\left(t, \sqrt{(1+\delta)^{p-1}-t} y\right),
$$

one has that $I\left(w_{0,(1+\delta)^{p-1}}(0, \cdot)\right) \rightarrow I\left((1+\delta)^{p-1} \kappa\right)>0$ where I is defined by (4.6). From (4.7), for n large enough, this implies that \tilde{v}_{n} should have blown up before $(1+\delta)^{p-1}$, which yields the desired contradiction.

To end the proof of Theorem 1.1, we now distinguish two cases for which one has to find a contradiction (which cover all possible cases up to subsequence):

$$
\begin{equation*}
\text { Case 1: } \lim \frac{u_{n}\left(x_{n}, t_{n}\right)}{\left\|u_{n}\left(t_{n}\right)\right\|_{L^{\infty}}}>0 \tag{3.21}
\end{equation*}
$$

$$
\begin{equation*}
\text { Case 2: } \lim \frac{u_{n}\left(x_{n}, t_{n}\right)}{\left\|u_{n}\left(t_{n}\right)\right\|_{L^{\infty}}}=0 \tag{3.22}
\end{equation*}
$$

Proof of Theorem 1.1 in Case 1. In this case, we can renormalize at time t_{n}. Let $\tilde{t}_{n}=t_{n}$ and define v_{n} and $M_{n}\left(\tilde{t}_{n}\right)$ by (3.13) and (3.12). (3.15) and (3.21) imply that $\Delta v_{n}(0,0) \rightarrow 0$ and $v_{n}(0,0) \rightarrow v(0,0)>0$. From (3.9), v_{n} satisfies at the origin:

$$
\left|\Delta v_{n}(0,0)\right|=\frac{1}{2}\left|v_{n}(0,0)\right|^{p}+2 K M_{n}^{\frac{p}{p-1}}\left(t_{n}\right)
$$

As $M_{n}\left(t_{n}\right) \rightarrow 0$ from (3.14), at the limit we get $0=\frac{1}{2} v(0,0)>0$, which is a contradiction, ending the proof of Theorem 1.1 in Case 1.

Proof of Theorem 1.1 in Case 2. Step 1 Suitable renormalization before t_{n}. We claim that for any $0<\kappa_{0} \ll 1$ one can find a sequence of times \tilde{t}_{n} such that $0 \leq \tilde{t}_{n} \leq t_{n}, \tilde{t}_{n} \rightarrow 1$ and such that v_{n} defined by (3.13) satisfies up to a subsequence:

$$
\begin{equation*}
\left.\left.v_{n} \rightarrow \frac{\kappa}{\left[\left(\frac{\kappa}{\kappa_{0}}\right)^{p-1}-1-t\right]^{\frac{1}{p-1}}} \text { in } C_{\operatorname{loc}}^{1,2}(]-\infty, 1\right) \times \mathbb{R}^{d}\right) \tag{3.23}
\end{equation*}
$$

We now prove this fact. On the one hand, $\frac{|u(t, 0)|}{\|u(t)\|_{L^{\infty}}} \rightarrow 1$ as $t \rightarrow 1$ (from (3.11) and (2.2) as u blow up with type I at 0) and for any $0 \leq T<1 u_{n}$ converges to u in $\mathcal{C}\left([0, T], L^{\infty}\left(\mathbb{R}^{d}\right)\right)$ from (3.3). As $t_{n} \rightarrow 1$, using a diagonal argument and Lemma 3.2, up to a subsequence there exists a sequence of times $0 \leq t_{n}^{\prime} \leq t_{n}$ such that $\frac{u_{n}\left(t_{n}^{\prime}, 0\right)}{\left\|u\left(t_{n}^{\prime}\right)\right\|_{L} \infty} \rightarrow 1$. On the other hand, from the assumption (3.22) and (3.6), $\lim \frac{\left|u_{n}\left(t_{n}, 0\right)\right|}{\left\|u_{n}\left(t_{n}\right)\right\|_{L} \infty}=0$ and $t_{n} \rightarrow 1$. From a continuity argument, for κ_{0} small enough, there exists a sequence $t_{n}^{\prime} \leq \tilde{t}_{n} \leq t_{n}$ such that $\lim \frac{u_{n}\left(\tilde{t}_{n}, 0\right)}{\left\|u_{n}\left(\tilde{t}_{n}\right)\right\|_{L} \infty}=\left[\left(\frac{\kappa}{\kappa_{0}}\right)^{p-1}-1\right]^{-\frac{1}{p-1}}$. From Lemma 3.2, one obtains the desired convergence result (3.23).

Step 2 Local boundedness. Take \tilde{t}_{n} and v_{n} as in Step 1. From (3.13) and (3.14) v_{n} blows up at time $\tau_{n}=\frac{T_{n}-\tilde{t}_{n}}{M_{n}\left(\tilde{t}_{n}\right)} \rightarrow 1$. Up to time $\tau_{n}^{\prime}=\frac{t_{n}-\tilde{t}_{n}}{M_{n}\left(\tilde{t}_{n}\right)}, 0 \leq \tau_{n}^{\prime}, v_{n}$ satisfies:

$$
\begin{equation*}
\left|\Delta v_{n}\right| \leq \frac{1}{2}\left|v_{n}\right|^{p}+2 K M_{n}^{\frac{p}{p-1}}\left(\tilde{t}_{n}\right) \tag{3.24}
\end{equation*}
$$

and we recall that $M_{n}\left(\tilde{t}_{n}\right) \rightarrow 0$ from (3.14). Let $R>0$ and $a \in B(0, R)$. Define

$$
w_{a, \tau_{n}}^{(n)}(y, t):=\left(\tau_{n}-t\right)^{\frac{1}{p-1}} v_{n}\left(t, a+\sqrt{\tau_{n}-t} y\right)
$$

Then as $v_{n}(-1) \rightarrow \kappa_{0}$ from (3.23), one has that for n large enough

$$
E\left[w_{a, \tau_{n}}^{(n)}(-1, \cdot)\right]=O\left(\kappa_{0}^{2}\right)
$$

where the energy is defined by (4.4). One can then apply the result (4.15) of Proposition 4.2: there exists $r>0$ such that for κ_{0} small enough and n large enough one has:

$$
\begin{equation*}
\forall t \in\left[0, \tau_{n}^{\prime}\right], \quad\left\|v_{n}(t)\right\|_{W^{2, \infty}(B(0, r))} \leq C \tag{3.25}
\end{equation*}
$$

Step 3 End of the proof. Let χ be a cut-off function, $\chi=1$ on $B\left(0, \frac{r}{2}\right)$ and $\chi=0$ outside $B(0, r)$. The evolution of $\tilde{v}_{n}=\chi v_{n}$ is given by

$$
\tilde{v}_{n, \tau}-\Delta \tilde{v}_{n}=\chi\left|v_{n}\right|^{p-1} v_{n}+\Delta \chi v_{n}-2 \nabla \cdot\left(\nabla \chi v_{n}\right)=F_{n}
$$

with $\left\|F_{n}\right\|_{W^{1, \infty}} \leq C$ from (3.25). Fix $0<s \ll 1$. One has:

$$
\begin{aligned}
\Delta v_{n}\left(\tau_{n}^{\prime}, 0\right) & =K_{s} *\left(\Delta \tilde{v}_{n}\left(\tau_{n}^{\prime}-s\right)\right)(0)+\sum_{1}^{d} \int_{0}^{s}\left[\partial_{x_{i}} K_{s-s^{\prime}} * \partial_{x_{i}} F\left(\tau_{n}^{\prime}-s+s^{\prime}\right)\right](0) \\
& =o_{n \rightarrow+\infty}(1)+o_{s \rightarrow 0}(1)
\end{aligned}
$$

from (3.23) and the estimate on F_{n}. Hence $\Delta v_{n}\left(\tau_{n}^{\prime}, 0\right) \rightarrow 0$ as $n \rightarrow+\infty$. On the other hand, $\lim v_{n}\left(\tau_{n}^{\prime}, 0\right)=v\left(\tau_{n}^{\prime}, 0\right)>0$ from (3.23) and the fact that $0 \leq \tau_{n}^{\prime} \leq 1$. We recall that at time $\tau_{n}^{\prime} v_{n}$ satisfies:

$$
\left|\Delta v_{n}\left(\tau_{n}^{\prime}, 0\right)\right|=\frac{1}{2}\left|v_{n}\left(\tau_{n}^{\prime}, 0\right)\right|^{p}+2 K M_{n}^{\frac{p}{p-1}}\left(\tilde{t}_{n}\right)
$$

As $M_{n}^{\frac{p}{p-1}}\left(\tilde{t}_{n}\right) \rightarrow 0$ from (3.14) at the limit, one has $0=\frac{1}{2}\left|v\left(\tau_{n}^{\prime}, 0\right)\right|^{p}>0$ which is a contradiction. This ends the proof of Theorem 1.1 in Case 2.

4. A local smallness result

This section is devoted to the proof of (3.25).

4.1. Self-similar variables

We follow the method introduced in [7-9] to study type-I blow-up locally. The results and the ideas of their proof are either contained in [8] or similar to the results there. A sharp blow-up criterion and other preliminary bounds are given by Lemma 4.1 and a condition for local boundedness is given in Proposition 4.2. For u defined on $\left[0, T_{u_{0}}\right) \times \mathbb{R}^{d}, a \in \mathbb{R}^{d}$ and $T>0$, we define the self-similar renormalization of u at (T, a) :

$$
\begin{equation*}
w_{a, T}(y, t):=(T-t)^{\frac{1}{p-1}} u(t, a+\sqrt{T-t} y) \tag{4.1}
\end{equation*}
$$

for $(t, y) \in\left[0, \min \left(T_{u_{0}}, T\right)\right) \times \mathbb{R}^{d}$. Introducing the self-similar renormalized time:

$$
\begin{equation*}
s:=-\log (T-t) \tag{4.2}
\end{equation*}
$$

one sees that if u solves (1.1) then $w_{a, T}$ solves:

$$
\begin{equation*}
\partial_{s} w_{a, T}-\Delta w_{a, T}-\left|w_{a, T}\right|^{p-1} w_{a, T}+\frac{1}{2} \Lambda w_{a, T}=0 \tag{4.3}
\end{equation*}
$$

Equation (4.3) admits a natural Lyapunov functional,

$$
\begin{equation*}
E(w)=\int_{\mathbb{R}^{d}}\left(\frac{1}{2}|\nabla w(y)|^{2}+\frac{1}{2(p-1)}|w(y)|^{2}-\frac{1}{p+1}|w(y)|^{p+1}\right) \rho(y) \mathrm{d} y \tag{4.4}
\end{equation*}
$$

where $\rho(y):=\frac{1}{(4 \pi)^{\frac{d}{2}}} \mathrm{e}^{-\frac{|y|^{2}}{4}}$ from the fact that for its solutions there holds:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} s} E(w)=-\int_{\mathbb{R}^{d}} w_{s}^{2} \rho \mathrm{~d} y \leq 0 \tag{4.5}
\end{equation*}
$$

Another quantity that will prove to be helpful is the following:

$$
\begin{equation*}
I(w):=-2 E(w)+\frac{p-1}{p+1}\left(\int_{\mathbb{R}^{d}} w^{2} \rho \mathrm{~d} y\right)^{\frac{p+1}{2}} \tag{4.6}
\end{equation*}
$$

Lemma 4.1 ([7,11]). Let w be a global solution to (4.3) with $E(w(0))=E_{0}$, then ${ }^{3}$ for $s \geq 0$:

$$
\begin{align*}
& I(w(s)) \leq 0, \quad E_{0} \geq 0 \tag{4.7}\\
& \int_{0}^{+\infty} \int_{\mathbb{R}^{d}} w_{s}^{2} \rho \mathrm{~d} y \mathrm{~d} s \leq E_{0} . \tag{4.8}
\end{align*}
$$

If moreover $E_{0}:=E(w(0)) \leq 1$, then ${ }^{4}$ for any $s \geq 0$:

$$
\begin{align*}
& \int_{\mathbb{R}^{d}} w^{2} \rho \mathrm{~d} y \leq C E_{0}^{\frac{2}{p+1}}, \tag{4.9}\\
& \int_{s}^{s+1}\left(\int_{\mathbb{R}^{d}}\left(|\nabla w|^{2}+w^{2}+|w|^{p+1}\right) \rho \mathrm{d} y\right)^{2} \mathrm{~d} s \leq C E_{0}^{\frac{p+3}{p+1}} . \tag{4.10}
\end{align*}
$$

Proof of Lemma 4.1. Step 1 Proof of (4.7). We argue by contradiction and assume that $I\left(w\left(s_{0}\right)\right)>0$ for some $s_{0} \geq 0$. The set $\mathcal{S}:=\left\{s \geq s_{0}, I(s) \geq I\left(s_{0}\right)\right\}$ is closed by continuity. For any solution to (4.3), one has:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} s}\left(\int_{\mathbb{R}^{d}} w^{2} \rho \mathrm{~d} y\right)=2 \int_{\mathbb{R}^{d}} w w_{s} \rho \mathrm{~d} y=-4 E(w)+\frac{2(p-1)}{p+1} \int_{\mathbb{R}^{d}}|w|^{p+1} \rho \mathrm{~d} y \tag{4.11}
\end{equation*}
$$

Therefore, for any $s \in \mathcal{S}$, from (4.6) and Jensen inequality this gives:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} s}\left(\int_{\mathbb{R}^{d}} w^{2} \rho \mathrm{~d} y\right) \geq-4 E(w(s))+\frac{2(p-1)}{p+1}\left(\int_{\mathbb{R}^{d}} w^{2} \rho \mathrm{~d} y\right)^{\frac{p+1}{2}}=I(w(s))>0 \tag{4.12}
\end{equation*}
$$

as $I(w(s)) \geq I\left(w\left(s_{0}\right)\right)$, which with (4.5) and (4.6) imply $\frac{\mathrm{d}}{\mathrm{d} s} I(w(s))>0$. Hence \mathcal{S} is open and therefore $\mathcal{S}=\left[s_{0},+\infty\right)$. From (4.12) and (4.5), there exists s_{1} such that $E(w(s)) \leq \frac{p-1}{2(p+1)}\left(\int_{\mathbb{R}^{d}} w^{2} \rho \mathrm{~d} y\right)^{\frac{p+1}{2}}$ for all $s \geq s_{1}$, implying from (4.12):

$$
\frac{\mathrm{d}}{\mathrm{~d} s}\left(\int_{\mathbb{R}^{d}} w^{2} \rho \mathrm{~d} y\right) \geq 2 \frac{p-1}{p+1}\left(\int_{\mathbb{R}^{d}} w^{2} \rho \mathrm{~d} y\right)^{\frac{p+1}{2}}
$$

This quantity must then tend to $+\infty$ in finite time, which is a contradiction.

[^3]Step 2 End of the proof. (4.8) and (4.9) are consequences of (4.5), (4.6) and (4.7). To prove (4.10), from (4.11), (4.5), (4.9) and Hölder, one obtains:

$$
\int_{s}^{s+1}\left(\int_{\mathbb{R}^{d}}|w|^{p+1} \rho \mathrm{~d} y\right)^{2} \mathrm{~d} s \leq \int_{s}^{s+1}\left(C E_{0}^{2}+C \int_{\mathbb{R}^{d}} w_{s}^{2} \rho \mathrm{~d} y \int_{\mathbb{R}^{d}} w^{2} \rho \mathrm{~d} y\right) \mathrm{d} s \leq C E_{0}^{\frac{p+3}{p+1}}
$$

as $E_{0} \leq 1$. This identity, using (4.4), (4.5) and as $E_{0} \leq 1$ implies (4.10).
Proposition 4.2 (Condition for local boundedness). Let $R>0,0<T_{-}<T_{+}$and $\delta>0$. There exists $\eta>0$ and $0<r \leq R$ such that, for any $T \in\left[T_{-}, T_{+}\right]$and u solution to (1.1) on $[0, T) \times \mathbb{R}^{d}$ with $u_{0} \in W^{2, \infty}$ satisfying:

$$
\begin{align*}
& \forall a \in B(0, R), \quad E\left(w_{a, T}(0, \cdot)\right) \leq \eta \tag{4.13}\\
& \forall(t, x) \in[0, T) \times \mathbb{R}^{d}, \quad|\Delta u(t, x)| \leq \frac{1}{2}|u(t, x)|^{p}+\eta, \tag{4.14}
\end{align*}
$$

there holds

$$
\begin{equation*}
\forall t \in\left[\frac{T_{-}}{2}, T\right),\|u(t)\|_{W^{2, \infty}(B(0, r))} \leq \delta \tag{4.15}
\end{equation*}
$$

The proof of Proposition 4.2 is done at the end of this subsection. We need intermediate results: Proposition 4.3 gives local smallness in self-similar variables, Lemma 4.7 and its Corollary 4.8 give local boundedness in L^{∞} in original variables.

Proposition 4.3. For any $R, s_{0}, \delta>0$, there exists $\eta>0$ such that for any w global solution to (4.3), with $w(0) \in W^{2, \infty}$ satisfying

$$
\begin{equation*}
E(w(0)) \leq \eta \text { and } \forall(s, y) \in[0,+\infty) \times \mathbb{R}^{d},|\Delta w(s, y)| \leq \frac{1}{2}|w(s, y)|^{p}+\eta \tag{4.16}
\end{equation*}
$$

there holds:

$$
\begin{equation*}
\forall(s, y) \in\left[s_{0},+\infty\right) \times B(0, R), \quad|w(s, y)| \leq \delta \tag{4.17}
\end{equation*}
$$

Proof of Proposition 4.3. It is a direct consequence of Lemma 4.4 and Lemma 4.5.
Lemma 4.4. For any $R, s_{0}, \eta^{\prime}>0$, there exists $\eta>0$ such that for w a global solution to (4.3), with $w(0) \in W^{2, \infty}\left(\mathbb{R}^{d}\right)$, satisfying (4.16), there holds

$$
\begin{equation*}
\forall s \in\left[s_{0},+\infty\right), \quad \int_{B(0, R)}\left(|w|^{2}+|\nabla w|^{2}\right) \mathrm{d} y \leq \eta^{\prime} \tag{4.18}
\end{equation*}
$$

Lemma 4.5. For any $R, \delta>0,0<s_{0}<s_{1}$ there exists $\eta, \eta^{\prime}>0$ and $0<r \leq R$ such that for w a global solution to (4.3) with $w(0) \in W^{2, \infty}$, satisfying (4.16) and (4.18), there holds:

$$
\begin{equation*}
\forall(s, y) \in\left[s_{1},+\infty\right) \times B(0, r), \quad|w(s, y)| \leq \delta \tag{4.19}
\end{equation*}
$$

We now prove the two above lemmas. In what follows we will often have to localize the function w. Let χ be a smooth cut-off function, $\chi=1$ on $B(0,1)$ and $\chi=0$ outside $B(0,2)$. For $R>0$ we define $\chi_{R}(x)=\chi\left(\frac{\chi}{R}\right)$ and:

$$
\begin{equation*}
v:=\chi_{R} w \tag{4.20}
\end{equation*}
$$

(we will forget the dependence in R in the notations to ease writing, and will write χ instead of χ_{R}). From (4.3) the evolution of v is then given by:

$$
\begin{equation*}
v_{s}-\Delta v=\chi|w|^{p-1} w+\left(\left[\frac{1}{p-1}-\frac{d}{2}\right] \chi-\frac{1}{2} \nabla \chi \cdot y+\Delta \chi\right) w+\nabla \cdot\left(\left[\frac{1}{2} \chi y-2 \nabla \chi\right] w\right) \tag{4.21}
\end{equation*}
$$

Proof of Lemma 4.4. We will prove that (4.18) holds at time s_{0}, which will imply (4.18) at any time $s \in\left[s_{0},+\infty\right.$) because of time invariance. We take $d \geq 5$ for the sake of simplicity.

Step 1 An estimate for Δw. First one notices that the results of Lemma 4.1 apply. From (4.16) and (4.3), there exists a constant $C>0$ such that:

$$
|w|^{2 p} \leq C\left(|w|^{p-1} w+\Delta w\right)^{2}+C \eta^{2} \leq C\left|w_{s}\right|^{2}+C|y|^{2}|\nabla w|^{2}+C w^{2}+C \eta^{2} .
$$

We integrate this in time, using (4.8), (4.9), (4.10) and (4.16), yielding for $s \geq 0$:

$$
\begin{equation*}
\int_{S}^{s+1} \int_{B(0,2 R)}|w|^{2 p} \mathrm{~d} y \mathrm{~d} s \leq C \eta+C \eta^{\frac{p+3}{p+1}}+C \eta^{\frac{2}{p+1}}+C \eta^{2} \leq C \eta^{\frac{2}{p+1}} \tag{4.22}
\end{equation*}
$$

Injecting the above estimate in (4.16), using (4.9) and (4.10), we obtain for $s \geq 0$:

$$
\begin{align*}
& \int_{s}^{s+1}\|w\|_{H^{2}(B(0,2 R))}^{2} \mathrm{~d} s \leq \int_{s}^{s+1} \int_{B(0,2 R)}\left(|\Delta w|^{2}+|\nabla w|^{2}+w^{2}\right) \mathrm{d} y \mathrm{~d} s \tag{4.23}\\
\leq & \int_{s}^{s+1} \int_{B(0,2 R)} C\left(|w|^{2 p}+|\nabla w|^{2}+w^{2}\right) \mathrm{d} y \mathrm{~d} s+C \eta^{2} \leq C \eta^{\frac{2}{p+1}} .
\end{align*}
$$

Step 2 Localization. We localize at scale R and define v by (4.20). From (4.20), (4.10) and (4.9), one obtains that there exists $\tilde{s}_{0} \in\left[\max \left(0, s_{0}-1\right), s_{0}\right]$ such that:

$$
\begin{equation*}
\left\|v\left(\tilde{s}_{0}\right)\right\|_{H^{1}\left(\mathbb{R}^{d}\right)}^{2} \lesssim \int_{B(0,2 R)}\left(w\left(\tilde{s}_{0}\right)^{2}+\left|\nabla w\left(\tilde{s}_{0}\right)\right|^{2}\right) \mathrm{d} y \leq C \eta^{\frac{2}{p+1}}+C \eta^{\frac{p+3}{p+1}} \leq C \eta^{\frac{2}{p+1}} \tag{4.24}
\end{equation*}
$$

We apply Duhamel's formula to (4.21) to find that $v\left(s_{0}\right)$ is given by:

$$
\begin{align*}
v\left(s_{0}\right)= & \int_{\tilde{s}_{0}}^{s_{0}} K_{s_{0}-s} *\left\{\chi|w|^{p-1} w+\left(\left[\frac{1}{p-1}-\frac{d}{2}\right] \chi-\frac{1}{2} \nabla \chi \cdot y+\Delta \chi\right) w\right\} \mathrm{d} s \\
& +\int_{\tilde{s}_{0}}^{s_{0}} \nabla \cdot K_{s_{0}-s} *\left(\left[\frac{1}{2} \chi y-2 \nabla \chi\right] w\right) \mathrm{d} s+K_{s_{0}-\tilde{s}_{0}} * v\left(\tilde{s}_{0}\right) . \tag{4.25}
\end{align*}
$$

We now estimate the \dot{H}^{1} norm of each term in the previous identity, using (4.24), (4.10), (A.2), Young and Hölder inequalities:

$$
\begin{align*}
& \left\|K_{s_{0}-\tilde{s}_{0}} * v\left(\tilde{s}_{0}\right)\right\|_{\dot{H}^{1}\left(\mathbb{R}^{d}\right)} \leq\left\|v\left(\tilde{s}_{0}\right)\right\|_{\dot{H}^{1}\left(\mathbb{R}^{d}\right)} \leq C \eta^{\frac{1}{p+1}}, \tag{4.26}\\
& \leq \quad\left\|\int_{\tilde{s}_{0}}^{s_{0}} K_{s_{0}-s} *\left\{\left(\left[\frac{1}{p-1}-\frac{d}{2}\right] \chi-\frac{\nabla \chi \cdot y}{2}+\Delta \chi\right) w\right\}+\nabla \cdot K_{s_{0}-s} *\left(\left[\frac{\chi y}{2}-2 \nabla \chi\right] w\right)\right\|_{\dot{H}^{1}} \\
& \leq \quad C \int_{\tilde{s}_{0}}^{s_{0}}\|w\|_{H^{1}(B(0,2 R))} \mathrm{d} s+C \int_{\tilde{s}_{0}}^{s_{0}} \frac{1}{\left|s_{0}-s\right|^{\frac{1}{2}}}\|w\|_{H^{1}(B(0,2 R))} \mathrm{d} s \tag{4.27}\\
& \leq \quad C \eta^{\frac{p+3}{4(p+1)}}+C\left(\int_{\tilde{s}_{0}}^{s_{0}} \frac{\mathrm{~d} s}{\left|\tilde{s}_{1}-s\right|^{\frac{1}{2} \times \frac{4}{3}}}\right)^{\frac{3}{4}}\left(\int_{\tilde{s}_{0}}^{s_{0}}\|w\|_{H^{1}(B(0,2 R))}^{4} \mathrm{~d} s\right)^{\frac{1}{4}} \leq C \eta^{\frac{p+3}{4(p+1)}} .
\end{align*}
$$

For the non-linear term in (4.25), one first compute from (4.20) that:

$$
\begin{equation*}
\nabla\left(\chi|w|^{p-1} w\right)=p \chi|w|^{p-1} \nabla w+\nabla \chi|w|^{p-1} w \tag{4.28}
\end{equation*}
$$

For the first term in the previous identity, using Sobolev embedding, one obtains:

$$
\begin{aligned}
\left\||w|^{p-1} \nabla w\right\|_{L^{\frac{d-2+(d-4)(p-1)}{d(B(0,2 R))}}} \leq C\|w\|_{L^{\frac{2 d}{d-4}(B(0,2 R))}}^{p-1}\|\nabla w\|_{L^{\frac{2 d}{d-2}}(B(0,2 R))} & \leq C\|w\|_{H^{2}(B(0,2 R))}^{p} .
\end{aligned}
$$

Therefore, from (4.23) this force term satisfies:

$$
\int_{\tilde{s}_{0}}^{s_{0}}\left\||w|^{p-1} \nabla w\right\|_{L^{\frac{2}{p}}}^{\frac{2 d}{d-2+(d-4)(p-1)}}(B(0,2 R)) \quad \mathrm{d} s \leq \int_{\tilde{s}_{0}}^{s_{0}}\|w\|_{H^{2}(B(0,2 R))}^{2} \mathrm{~d} s \leq C \eta^{\frac{2}{p+1}}
$$

We let (q, r) be the Lebesgue conjugated exponents of $\frac{2}{p}$ and $\frac{2 d}{(d-2)+(d-4)(p-1)}$:

$$
q=\frac{2}{2-p}>2, \quad r=\frac{2 d}{d+2-(d-4)(p-1)}>2
$$

They satisfy the Strichartz relation $\frac{2}{q}+\frac{d}{r}=\frac{d}{2}$. Therefore, using (A.3), one obtains:

$$
\left\|\int_{\tilde{s}_{0}}^{s_{0}} K_{s_{0}-s} *\left(p \chi|w(s)|^{p-1} \nabla w(s)\right) \mathrm{d} s\right\|_{L^{2}} \leq C\left(\int_{\tilde{s}_{0}}^{s_{0}}\left\||w|^{p-1} \nabla w\right\|_{L^{\frac{2}{p}}}^{2 d} \quad \mathrm{~d} s\right)^{\frac{p}{2}} \leq C \eta^{\frac{p}{(p+1)}} .
$$

For the second term in (4.28) using (4.22), (A.2) and Hölder, one has:

$$
\left\|\int_{\tilde{s}_{0}}^{s_{0}} K_{s_{0}-s} *\left(\nabla \chi|w|^{p-1} w\right) \mathrm{d} s\right\|_{L^{2}} \leq C \int_{\tilde{s}_{0}}^{s_{0}}\|w\|_{L^{2 p}(B(0,2 R))}^{p} \leq C \eta^{\frac{1}{p+1}}
$$

The two above estimates and the identity (4.28) imply the following bound:

$$
\left\|\int_{\tilde{s}_{0}}^{s_{0}} K_{s_{0}-s} *\left(\chi|w|^{p-1} w\right) \mathrm{d} s\right\|_{\dot{H}^{1}} \leq C \eta^{\frac{1}{p+1}}
$$

We come back to (4.25) where we found estimates for each term in the right-hand side in (4.26), (4.27) and the above identity, yielding $\left\|v\left(s_{0}\right)\right\|_{\dot{H}^{1}} \leq C \eta^{\frac{1}{p+1}}$. From (4.20), as v is compactly supported in $B(0,2 R)$, the above estimate implies the desired estimate (4.18) at time s_{0}.

To prove Lemma 4.5, we need the following parabolic regularization result. Its proof uses standard parabolic tools and we do not give it here.

Lemma 4.6 (Parabolic regularization). Let $R, M>0,0<s_{0} \leq 1$ and w be a global solution to (4.3) satisfying:

$$
\begin{equation*}
\forall(s, y) \in[0,+\infty) \times \mathbb{R}^{d}, \quad\|w(s, y)\|_{H^{2}(B(0, R))} \leq M \tag{4.29}
\end{equation*}
$$

Then there exists $0<r \leq R$, a constant $C=C\left(R, s_{0}\right)$ and $\alpha>1$ such that:

$$
\begin{equation*}
\forall(s, y) \in\left[s_{0},+\infty\right) \times B(0, r), \quad|w(s, y)| \leq C\left(M+M^{\alpha}\right) . \tag{4.30}
\end{equation*}
$$

Proof of Lemma 4.5. Without loss of generality we take $\eta^{\prime}=\eta, s_{0}=0$, localize at scale $\frac{R}{2}$ by defining v by (4.20). The assumption (4.18) implies that for $s \geq 0$:

$$
\begin{equation*}
\int_{\mathbb{R}^{d}}\left(|v(s)|^{2}+|\nabla v(s)|^{2}\right) \mathrm{d} y \leq C \eta \text {. } \tag{4.31}
\end{equation*}
$$

We claim that for all $s \geq \frac{s_{1}}{2}$,

$$
\|v\|_{H^{2}} \leq C \eta .
$$

This will give the desired result (4.19) by applying Lemma 4.6 from (4.20). We now prove the above bound. By time invariance, we just have to prove it at time $\frac{S_{1}}{2}$.
Step 1 First estimate on v_{s}. Since w is a global solution starting in $W^{2, \infty}\left(\mathbb{R}^{d}\right)$ with $E(w(0)) \leq \eta$, from (4.8), one obtains:

$$
\begin{equation*}
\int_{0}^{+\infty} \int_{\mathbb{R}^{d}}\left|v_{s}\right|^{2} \mathrm{~d} y \mathrm{~d} s \leq C \eta . \tag{4.32}
\end{equation*}
$$

Step 2 Second estimate on v_{s}. Let $u=v_{s}$. From (4.3) and (4.20), the evolution of u is given by:

$$
\begin{equation*}
u_{s}-\Delta u=p|w|^{p-1} u+\left(\left[\frac{1}{p-1}-\frac{d}{2}\right] \chi-\frac{1}{2} \nabla \chi \cdot y+\Delta \chi\right) w_{s}+\nabla \cdot\left(\left[\frac{1}{2} \chi y-2 \nabla \chi\right] w_{s}\right) . \tag{4.33}
\end{equation*}
$$

We first state a non-linear estimate. Using Sobolev embedding, Hölder inequality and (4.18), one obtains:

$$
\int_{\mathbb{R}^{d}}|u|^{2}|w|^{p-1} \mathrm{~d} y \leq\|u\|_{L^{\frac{2 d}{d-2}\left(\mathbb{R}^{d}\right)}}^{2}\|w\|_{L^{\frac{2 d}{d-2}(B(0, R))}}^{p-1} \leq C \eta^{\frac{p-1}{2}} \int_{\mathbb{R}^{d}}|\nabla u|^{2} \mathrm{~d} y .
$$

We now perform an energy estimate. We multiply (4.33) by u and integrate in space using Young inequality for any $\kappa>0$ and the above inequality:

$$
\begin{aligned}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{ds}}\left[\int_{\mathbb{R}^{d}}|u|^{2} \mathrm{~d} y\right]= & -\int_{\mathbb{R}^{d}}|\nabla u|^{2} \mathrm{~d} y+\int_{\mathbb{R}^{d}}\left(\left[\frac{1}{p-1}-\frac{d}{2}\right] \chi-\frac{1}{2} \nabla \chi \cdot y+\Delta \chi\right) w_{s} u \mathrm{~d} y \\
& +\int\left(\left[\frac{1}{2} \chi y-2 \nabla \chi\right] w_{s}\right) \cdot \nabla u \mathrm{~d} y+\int_{\mathbb{R}^{d}} u^{2}|w|^{2(p-1)} \mathrm{d} y \\
\leq & -\int_{\mathbb{R}^{d}}|\nabla u|^{2} \mathrm{~d} y+C \int_{B(0, R)}\left(w_{s}^{2}+u^{2}\right) \mathrm{d} y+\frac{C}{\kappa} \int_{B(0, R)} w_{s}^{2} \mathrm{~d} y \\
& +C \kappa \int_{\mathbb{R}^{d}}|\nabla u|^{2} \mathrm{~d} y+C \eta^{\frac{p-1}{2}} \int_{\mathbb{R}^{d}}|\nabla u|^{2} \mathrm{~d} y \\
\leq & -\int_{\mathbb{R}^{d}}|\nabla u|^{2} \mathrm{~d} y+C(\kappa) \int_{B(0, R)} w_{s}^{2} \mathrm{~d} y
\end{aligned}
$$

if κ and η have been chosen small enough. Now because of the integrability (4.32), there exists at least one $\tilde{s} \in$ $\left[\max \left(0, \frac{s_{1}}{2}-1\right), \frac{s_{1}}{2}\right]$ such that:

$$
\int_{\mathbb{R}^{d}}\left|v_{s}(\tilde{s})\right|^{2} \mathrm{~d} y \leq C\left(s_{1}\right) \eta .
$$

One then obtains from the two previous inequalities and (4.8):

$$
\begin{equation*}
\int_{\mathbb{R}^{d}}\left|v_{s}(s)\right|^{2} \mathrm{~d} y \leq \int_{\mathbb{R}^{d}}\left|v_{s}(\tilde{s})\right|^{2} \mathrm{~d} y+C \int_{\tilde{s}}^{\frac{s_{1}}{2}} \int_{B(0, R)} w_{s}^{2} \mathrm{~d} y \mathrm{~d} s \leq C \eta . \tag{4.34}
\end{equation*}
$$

Step 3 Estimate on Δv. Applying Sobolev embedding and Hölder inequality, using the fact that $\left(\frac{2 d}{2} \frac{d-4}{2}=\frac{d}{4}=\frac{\frac{2 d}{d-2}}{2(p-1)}\right.$, one gets that for any $s \geq 0$:

$$
\begin{align*}
& \int_{\mathbb{R}^{d}} v^{2}|w|^{2(p-1)} \mathrm{d} y \leq\left\|v^{2}\right\|\left\|_{L^{\frac{d d}{d-4}}\left(\mathbb{R}^{d}\right)}\right\||w|^{2(p-1)} \|{ }_{L^{\frac{d d}{d(p-2)}}(B(0, R))} \\
& =\|v\|_{L^{\frac{2 d}{d-4}\left(\mathbb{R}^{d}\right)}}^{2}\|w\|_{L^{\frac{2 d}{d-2}(B(0, R))}}^{2(p-1)} \leq C\|v\|_{\dot{H}^{2}\left(\mathbb{R}^{d}\right)}^{2}\|w\|_{H^{1}(B(0, R))}^{2(p-1)} \\
& \leq C \eta^{p-1} \int_{\mathbb{R}^{d}}|\Delta v|^{2} \mathrm{~d} y, \tag{4.35}
\end{align*}
$$

where we injected the estimate (4.18). We inject the above estimate in (4.21), using (4.20), yielding for all $s \geq 0$:

$$
\begin{aligned}
\int_{\mathbb{R}^{d}}|\Delta v|^{2} \mathrm{~d} y & \leq C\left(\int_{\mathbb{R}^{d}}\left(\left|v_{s}\right|^{2}+|w|^{2}+|\nabla w|^{2}+v^{2}|w|^{2(p-1)}\right) \mathrm{d} y\right) \\
& \leq C \int_{\mathbb{R}^{d}}\left|v_{s}\right|^{2} \mathrm{~d} y+C \eta+C \eta^{p-1} \int_{\mathbb{R}^{d}}|\Delta v|^{2} \mathrm{~d} y
\end{aligned}
$$

where we used (4.29). Injecting (4.34), for η small enough:

$$
\begin{equation*}
\int_{\mathbb{R}^{d}}\left|\Delta v\left(\frac{s_{1}}{2}\right)\right|^{2} \mathrm{~d} y \leq C \int_{\mathbb{R}^{d}}\left|v_{s}\left(\frac{s_{1}}{2}\right)\right|^{2} \mathrm{~d} y+C \eta \leq C \eta . \tag{4.36}
\end{equation*}
$$

Step 4 Conclusion. From (4.31) and (4.36) we infer $\left\|v\left(\frac{s_{1}}{2}\right)\right\|_{\dot{H}^{2}} \leq C \eta$, which is exactly the bound we had to prove.
We now go from boundedness in L^{∞} in self-similar variables provided by Proposition 4.3 to boundedness in L^{∞} in original variables.

Lemma 4.7 ([9]]). Let $0 \leq a \leq \frac{1}{p-1}$ and $R, \epsilon_{0}>0$. Let $0<\epsilon \leq \epsilon_{0}$ and u be a solution to (1.1) on $[-1,0) \times \mathbb{R}^{d}$ satisfying

$$
\begin{equation*}
\forall(t, x) \in[-1,0) \times B(0, R), \quad|u(t, x)| \leq \frac{\epsilon}{|t|^{\frac{1}{p-1}-a}} . \tag{4.37}
\end{equation*}
$$

For ϵ_{0} small enough, the following holds for all $(t, x) \in[-1,0) \times B\left(0, \frac{R}{2}\right)$.

$$
\begin{align*}
& \text { If } \frac{1}{p-1}-a<\frac{1}{2}, \quad|u(t, x)| \leq C(a) \epsilon, \tag{4.38}\\
& \text { If } \frac{1}{p-1}-a=\frac{1}{2}, \quad|u(t, x)| \leq C \epsilon(1+|\ln (t)|), \tag{4.39}\\
& \text { If } \frac{1}{p-1}-a>\frac{1}{2}, \quad|u(t, x)| \leq \frac{C(a) \epsilon}{|t| \frac{1}{p-1}-a-\frac{1}{2}} . \tag{4.40}
\end{align*}
$$

Corollary 4.8. Let $R>0$ and $0<T_{-}<T_{+}$. There exists $\epsilon_{0}>0,0<r \leq R$ and $C>0$ such that the following holds. For any $0<\epsilon<\epsilon_{0}$, $T \in\left[T_{-}, T_{+}\right]$and u solution to (1.1) on $[0, T) \times \mathbb{R}^{d}$ satisfying

$$
\begin{equation*}
\forall(t, x) \in[0, T) \times B(0, R), \quad|u(t, x)| \leq \frac{\epsilon}{(T-t)^{\frac{1}{p-1}}}, \tag{4.41}
\end{equation*}
$$

one has:

$$
\begin{equation*}
\forall(t, x) \in[0, T) \times B(0, r), \quad|u(t, x)| \leq C \epsilon \tag{4.42}
\end{equation*}
$$

To prove Lemma 4.7, we need two technical Lemmas taken from [9], whose proof can be found there.
Lemma 4.9 ([9]). Define for $0<\alpha<1$ and $0<\theta<h<1$ the integral $I(h)=\int_{h}^{1}(s-h)^{-\alpha} s^{\theta}$ ds. It satisfies:

$$
\begin{align*}
& \text { If } \alpha+\theta>1, \quad I(h) \leq\left(\frac{1}{1-\alpha}+\frac{1}{\alpha+\theta-1}\right) h^{1-\alpha-\theta} \tag{4.43}\\
& \text { If } \alpha+\theta=1, \quad I(h) \leq \frac{1}{1-\alpha}+|\log (h)| \tag{4.44}\\
& \text { If } \alpha+\theta<1, \quad I(h) \leq \frac{1}{1-\alpha-\theta} . \tag{4.45}
\end{align*}
$$

Lemma 4.10 ([9]). If y, r and q are continuous functions defined on $\left[t_{0}, t_{1}\right]$ with

$$
y(t) \leq y_{0}+\int_{t_{0}}^{t} y(s) r(s) \mathrm{d} s+\int_{t_{0}}^{t} q(s) \mathrm{d} s
$$

for $t_{0} \leq t \leq t_{1}$, then for all $t_{0} \leq t \leq t_{1}$:

$$
\begin{equation*}
y(t) \leq \mathrm{e}^{\int_{t_{0}}^{t} r(\tau) \mathrm{d} \tau}\left[y_{0}+\int_{t_{0}}^{t} q(\tau) \mathrm{e}^{-\int_{t_{0}}^{\tau} r(\sigma) \mathrm{d} \sigma} \mathrm{~d} \tau\right] \tag{4.46}
\end{equation*}
$$

Proof of Lemma 4.7. We only treat the case (i), as the proof is the same for the other cases. We first localize the problem, with χ a smooth cut-off function, with $\chi=1$ on $B\left(0, \frac{R}{2}\right), \chi=0$ outside $B(0, R)$ and $|\chi| \leq 1$. We define

$$
\begin{equation*}
v:=\chi u \tag{4.47}
\end{equation*}
$$

whose evolution, from (1.1), is given by:

$$
\begin{equation*}
v_{t}=\Delta v+|u|^{p-1} v+\Delta \chi u-2 \nabla \cdot(\nabla \chi u) . \tag{4.48}
\end{equation*}
$$

We apply Duhamel's formula to (4.48) to find that for $t \in[-1,0)$:

$$
\begin{equation*}
v(t)=K_{t+1} * v(-1)+\int_{-1}^{t} K_{t-s} *\left(|u|^{p-1} v+\Delta \chi u-2 \nabla \cdot(\nabla \chi u)\right) \mathrm{d} s \tag{4.49}
\end{equation*}
$$

From (4.37) and (4.47), one has for free evolution term:

$$
\begin{equation*}
\left\|K_{t+1} * v(-1)\right\|_{L^{\infty}} \leq \epsilon \tag{4.50}
\end{equation*}
$$

We now find an upper bound for the other terms in the previous equation.
Step 1 Case (i). For the linear terms, as $\frac{1}{p-1}-a+\frac{1}{2}<1$, from (4.45) one has:

$$
\begin{align*}
\left\|\int_{-1}^{t} K_{t-s} *(\Delta \chi u-2 \nabla \cdot(\nabla \chi u)) \mathrm{d} s\right\|_{L^{\infty}} & \leq C \int_{-1}^{t} \frac{1}{(t-s)^{\frac{1}{2}}}\|u\|_{L^{\infty}(B(0, R))} \\
& \leq C \epsilon \int_{-1}^{t} \frac{1}{(t-s)^{\frac{1}{2}}} \frac{1}{|s|^{\frac{1}{p-1}-a}} \leq C(a) \epsilon \tag{4.51}
\end{align*}
$$

For the nonlinear term, as $\frac{1}{p-1}-a<\frac{1}{2}<\frac{1}{2(p-1)}=\frac{d-2}{8}$ because $d \geq 7$, we compute, using (4.37):

$$
\begin{align*}
\left\|\int_{-1}^{t} K_{t-s} *\left(\chi|u|^{p-1} v\right) \mathrm{d} s\right\|_{L^{\infty}} & \leq \int_{-1}^{t}\|u\|_{L^{\infty}(B(0, R))}^{p-1}\|v\|_{L^{\infty}} \mathrm{d} s \\
& \leq \epsilon^{p-1} \int_{-1}^{t} \frac{1}{|s|^{\frac{1}{2}}}\|v\|_{L^{\infty}} \mathrm{d} s . \tag{4.52}
\end{align*}
$$

Gathering (4.50), (4.51) and (4.52), from (4.49), one has:

$$
\|v(t)\|_{L^{\infty}} \leq C(a) \epsilon+\epsilon^{p-1} \int_{-1}^{t} \frac{1}{|s|^{\frac{1}{2}}}\|v\|_{L^{\infty}}
$$

Applying (4.46) one obtains:

$$
\|v(t)\|_{L^{\infty}} \leq C(a), \epsilon, \mathrm{e}^{\int_{-1}^{t}|s|^{-\frac{1}{2}} \mathrm{~d} s} \leq C(a) \epsilon
$$

which from (4.47) implies the bound (4.38) we had to prove.
We can now end the proof of Proposition 4.2.
Proof of Proposition 4.2. For any $a \in B(0, R)$, from (4.1), (4.13) and (4.14), $w_{a, T}$ satisfies $E\left(w_{a, T}(0, \cdot)\right) \leq \eta$ and:

$$
\left|\Delta w_{a, T}\right| \leq \frac{1}{2}\left|w_{a, T}\right|^{p}+\eta T_{+}^{\frac{p}{p-1}}
$$

Applying Proposition 4.3 to $w_{a, T}$, one obtains that for any $\eta^{\prime}>0$ if η is small enough:

$$
\forall s \geq s\left(\frac{T_{-}}{4}\right),\left|w_{a, T}(s, 0)\right| \leq \eta^{\prime}
$$

In original variables, this means:

$$
\forall(t, x) \in B(0, R) \times\left[\frac{T_{-}}{4}, T\right), \quad|u(t, x)| \leq \frac{\eta^{\prime}}{(T-t)^{\frac{1}{p-1}}}
$$

Applying Corollary 4.8 for η^{\prime} small enough, there exists $r>0$ such that

$$
\forall(t, x) \in B(0, R) \times\left[\frac{T_{-}}{4}, T\right), \quad|u(t, x)| \leq C \eta^{\prime}
$$

Then, a standard parabolic estimate propagates this bound for higher derivatives, yielding the result (4.15).

Acknowledgements

F.M. is partly supported by the ERC advanced grant 291214 BLOWDISOL. P.R. and C.C are supported by the ERC-2014-CoG 646650 SingWave. P.R. is a junior member of the 'Institut Universitaire de France'.

Appendix A. Parabolic estimates

We recall here some parabolic estimates. We refer to the proof of Theorem 8.18 in [1] for a proof of the Strichartz-type estimate. Let $d \geq 2$. We say that a couple of real numbers (q, r) is admissible if they satisfy:

$$
\begin{equation*}
q, r \geq 2,(q, r, d) \neq(2,+\infty, 2) \text { and } \frac{2}{q}+\frac{d}{r}=\frac{d}{2} \tag{A.1}
\end{equation*}
$$

For any exponent $p \geq 1$, we denote by $p^{\prime}=\frac{p-1}{p}$ its Lebesgue conjugated exponent.
Lemma 4.11 (Strichartz type estimates for solutions to the heat equation). Let $d \geq 2$ be an integer. The two following inequalities hold. For any $t>0$,

$$
\begin{equation*}
\forall j \in \mathbb{N}, \forall q \in[1,+\infty],\left\|\nabla^{j} K_{t}\right\|_{L^{q}} \leq \frac{C(d, j)}{t^{\frac{d}{2 q^{\prime}}+\frac{j}{2}}} \text { where } \frac{1}{q}+\frac{1}{q^{\prime}}=1 \tag{A.2}
\end{equation*}
$$

For any $\left(q_{1}, r_{1}\right),\left(q_{2}, r_{2}\right)$ satisfying (A.1), there exists a constant $C=C\left(d, q_{1}, q_{2}\right)$ such that for any source term $f \in L^{q_{2}^{\prime}}([0,+\infty)$, $\left.L^{r_{2}^{\prime}}\left(\mathbb{R}^{d}\right)\right):$

$$
\begin{equation*}
\left\|t \mapsto \int_{0}^{t} K_{t-t^{\prime}} * f\left(t^{\prime}\right) \mathrm{d} t^{\prime}\right\|_{L^{q_{1}}\left([0,+\infty), L^{\left.r_{1}\left(\mathbb{R}^{d}\right)\right)}\right.} \leq C\|f\|_{L^{q_{2}^{\prime}}\left([0,+\infty), L^{r_{2}^{\prime}}\left(\mathbb{R}^{d}\right)\right)} \tag{A.3}
\end{equation*}
$$

References

[1] H. Bahouri, J.-Y. Chemin, R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, vol. 343, Springer Science Business, Media, 2011.
[2] H. Brezis, T. Cazenave, A nonlinear heat equation with singular initial data, J. Anal. Math. 68 (1) (1996) 277-304.
[3] C. Collot, F. Merle, P. Raphaël, Dynamics near the ground state for the energy critical nonlinear heat equation in large dimension, preprint, 2016.
[4] C. Fermanian Kammerer, F. Merle, H. Zaag, Stability of the blow-up profile of non-linear heat equations from the dynamical system point of view, Math. Ann. 317 (2) (2000) 347-387.
[5] S. Filippas, M.A. Herrero, J.J. Velazquez, Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity, Proc. R. Soc. Lond. A 456 (2004) (2000) 2957-2982.
[6] Y. Giga, On elliptic equations related to self-similar solutions for nonlinear heat equations, Hiroshima Math. J. 16 (3) (1986) $539-552$.
[7] Y. Giga, R.V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Commun. Pure Appl. Math. 38 (3) (1985) $297-319$.
[8] Y. Giga, R.V. Kohn, Characterizing blowup using similarity variables, Indiana Univ. Math. J. 36 (1987) 1-40.
[9] Y. Giga, R.V. Kohn, Nondegeneracy of blowup for semilinear heat equations, Commun. Pure Appl. Math. 42 (6) (1989) 845-884.
[10] Y. Giga, S.Y. Matsui, S. Sasayama, Blow up rate for semilinear heat equations with subcritical nonlinearity, Indiana Univ. Math. J. 53 (2) (2004) $483-514$.
[11] F. Merle, H. Zaag, Optimal estimates for blowup rate and behavior for nonlinear heat equations, Commun. Pure Appl. Math. 51 (2) (1998) 139-196.
[12] F. Merle, H. Zaag, A Liouville theorem for vector-valued nonlinear heat equations and applications, Math. Ann. 316 (1) (2000) 103-137.
[13] P. Quittner, P. Souplet, Superlinear Parabolic Problems: Blow-Up, Global Existence and Steady States, Springer Science and Business Media, 2007.
[14] R. Schweyer, Type II blow-up for the four dimensional energy critical semi linear heat equation, J. Funct. Anal. 263 (12) (2012) $3922-3983$.
[15] F.B. Weissler, Local existence and nonexistence for semilinear parabolic equations in Lp, Indiana Univ. Math. J. 29 (1) (1980) 79-102.

[^0]: E-mail addresses: ccollot@unice.fr (C. Collot), merle@math.ucergy.fr (F. Merle), praphael@unice.fr (P. Raphaël).
 http://dx.doi.org/10.1016/j.crma.2016.10.020
 1631-073X/© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

[^1]: ${ }^{1}$ Without loss of generality for the sign.

[^2]: 2 With the convention that if the limit in the denominator is $+\infty$ the limit function is 0 .

[^3]: ${ }^{3}$ From the definition (4.6) of I and (4.7) one has that for all $s \geq 0, E(w(s)) \geq 0$. Hence the right hand side in (4.8) is nonnegative.
 ${ }^{4}$ Idem for the right hand side of (4.9) and (4.10).

