

### Contents lists available at ScienceDirect

## C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Partial differential equations

# Stability of ODE blow-up for the energy critical semilinear heat equation





Stabilité de l'explosion type EDO pour l'équation de la chaleur énergie critique

## Charles Collot<sup>a</sup>, Frank Merle<sup>b,c</sup>, Pierre Raphaël<sup>a</sup>

<sup>a</sup> Laboratoire Jean-Alexandre-Dieudonné, Université de Nice-Sophia Antipolis, France

<sup>b</sup> Laboratoire Laga, Université de Cergy-Pontoise, France

<sup>c</sup> IHES, Bures-sur-Yvette, France

#### ARTICLE INFO

Article history: Received 27 June 2016 Accepted after revision 24 October 2016 Available online 22 November 2016

Presented by Jean-Michel Coron

#### ABSTRACT

ć

We consider the energy critical semilinear heat equation

$$\partial_t u = \Delta u + |u|^{\frac{4}{d-2}} u, \ x \in \mathbb{R}^d$$

in dimension  $d \ge 3$ . We propose a self-contained proof of the stability of solutions u blowing-up in finite time with type-I ODE blow-up

$$\|u\|_{L^{\infty}} \sim \kappa (T-t)^{\frac{d-2}{4}}, \ T > 0, \ \kappa := \left(\frac{d-2}{4}\right)^{\frac{d-2}{4}}$$

which adapts to the energy critical case the proof of Fermanian, Merle, Zaag [4]. © 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND licenses (http://creativecommons.org/licenses/by-nc-nd/4.0/).

RÉSUMÉ

Nous considérons l'équation de la chaleur énergie critique

 $\partial_t u = \Delta u + |u|^{\frac{4}{d-2}} u, \ x \in \mathbb{R}^d$ 

en dimension  $d \ge 3$ . Nous proposons une preuve auto-contenue de la stabilité du régime explosif de type EDO

$$\|u\|_{L^{\infty}} \sim \kappa (T-t)^{\frac{d-2}{4}}, \ T > 0, \ \kappa := \left(\frac{d-2}{4}\right)^{\frac{d-2}{4}}$$

qui adapte au cas énergie critique la preuve de Fermanian, Merle, Zaag [4].

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND licenses (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.crma.2016.10.020

E-mail addresses: ccollot@unice.fr (C. Collot), merle@math.ucergy.fr (F. Merle), praphael@unice.fr (P. Raphaël).

<sup>1631-073</sup>X/© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

#### 1. Introduction and main result

We consider the energy critical semilinear heat equation

$$(NLH) \begin{cases} \partial_t u = \Delta u + |u|^{p-1} u, \quad p = p_{\mathsf{c}} := \frac{d+2}{d-2} \\ u(0, x) = u_0(x) \in \mathbb{R} \end{cases}, \quad (t, x) \in \mathbb{R} \times \mathbb{R}^d.$$
(1.1)

We refer to [2,15,13] for the initial value problem and a complete introduction to this kind of models. Solutions may become unbounded in finite time *T* 

$$||u(t)||_{L^{\infty}} \to +\infty \text{ as } t \to T,$$

an explicit example being given by the constant in space ODE blow-up solution

$$u(t,x) = \frac{\kappa_p}{(T-t)^{\frac{1}{p-1}}}, \ \kappa_p = \left(\frac{1}{p-1}\right)^{\frac{1}{p-1}}, \ \partial_t u = u^p.$$
(1.2)

Solutions blowing up with a self similar growth

$$\lim_{t \to T} \sup_{w \to T} \|u(t)\|_{L^{\infty}} (T-t)^{\frac{1}{p-1}} < +\infty$$
(1.3)

are called type-I blow-up solutions and have attracted considerable attention in the past twenty years [4,6–12]. It is in particular known that in the energy subcritical range  $1 , any blow-up is of type I and that the set of blow-up solutions is open in any reasonable topology. We consider in this paper the energy critical case <math>p = p_c$ , for which other blow-up dynamics have been constructed [5,14]. The result of this paper is that type-I blow-up is however still stable and described by the ODE blow-up (1.2).

**Theorem 1.1** (Stability of type-I blow-up,  $p = p_c$ ). The set of solutions blowing-up in finite time with type-I blow-up (1.3) is open in  $W^{3,\infty}(\mathbb{R}^d)$ .

**Remark 1.2.** The topology  $W^{3,\infty}$  is not essential because of the parabolic regularizing effects. In particular, Theorem 1.1 implies the corresponding stability in  $L^q(\mathbb{R}^d)$ ,  $q \ge \frac{2d}{d-2}$ , where (1.1) is also well-posed.

Theorem 1.1 is one of the key steps in the recent result of classification of the flow near the family of ground states (radially symmetric stationary solutions) [3]. Its proof is given in [4] in the energy subcritical range  $p < p_c$  using Liouville classification arguments of the constant self-similar solution. We closely follow the argument that however requires sharpening a number of estimates, and the purpose of this note is to present a self-contained proof of these improvements. Section 3 follows [4]. In Section 4, a local control of a solution by a local energy, given without a proof in [4], which is Proposition 4.2 here, is more subtle due to the energy critical feature.

**Notations.** The heat kernel is denoted by  $K_t(x) := \frac{1}{(4\pi t)^{\frac{d}{2}}} e^{-\frac{|x|^2}{4t}}$ . We forget the dependence in *p* in the notation of the constants in what follows.

#### 2. Some known properties of type-I blow-up

A point  $x \in \mathbb{R}^d$  is said to be a blow-up point for *u* blowing up at time *T* if there exists  $(t_n, x_n) \to (T, x)$  such that:

 $|u(t_n, x_n)| \to +\infty$  as  $n \to +\infty$ .

A fundamental fact is the rigidity for solutions satisfying the type-I blow-up estimate (1.3) that are global backward in time.

**Proposition 2.1** (*Liouville-type theorem for type-I blow-up* [11,12]). Let u be a solution to (1.1) on  $(-\infty, 0] \times \mathbb{R}^d$  such that  $||u||_{L^{\infty}} \le C(-t)^{\frac{1}{p-1}}$  for some constant C > 0, then there exists  $T \ge 0$  such that  $u = \pm \frac{\kappa}{(T-t)^{\frac{1}{p-1}}}$ , where  $\kappa$  is defined in (1.2).

We recall a precise description of type-I blow-up, with an asymptotic at a blow-up point and an ODE type characterization.

**Lemma 2.2** (Description of type-I blow-up [9,11,12]). Let u solve (1.1) with  $u_0 \in W^{2,\infty}$  blowing up at T > 0. The three following properties are equivalent:

(*i*) the blow-up is of type I;

(ii) 
$$\exists K > 0$$
,  $|\Delta u| \le \frac{1}{2} |u|^p + K$  on  $\mathbb{R}^d \times [0, T)$ ;  
(iii)  $\|u\|_{L^{\infty}} (T-t)^{\frac{1}{p-1}} \to \kappa$  as  $t \to T$ .  
(2.2)

Moreover, if *u* blows up with type I at *x*, then

$$(T-t)^{\frac{1}{p-1}}u(t,x+y\sqrt{T-t}) \to \pm \kappa \ \text{as } t \to T$$
(2.3)

in  $L^2(e^{-\frac{|y|^2}{4}})$  and in  $C^k(|y| < R)$  for any R > 0 and  $k \in \mathbb{N}$ . If  $u_n(0) \to u(0)$  in  $W^{2,\infty}$ , for large  $n, u_n$  blows up at time  $T_n$  with  $T_n \to T$ .

Some of the above results are stated in [4,9,11,12] in the case 1 , but are however still valid in the energy critical case. In particular, the only bounded solution to the self similar elliptic equation

$$\Delta w + |w|^{p-1}w = \frac{1}{2}\Lambda w, \quad \Lambda := \frac{2}{p-1} + x \cdot \nabla, \tag{2.4}$$

for  $1 is <math>\pm \kappa$  as follows from the Pohozaev type identity [7]:

$$(d-2)(p_{c}-p)\int_{\mathbb{R}^{d}}|\nabla w|^{2}e^{-\frac{|y|^{2}}{4}}dy + \frac{p-1}{2}\int_{\mathbb{R}^{d}}|y|^{2}|\nabla w|^{2}e^{-\frac{|y|^{2}}{4}}dy = 0.$$
(2.5)

#### 3. Proof of Theorem 1.1

We argue by contradiction, following [4]. Assume the result is false. From Lemma 2.2 and from the Cauchy theory in  $W^{2,\infty}$ , the negation means the following. There exists  $u_0 \in W^{3,\infty}$  such that the solution to (1.1) starting from  $u_0$  blows up at time 1 (without loss of generality) with:

$$\|u(t)\|_{L^{\infty}} \sim \kappa (1-t)^{-\frac{1}{p-1}} \text{ as } t \to 1,$$
(3.1)

and satisfies:

$$|\Delta u| \le \frac{1}{2} |u|^p + K \text{ on } \mathbb{R}^d \times [0, 1).$$

$$(3.2)$$

There exists a sequence  $u_n$  of solutions to (1.1) blowing up at time  $T_n$  with:

$$T_n \to 1$$
 and  $u_n \to u$  in  $\mathcal{C}_{\text{loc}}([0,1), W^{3,\infty}(\mathbb{R}^d))$  (3.3)

and there exists two sequences  $0 \le t_n < T_n$  and  $x_n$  such that:

$$|\Delta u_n| \le \frac{1}{2} |u_n|^p + 2K \text{ on } \mathbb{R}^d \times [0, t_n), \tag{3.4}$$

$$|\Delta u_n(t_n, x_n)| = \frac{1}{2} |u_n(t_n, x_n)|^p + 2K.$$
(3.5)

The strategy is the following. First we centralize the problem, showing that one can take without loss of generality  $x_n = 0$ . Then we prove that u and  $u_n$  become singular near 0 as  $(t, n) \rightarrow (1, +\infty)$ . In view of Lemma 2.2, the ODE type bound (3.4) means that  $u_n$  behaves approximately as a type-I blowing-up solution until  $t_n$ . This intuition is made rigorous by proving that an appropriate renormalization of  $u_n$  near  $(t_n, 0)$  converges to the constant in space blow-up profile (1.2). We then show that the inequality (3.5) passes to the limit, contradicting (3.2).

**Lemma 3.1.** Let u, u<sub>n</sub> be solutions to (1.1), t<sub>n</sub> and x<sub>n</sub> satisfy (3.1), (3.2), (3.3), (3.4) and (3.5). Then

$$t_n \to 1 \tag{3.6}$$

and there exist  $\hat{u}$  and  $\hat{u}_n$  solutions to (1.1) satisfying (3.1), (3.2), (3.4) and (3.5) with  $\hat{x}_n = 0$ . In addition,  $\hat{u}$  blows up with type I at (1,0),  $\hat{u}_n$  blows up at time  $T_n$  and  $\hat{u}(t_n, 0) \to +\infty$ .

<sup>&</sup>lt;sup>1</sup> Without loss of generality for the sign.

**Proof of Lemma 3.1. Step 1** Proof of (3.6). At time  $t_n$ , u satisfies the inequality (3.2), whereas  $u_n$  does not from (3.5). As  $u_n$  converges to u in  $C_{loc}^{1,2}([0, 1) \times \mathbb{R}^d)$  from (3.3), this forces  $t_n$  to tend to 1.

**Step 2** Centering and limit objects. Define  $\hat{u}_n(t, x) = u_n(t, x + x_n)$ . Then  $\hat{u}_n$  is a solution satisfying (3.4), (3.5) with  $\hat{x}_n = 0$ , and blowing up at time  $T_n \to 1$  from (3.3). From parabolic regularizing effects,  $(t, x) \mapsto u(t, x_n + x)$  is uniformly bounded in  $C_{\text{loc}}^{\frac{3}{2},3}([0, 1), \mathbb{R}^d)$ , hence as  $n \to +\infty$  using Arzela Ascoli theorem it converges to a function  $\hat{u}$  that also solves (1.1), satisfies (3.2) and

$$\|\hat{u}(t)\|_{L^{\infty}} \lesssim \kappa (1-t)^{-\frac{1}{p-1}}.$$
(3.7)

As  $u_n$  converges to u in  $C_{\text{loc}}([0, 1), W^{3,\infty}(\mathbb{R}^d))$  from (3.3),  $\hat{u}_n$  converges to  $\hat{u}$  in  $C_{\text{loc}}^{1,2}([0, 1) \times \mathbb{R}^d)$ , establishing (3.3).

**Step 3** Conditions for boundedness. We claim two facts. 1) If  $\hat{u}$  does not blow up at (1,0), then there exists r, C > 0 such that for all  $(t, y) \in [0, t_n] \times B(0, r)$ ,  $|\hat{u}_n(t, y)| \le C$ . 2) If there exists C > 0 such that  $|\hat{u}_n(t_n, 0)| \le C$ , then  $\hat{u}$  does not blow up at (0, 1).

Proof of the first fact. We reason by contradiction. If  $\hat{u}$  does not blow up at (1, 0), there exists r, C > 0 such that for all  $(t, y) \in [0, 1) \times B(0, r)$ ,  $|\hat{u}(t, y)| \leq C$ . Assume that there exists  $(\tilde{x}_n, \tilde{t}_n)$  such that  $\tilde{x}_n \in B(0, r)$  and  $|\hat{u}_n(\tilde{x}_n, \tilde{t}_n)| \to +\infty$ . As  $\hat{u}_n$  solves (1.1), from (3.5) one then has that:

$$\forall t \in [0, \tilde{t}_n], \ \partial_t |\hat{u}_n(t, \tilde{x}_n)| \le \frac{3}{2} |\hat{u}_n(t, \tilde{x}_n)|^p + 2K, \ |\hat{u}_n(\tilde{x}_n, \tilde{t}_n)| \to +\infty$$

This then implies that for any M > 0, there exists s > 0 such that for n large enough,  $|\hat{u}_n(\tilde{x}_n, t)| \ge M$  on  $[\max(0, \tilde{t}_n - s), \tilde{t}_n]$ . But this contradicts the convergence in  $C_{\text{loc}}([0, 1) \times B(0, r))$  established in Step 2 to the bounded function  $\hat{u}$ .

*Proof of the second fact.* We also prove it by contradiction. Assume that  $\hat{u}$  blows up at (0, 1) and  $|\hat{u}_n(t_n, 0)| \leq C$ . Then we claim that

$$\forall t \in [0, t_n), |\hat{u}_n(t, 0)| \le \max((4K)^{\frac{1}{p}}, C).$$

Indeed, as  $\hat{u}_n$  is a solution to (1.1) satisfying (3.4) one has that:

$$\forall t \in [0, t_n], \ \partial_t |\hat{u}_n(t, 0)| \ge \frac{1}{2} |\tilde{\hat{u}}_n(t, 0)|^p - 2K$$

So if the bound we claim is violated at some time  $0 \le t_0 \le \tau'_n$ , then  $|\hat{u}_n(t, 0)|$  is non-decreasing on  $[t_0, \tau'_n]$ , strictly greater than *C*, which at time  $t_n$  is a contradiction. But now as this bound is independent of *n*, valid on  $[0, t_n)$  with  $t_n \to 1$ , and as  $\hat{u}_n(t, 0) \to \hat{u}(t, 0)$  on [0, 1), one obtains at the limit that  $\hat{u}(t, 0)$  is bounded on [0, 1). From (2.3), this contradicts the blow up of  $\hat{u}$  at (1, 0).

**Step 4** End of the proof. It remains to prove the singular behavior near 0: that  $\hat{u}$  blows up at (1, 0) and that  $|\hat{u}_n(t_n, 0)| \rightarrow +\infty$ . We reason by contradiction. From Step 3 we assume that there exists C, r > 0 such that  $|\hat{u}| + |\hat{u}_n| \le C$  on  $[0, 1) \times B(0, r)$ . A standard parabolic estimate then implies that

$$\|\hat{u}(t)\|_{W^{3,\infty}(B(0,r'))} + \|\hat{u}_n(t)\|_{W^{3,\infty}(B(0,r'))} \le C'$$
(3.8)

for all  $t \in [\frac{1}{2}, 1)$  for some  $0 < r' \le r$ . Let  $\chi$  be a cut-off function,  $\chi = 1$  on  $B(0, \frac{r'}{2})$ ,  $\chi = 0$  outside B(0, r'). The evolution of  $\tilde{u}_n = \chi \hat{u}_n$  is given by:

$$\tilde{u}_{n,\tau} - \Delta \tilde{u}_n = \chi \left| \hat{u}_n \right|^{p-1} \hat{u}_n + \Delta \chi \hat{u}_n - 2\nabla \cdot \left( \nabla \chi \hat{u}_n \right) = F_n$$

with  $||F_n||_{W^{1,\infty}} \le C$  from (3.8). Fix  $0 < s \ll 1$ . One has:

$$\begin{aligned} \Delta \hat{u}_n(t_n, 0) &= K_s * (\Delta \tilde{u}_n(t_n - s))(0) + \sum_{i=1}^{d} \int_0^s \left[ \partial_{x_i} K_{s-s'} * \partial_{x_i} F(t_n - s + s') \right](0) \\ &= \Delta \hat{u}(t_n - s, 0) + o_{n \to +\infty}(1) + o_{s \to 0}(1) \end{aligned}$$

from (3.3), the estimate on  $F_n$  and (3.8). Similarly,

$$\hat{u}_n(t_n, 0) = \hat{u}(t_n, 0) + o_{n \to +\infty}(1) + o_{s \to 0}(1).$$

The equality (3.5) and the two above identities imply the following asymptotics:  $\lim -\inf |\Delta \hat{u}(t_n)| - \frac{|\hat{u}(t_n,0)|^p}{2} \ge 2K$ , which is in contradiction with (3.2). Hence  $\hat{u}$  blows up at (1,0) with type-I blow-up from (3.7) and  $|\hat{u}(t_n,0)| \to +\infty$ .

We return to the study of u and  $u_n$  introduced at the beginning of this Section to prove Theorem 1.1 by contradiction. From Lemma 3.1, keeping the notation u and  $u_n$  for  $\hat{u}$  and  $\hat{u}_n$  introduced there, one can assume without loss of generality that in addition to (3.1), (3.2), (3.3) and (3.4), u and  $u_n$  satisfy (3.6), and:

$$|\Delta u_n(t_n,0)| = \frac{1}{2} |u_n(t_n,0)|^p + 2K,$$
(3.9)

$$u_n(t_n, 0) \to +\infty, \tag{3.10}$$

$$|u(t,0)| \sim \frac{\kappa}{(1-t)^{\frac{1}{p-1}}}.$$
(3.11)

To renormalize appropriately  $u_n$  near (1, 0) we do the following. Define

$$M_n(t) := \left(\frac{\kappa}{\|u_n(t)\|_{L^{\infty}}}\right)^{p-1}.$$
(3.12)

For  $(\tilde{t}_n)_{n \in \mathbb{N}}$  a sequence of times,  $0 \leq \tilde{t}_n < T_n$ , the renormalization near  $(\tilde{t}_n, 0)$  is

$$v_n(\tau, y) := M_n^{\frac{1}{p-1}}(\tilde{t}_n) u_n\left(\tilde{t}_n + \tau M_n(\tilde{t}_n), M_n^{\frac{1}{2}}(\tilde{t}_n) y\right)$$
(3.13)

for  $(\tau, y) \in \left[-\frac{\tilde{t}_n}{M_n(\tilde{t}_n)}, \frac{T_n - \tilde{t}_n}{M_n(\tilde{t}_n)}\right] \times \mathbb{R}^d$ . One has the following asymptotics.

**Lemma 3.2.** Assume  $0 \le \tilde{t}_n \le t_n$  and  $\tilde{t}_n \to 1$ . Then

$$\|u_n(\tilde{t}_n)\|_{L^{\infty}} \sim \frac{\kappa}{(T_n - \tilde{t}_n)^{\frac{1}{p-1}}}, \quad i.e. \ M_n(\tilde{t}_n) \sim (T_n - \tilde{t}_n).$$
(3.14)

Moreover, up to a subsequence<sup>2</sup>:

$$\nu_n \to \frac{\kappa}{\left[ \left( \lim \frac{\|u_n(\tilde{t}_n)\|_{L^{\infty}}}{u_n(\tilde{t}_n, 0)} \right)^{p-1} - t \right]^{\frac{1}{p-1}}} \quad in \ C_{loc}^{1,2}((-\infty, 1) \times \mathbb{R}^d).$$

$$(3.15)$$

**Proof of Lemma 3.2. Step 1** Upper bound for  $M_n(\tilde{t}_n)$ . We claim that one always has  $\|u_n(\tilde{t}_n)\|_{L^{\infty}} \ge \frac{\kappa}{(T_n - \tilde{t}_n)^{\frac{1}{p-1}}}$ , i.e.

$$M_n(\tilde{t}_n) \le (T_n - \tilde{t}_n). \tag{3.16}$$

Indeed, if it is false, then there exists  $\delta > 0$  such that  $\|u_n(\tilde{t}_n)\|_{L^{\infty}} < \frac{\kappa}{(T_n + \delta - \tilde{t}_n)^{\frac{1}{p-1}}}$ . Therefore, from a parabolic comparison argument, this inequality propagates for the solutions, yielding that  $-\frac{\kappa}{(T_n + \delta - t)^{\frac{1}{p-1}}} \le u_n \le \frac{\kappa}{(T_n + \delta - t)^{\frac{1}{p-1}}}$  for all times  $t \ge \tilde{t}_n$ . This implies that  $u_n$  stays bounded up to  $T_n$ , which is a contradiction.

**Step 2** Proof of (3.15). Let  $(x_n)_{n \in \mathbb{N}} \in (\mathbb{R}^d)^{\mathbb{N}}$  and define:

$$\tilde{v}_{n}(\tau, y) := M_{n}^{\frac{1}{p-1}}(\tilde{t}_{n})u_{n}\left(\tilde{t}_{n} + \tau M_{n}(\tilde{t}_{n}), x_{n} + M_{n}^{\frac{1}{2}}(\tilde{t}_{n})y\right).$$
(3.17)

From (3.13),  $\tilde{v}_n$  is defined on  $\left[-\frac{\tilde{t}_n}{M_n(\tilde{t}_n)}, \frac{T_n-\tilde{t}_n}{M_n(\tilde{t}_n)}\right] \times \mathbb{R}^d$ . The lower bound,  $-\frac{\tilde{t}_n}{M_n(\tilde{t}_n)}$ , then goes to  $-\infty$  from (3.16).  $\tilde{v}_n$  is a solution to (1.1) satisfying:

$$\|\tilde{\nu}_n(0)\|_{L^{\infty}} \le \kappa, \tag{3.18}$$

$$\forall (\tau, y) \in \left[ -\frac{\tilde{t}_n}{M_n(\tilde{t}_n)}, 0 \right] \times \mathbb{R}^d, \quad \left| \Delta \tilde{v}_n \right| \le \frac{1}{2} \left| \tilde{v}_n \right|^p + 2K M_n^{\frac{p}{p-1}}(\tilde{t}_n), \tag{3.19}$$

from (3.4) and (3.13).

Precompactness of the renormalized functions. We claim that  $\tilde{v}_n$  is uniformly bounded in  $C_{loc}^{\frac{3}{2},3}(]-\infty,1) \times \mathbb{R}^d$ ). We now prove this result. First, we claim that

$$\tilde{\nu}_{n}| \le \max\left\{ (4K)^{\frac{1}{p}} M_{n}^{\frac{1}{p-1}}(\tilde{t}_{n}), \kappa \right\}.$$
(3.20)

Indeed, as  $\tilde{v}_n$  is a solution to (1.1) satisfying (3.19), one has that:

$$\partial_t |\tilde{\nu}_n| \geq \frac{1}{2} |\tilde{\nu}_n|^p - 2KM_n^{\frac{p}{p-1}}(\tilde{t}_n).$$

 $<sup>^2\,</sup>$  With the convention that if the limit in the denominator is  $+\infty$  the limit function is 0.

So if the bound we claim is violated, then  $\|\tilde{v}_n\|_{L^{\infty}}$  is strictly increasing, greater than  $\kappa$ , which at time 0 is a contradiction to (3.18). Moreover, as  $\|\tilde{v}_n(0)\|_{L^{\infty}} \leq \kappa$ , from a comparison argument, for  $0 \leq t < 1$ , on has that  $\|\tilde{v}_n(0)\|_{L^{\infty}} \leq \kappa (1-t)^{-\frac{1}{p-1}}$ . This and the above bound implies that for any T < 1,  $\tilde{v}_n$  is uniformly bounded, independently of n, in  $L^{\infty}((-\frac{\tilde{t}_n}{M_n(\tilde{t}_n)}, T] \times \mathbb{R}^d)$ . From standard parabolic regularization, it is uniformly bounded in  $C^{\frac{3}{2},3}((-\frac{\tilde{t}_n}{M_n}+1, T) \times \mathbb{R}^d)$ , yielding the desired result.

*Rigidity at the limit.* From Step 2 and Arzela Ascoli theorem, up to a subsequence,  $v_n$  converges in  $C_{loc}^{1,2}((-\infty, 0] \times \mathbb{R}^d)$  to a function v. The equation (1.1) passes to the limit and v also solves (1.1). (3.20) and (3.16) imply that  $|v| \le \kappa$ . (1.1), (3.16) and (3.19) imply that:

$$\partial_t |v| \geq \frac{1}{2} |v|^p.$$

Reintegrating this differential inequality, one obtains that  $|v| \le \frac{C}{|c-\tau|^{\frac{1}{p-1}}}$  for some *C*, *c* > 0. Applying the Liouville Lemma 2.1, one has that *v* is constant in space. Up to a subsequence  $v(0, x_n) = \kappa \lim_{n \to \infty} \frac{u_n(\tilde{u}_n, x_n)}{n}$ . The particular choice  $x_n = 0$ ,  $\tilde{v}_n = v_n$ .

one has that v is constant in space. Up to a subsequence,  $v(0, x_n) = \kappa \lim \frac{u_n(\tilde{t}_n, x_n)}{\|u_n(\tilde{t}_n)\|_{L^{\infty}}}$ . The particular choice  $x_n = 0$ ,  $\tilde{v}_n = v_n$  gives in particular the desired identity (3.15).

**Step 3** Lower bound on  $M_n$ . We claim that  $\lim_{n \to 1} \inf \frac{M_n}{T_n - \tilde{t}_n} \ge 1$ . We prove it by contradiction using a blow-up criterion from Section 4. From (3.12), and up to a subsequence, assume that there exists  $0 < \delta \ll 1$  and  $x_n \in \mathbb{R}^d$  such that  $u_n(\tilde{t}_n, x_n) > \frac{(1+\delta)\kappa}{(T_n - \tilde{t}_n)^{\frac{1}{p-1}}}$  and  $\frac{u_n(\tilde{t}_n, x_n)}{\|u_n(\tilde{t}_n)\|_{L^{\infty}}} \to 1$ . Therefore the renormalized function  $\tilde{v}_n$  defined by (3.17) blows up at  $\frac{T_n - \tilde{t}_n}{T_n - \tilde{t}_n} \ge (1+\delta)^{n-1}$ . From the contradiction  $\tilde{v}_n$  defined by (3.17) blows up at  $\frac{T_n - \tilde{t}_n}{T_n - \tilde{t}_n} \ge (1+\delta)^{n-1}$ .

 $\frac{T_n - \tilde{t}_n}{M_n(\tilde{t}_n)} \ge (1 + \delta)^{p-1}$ . From Step 2,  $\nu(0, \cdot)$  is uniformly bounded and converges to  $\kappa$ . Hence, defining the self-similar renormalization near  $((1 + \delta)^{p-1}, 0)$ 

$$w_{0,(1+\delta)^{p-1}}^{(n)}(t,y) = ((1+\delta)^{p-1}-t)^{\frac{1}{p-1}}\tilde{v}_n\left(t,\sqrt{(1+\delta)^{p-1}-t}y\right),$$

one has that  $I(w_{0,(1+\delta)^{p-1}}(0,\cdot)) \rightarrow I((1+\delta)^{p-1}\kappa) > 0$  where *I* is defined by (4.6). From (4.7), for *n* large enough, this implies that  $\tilde{v}_n$  should have blown up before  $(1+\delta)^{p-1}$ , which yields the desired contradiction.  $\Box$ 

To end the proof of Theorem 1.1, we now distinguish two cases for which one has to find a contradiction (which cover all possible cases up to subsequence):

Case 1: 
$$\lim \frac{u_n(x_n, t_n)}{\|u_n(t_n)\|_{L^{\infty}}} > 0,$$
 (3.21)

Case 2: 
$$\lim \frac{u_n(x_n, t_n)}{\|u_n(t_n)\|_{L^{\infty}}} = 0.$$
 (3.22)

**Proof of Theorem 1.1 in Case 1.** In this case, we can renormalize at time  $t_n$ . Let  $\tilde{t}_n = t_n$  and define  $v_n$  and  $M_n(\tilde{t}_n)$  by (3.13) and (3.12). (3.15) and (3.21) imply that  $\Delta v_n(0, 0) \rightarrow 0$  and  $v_n(0, 0) \rightarrow v(0, 0) > 0$ . From (3.9),  $v_n$  satisfies at the origin:

$$|\Delta v_n(0,0)| = \frac{1}{2} |v_n(0,0)|^p + 2K M_n^{\frac{p}{p-1}}(t_n).$$

As  $M_n(t_n) \rightarrow 0$  from (3.14), at the limit we get  $0 = \frac{1}{2}v(0,0) > 0$ , which is a contradiction, ending the proof of Theorem 1.1 in Case 1.  $\Box$ 

**Proof of Theorem 1.1 in Case 2. Step 1** Suitable renormalization before  $t_n$ . We claim that for any  $0 < \kappa_0 \ll 1$  one can find a sequence of times  $\tilde{t}_n$  such that  $0 \le \tilde{t}_n \le t_n$ ,  $\tilde{t}_n \to 1$  and such that  $v_n$  defined by (3.13) satisfies up to a subsequence:

$$\nu_n \to \frac{\kappa}{\left[\left(\frac{\kappa}{\kappa_0}\right)^{p-1} - 1 - t\right]^{\frac{1}{p-1}}} \text{ in } C^{1,2}_{\text{loc}}(] - \infty, 1) \times \mathbb{R}^d).$$
(3.23)

We now prove this fact. On the one hand,  $\frac{|u(t,0)|}{||u(t)||_{L^{\infty}}} \to 1$  as  $t \to 1$  (from (3.11) and (2.2) as u blow up with type I at 0) and for any  $0 \le T < 1$   $u_n$  converges to u in  $\mathcal{C}([0, T], L^{\infty}(\mathbb{R}^d))$  from (3.3). As  $t_n \to 1$ , using a diagonal argument and Lemma 3.2, up to a subsequence there exists a sequence of times  $0 \le t'_n \le t_n$  such that  $\frac{u_n(t'_n,0)}{||u(t'_n)||_{L^{\infty}}} \to 1$ . On the other hand, from the assumption (3.22) and (3.6),  $\lim \frac{|u_n(t_n,0)|}{||u_n(t_n)||_{L^{\infty}}} = 0$  and  $t_n \to 1$ . From a continuity argument, for  $\kappa_0$  small enough, there exists a sequence  $t'_n \le \tilde{t}_n \le t_n$  such that  $\lim \frac{u_n(\tilde{t}_n,0)}{||u_n(\tilde{t}_n)||_{L^{\infty}}} = \left[\left(\frac{\kappa}{\kappa_0}\right)^{p-1} - 1\right]^{-\frac{1}{p-1}}$ . From Lemma 3.2, one obtains the desired convergence result (3.23).

**Step 2** Local boundedness. Take  $\tilde{t}_n$  and  $v_n$  as in Step 1. From (3.13) and (3.14)  $v_n$  blows up at time  $\tau_n = \frac{T_n - \tilde{t}_n}{M_n(\tilde{t}_n)} \rightarrow 1$ . Up to time  $\tau'_n = \frac{t_n - \tilde{t}_n}{M_n(\tilde{t}_n)}$ ,  $0 \le \tau'_n$ ,  $v_n$  satisfies:

$$|\Delta v_n| \le \frac{1}{2} |v_n|^p + 2K M_n^{\frac{p}{p-1}}(\tilde{t}_n)$$
(3.24)

and we recall that  $M_n(\tilde{t}_n) \to 0$  from (3.14). Let R > 0 and  $a \in B(0, R)$ . Define

$$w_{a,\tau_n}^{(n)}(y,t) := (\tau_n - t)^{\frac{1}{p-1}} v_n(t, a + \sqrt{\tau_n - t}y).$$

Then as  $v_n(-1) \rightarrow \kappa_0$  from (3.23), one has that for *n* large enough

$$E[w_{a,\tau_n}^{(n)}(-1,\cdot)] = O(\kappa_0^2)$$

where the energy is defined by (4.4). One can then apply the result (4.15) of Proposition 4.2: there exists r > 0 such that for  $\kappa_0$  small enough and n large enough one has:

$$\forall t \in [0, \tau'_n], \ \|v_n(t)\|_{W^{2,\infty}(B(0,r))} \le C. \tag{3.25}$$

**Step 3** End of the proof. Let  $\chi$  be a cut-off function,  $\chi = 1$  on  $B(0, \frac{r}{2})$  and  $\chi = 0$  outside B(0, r). The evolution of  $\tilde{v}_n = \chi v_n$  is given by

$$\tilde{\nu}_{n,\tau} - \Delta \tilde{\nu}_n = \chi |\nu_n|^{p-1} \nu_n + \Delta \chi \nu_n - 2\nabla \cdot (\nabla \chi \nu_n) = F_n$$

with  $||F_n||_{W^{1,\infty}} \le C$  from (3.25). Fix  $0 < s \ll 1$ . One has:

$$\Delta v_n(\tau'_n, 0) = K_s * (\Delta \tilde{v}_n(\tau'_n - s))(0) + \sum_{1=0}^{d} \int_0^s \left[ \partial_{x_i} K_{s-s'} * \partial_{x_i} F(\tau'_n - s + s') \right](0)$$
  
=  $o_{n \to +\infty}(1) + o_{s \to 0}(1)$ 

from (3.23) and the estimate on  $F_n$ . Hence  $\Delta v_n(\tau'_n, 0) \to 0$  as  $n \to +\infty$ . On the other hand,  $\lim v_n(\tau'_n, 0) = v(\tau'_n, 0) > 0$  from (3.23) and the fact that  $0 \le \tau'_n \le 1$ . We recall that at time  $\tau'_n v_n$  satisfies:

$$|\Delta v_n(\tau'_n, 0)| = \frac{1}{2} |v_n(\tau'_n, 0)|^p + 2K M_n^{\frac{p}{p-1}}(\tilde{t}_n)$$

As  $M_n^{\frac{p}{p-1}}(\tilde{t}_n) \to 0$  from (3.14) at the limit, one has  $0 = \frac{1}{2}|v(\tau'_n, 0)|^p > 0$  which is a contradiction. This ends the proof of Theorem 1.1 in Case 2.  $\Box$ 

#### 4. A local smallness result

This section is devoted to the proof of (3.25).

#### 4.1. Self-similar variables

We follow the method introduced in [7–9] to study type-I blow-up locally. The results and the ideas of their proof are either contained in [8] or similar to the results there. A sharp blow-up criterion and other preliminary bounds are given by Lemma 4.1 and a condition for local boundedness is given in Proposition 4.2. For *u* defined on  $[0, T_{u_0}) \times \mathbb{R}^d$ ,  $a \in \mathbb{R}^d$  and T > 0, we define the self-similar renormalization of *u* at (T, a):

$$w_{a,T}(y,t) := (T-t)^{\frac{1}{p-1}} u(t, a + \sqrt{T-t}y)$$
(4.1)

for  $(t, y) \in [0, \min(T_{u_0}, T)) \times \mathbb{R}^d$ . Introducing the self-similar renormalized time:

$$s := -\log(T - t) \tag{4.2}$$

one sees that if *u* solves (1.1) then  $w_{a,T}$  solves:

$$\partial_s w_{a,T} - \Delta w_{a,T} - |w_{a,T}|^{p-1} w_{a,T} + \frac{1}{2} \Delta w_{a,T} = 0.$$
(4.3)

Equation (4.3) admits a natural Lyapunov functional,

$$E(w) = \int_{\mathbb{R}^d} \left( \frac{1}{2} |\nabla w(y)|^2 + \frac{1}{2(p-1)} |w(y)|^2 - \frac{1}{p+1} |w(y)|^{p+1} \right) \rho(y) \, \mathrm{d}y, \tag{4.4}$$

where  $\rho(y) := \frac{1}{(4\pi)^{\frac{d}{2}}} e^{-\frac{|y|^2}{4}}$  from the fact that for its solutions there holds:

$$\frac{\mathrm{d}}{\mathrm{d}s}E(w) = -\int_{\mathbb{R}^d} w_s^2 \,\rho \,\mathrm{d}y \le 0. \tag{4.5}$$

Another quantity that will prove to be helpful is the following:

$$I(w) := -2E(w) + \frac{p-1}{p+1} \left( \int_{\mathbb{R}^d} w^2 \rho \, \mathrm{d}y \right)^{\frac{p+1}{2}}.$$
(4.6)

**Lemma 4.1** ([7,11]). Let w be a global solution to (4.3) with  $E(w(0)) = E_0$ , then<sup>3</sup> for  $s \ge 0$ :

 $I(w(s)) \le 0, \ E_0 \ge 0$  (4.7)

$$\int_{0}^{\infty} \int_{\mathbb{R}^d} w_s^2 \rho \, \mathrm{d} y \, \mathrm{d} s \le E_0.$$
(4.8)

If moreover  $E_0 := E(w(0)) \le 1$ , then<sup>4</sup> for any  $s \ge 0$ :

$$\int_{\mathbb{R}^d} w^2 \rho \, \mathrm{d}y \le C E_0^{\frac{2}{p+1}},\tag{4.9}$$

$$\int_{s}^{s+1} \left( \int_{\mathbb{R}^d} (|\nabla w|^2 + w^2 + |w|^{p+1}) \rho \, \mathrm{d}y \right)^2 \mathrm{d}s \le C E_0^{\frac{p+3}{p+1}}.$$
(4.10)

**Proof of Lemma 4.1. Step 1** Proof of (4.7). We argue by contradiction and assume that  $I(w(s_0)) > 0$  for some  $s_0 \ge 0$ . The set  $S := \{s \ge s_0, I(s) \ge I(s_0)\}$  is closed by continuity. For any solution to (4.3), one has:

$$\frac{d}{ds}\left(\int_{\mathbb{R}^d} w^2 \rho \, \mathrm{d}y\right) = 2 \int_{\mathbb{R}^d} w \, w_s \, \rho \, \mathrm{d}y = -4 \, E(w) + \frac{2(p-1)}{p+1} \int_{\mathbb{R}^d} |w|^{p+1} \rho \, \mathrm{d}y.$$
(4.11)

Therefore, for any  $s \in S$ , from (4.6) and Jensen inequality this gives:

$$\frac{\mathrm{d}}{\mathrm{d}s} \left( \int_{\mathbb{R}^d} w^2 \rho \,\mathrm{d}y \right) \ge -4 \, E(w(s)) + \frac{2(p-1)}{p+1} \left( \int_{\mathbb{R}^d} w^2 \rho \,\mathrm{d}y \right)^{\frac{p+1}{2}} = I(w(s)) > 0 \tag{4.12}$$

as  $I(w(s)) \ge I(w(s_0))$ , which with (4.5) and (4.6) imply  $\frac{d}{ds}I(w(s)) > 0$ . Hence S is open and therefore  $S = [s_0, +\infty)$ . From (4.12) and (4.5), there exists  $s_1$  such that  $E(w(s)) \le \frac{p-1}{2(p+1)} \left( \int_{\mathbb{R}^d} w^2 \rho \, dy \right)^{\frac{p+1}{2}}$  for all  $s \ge s_1$ , implying from (4.12):

$$\frac{\mathrm{d}}{\mathrm{d}s}\left(\int\limits_{\mathbb{R}^d} w^2 \rho \,\mathrm{d}y\right) \ge 2\frac{p-1}{p+1}\left(\int\limits_{\mathbb{R}^d} w^2 \rho \,\mathrm{d}y\right)^{\frac{p+1}{2}}$$

This quantity must then tend to  $+\infty$  in finite time, which is a contradiction.

<sup>&</sup>lt;sup>3</sup> From the definition (4.6) of *I* and (4.7) one has that for all  $s \ge 0$ ,  $E(w(s)) \ge 0$ . Hence the right hand side in (4.8) is nonnegative.

<sup>&</sup>lt;sup>4</sup> Idem for the right hand side of (4.9) and (4.10).

**Step 2** End of the proof. (4.8) and (4.9) are consequences of (4.5), (4.6) and (4.7). To prove (4.10), from (4.11), (4.5), (4.9) and Hölder, one obtains:

$$\int_{s}^{s+1} \left( \int_{\mathbb{R}^d} |w|^{p+1} \rho \, \mathrm{d}y \right)^2 \mathrm{d}s \le \int_{s}^{s+1} \left( CE_0^2 + C \int_{\mathbb{R}^d} w_s^2 \rho \, \mathrm{d}y \int_{\mathbb{R}^d} w^2 \rho \, \mathrm{d}y \right) \mathrm{d}s \le CE_0^{\frac{p+3}{p+1}}$$

as  $E_0 \leq 1$ . This identity, using (4.4), (4.5) and as  $E_0 \leq 1$  implies (4.10).

**Proposition 4.2** (Condition for local boundedness). Let R > 0,  $0 < T_{-} < T_{+}$  and  $\delta > 0$ . There exists  $\eta > 0$  and  $0 < r \le R$  such that, for any  $T \in [T_{-}, T_{+}]$  and u solution to (1.1) on  $[0, T) \times \mathbb{R}^{d}$  with  $u_{0} \in W^{2,\infty}$  satisfying:

$$\forall a \in B(0, R), \ E(w_{a,T}(0, \cdot)) \le \eta, \tag{4.13}$$

$$\forall (t,x) \in [0,T) \times \mathbb{R}^d, \ |\Delta u(t,x)| \le \frac{1}{2} |u(t,x)|^p + \eta,$$

$$(4.14)$$

there holds

$$\forall t \in \left[\frac{T_{-}}{2}, T\right), \quad \|u(t)\|_{W^{2,\infty}(B(0,r))} \leq \delta.$$

$$(4.15)$$

The proof of Proposition 4.2 is done at the end of this subsection. We need intermediate results: Proposition 4.3 gives local smallness in self-similar variables, Lemma 4.7 and its Corollary 4.8 give local boundedness in  $L^{\infty}$  in original variables.

**Proposition 4.3.** For any R,  $s_0$ ,  $\delta > 0$ , there exists  $\eta > 0$  such that for any w global solution to (4.3), with  $w(0) \in W^{2,\infty}$  satisfying

$$E(w(0)) \le \eta \text{ and } \forall (s, y) \in [0, +\infty) \times \mathbb{R}^d, \ |\Delta w(s, y)| \le \frac{1}{2} |w(s, y)|^p + \eta,$$

$$(4.16)$$

there holds:

$$\forall (s, y) \in [s_0, +\infty) \times B(0, R), \ |w(s, y)| \le \delta.$$

$$(4.17)$$

**Proof of Proposition 4.3.** It is a direct consequence of Lemma 4.4 and Lemma 4.5.

**Lemma 4.4.** For any  $R, s_0, \eta' > 0$ , there exists  $\eta > 0$  such that for w a global solution to (4.3), with  $w(0) \in W^{2,\infty}(\mathbb{R}^d)$ , satisfying (4.16), there holds

$$\forall s \in [s_0, +\infty), \quad \int_{B(0,R)} (|w|^2 + |\nabla w|^2) \mathrm{d}y \le \eta'.$$
(4.18)

**Lemma 4.5.** For any  $R, \delta > 0$ ,  $0 < s_0 < s_1$  there exists  $\eta, \eta' > 0$  and  $0 < r \le R$  such that for w a global solution to (4.3) with  $w(0) \in W^{2,\infty}$ , satisfying (4.16) and (4.18), there holds:

$$\forall (s, y) \in [s_1, +\infty) \times B(0, r), \ |w(s, y)| \le \delta.$$
(4.19)

We now prove the two above lemmas. In what follows we will often have to localize the function *w*. Let  $\chi$  be a smooth cut-off function,  $\chi = 1$  on B(0, 1) and  $\chi = 0$  outside B(0, 2). For R > 0 we define  $\chi_R(x) = \chi(\frac{\chi}{R})$  and:

$$v := \chi_R w \tag{4.20}$$

(we will forget the dependence in *R* in the notations to ease writing, and will write  $\chi$  instead of  $\chi_R$ ). From (4.3) the evolution of *v* is then given by:

$$v_s - \Delta v = \chi |w|^{p-1} w + \left( \left[ \frac{1}{p-1} - \frac{d}{2} \right] \chi - \frac{1}{2} \nabla \chi \cdot y + \Delta \chi \right) w + \nabla \cdot \left( \left[ \frac{1}{2} \chi \, y - 2 \nabla \chi \right] w \right). \tag{4.21}$$

**Proof of Lemma 4.4.** We will prove that (4.18) holds at time  $s_0$ , which will imply (4.18) at any time  $s \in [s_0, +\infty)$  because of time invariance. We take  $d \ge 5$  for the sake of simplicity.

**Step 1** An estimate for  $\Delta w$ . First one notices that the results of Lemma 4.1 apply. From (4.16) and (4.3), there exists a constant C > 0 such that:

$$|w|^{2p} \le C(|w|^{p-1}w + \Delta w)^2 + C\eta^2 \le C|w_s|^2 + C|y|^2|\nabla w|^2 + Cw^2 + C\eta^2.$$

We integrate this in time, using (4.8), (4.9), (4.10) and (4.16), yielding for  $s \ge 0$ :

$$\int_{s}^{s+1} \int_{B(0,2R)} |w|^{2p} \, \mathrm{d}y \, \mathrm{d}s \le C\eta + C\eta^{\frac{p+3}{p+1}} + C\eta^{\frac{2}{p+1}} + C\eta^{2} \le C\eta^{\frac{2}{p+1}}.$$
(4.22)

Injecting the above estimate in (4.16), using (4.9) and (4.10), we obtain for  $s \ge 0$ :

$$\int_{s}^{s+1} \|w\|_{H^{2}(B(0,2R))}^{2} ds \leq \int_{s}^{s+1} \int_{B(0,2R)} (|\Delta w|^{2} + |\nabla w|^{2} + w^{2}) dy ds$$

$$\leq \int_{s}^{s+1} \int_{B(0,2R)} C(|w|^{2p} + |\nabla w|^{2} + w^{2}) dy ds + C\eta^{2} \leq C\eta^{\frac{2}{p+1}}.$$
(4.23)

**Step 2** Localization. We localize at scale *R* and define *v* by (4.20). From (4.20), (4.10) and (4.9), one obtains that there exists  $\tilde{s}_0 \in [\max(0, s_0 - 1), s_0]$  such that:

$$\|\nu(\tilde{s}_{0})\|_{H^{1}(\mathbb{R}^{d})}^{2} \lesssim \int_{B(0,2R)} (w(\tilde{s}_{0})^{2} + |\nabla w(\tilde{s}_{0})|^{2}) \, \mathrm{d}y \le C\eta^{\frac{2}{p+1}} + C\eta^{\frac{p+3}{p+1}} \le C\eta^{\frac{2}{p+1}}.$$
(4.24)

We apply Duhamel's formula to (4.21) to find that  $v(s_0)$  is given by:

$$\begin{aligned}
\nu(s_0) &= \int_{\tilde{s}_0}^{s_0} K_{s_0-s} * \left\{ \chi |w|^{p-1} w + \left( \left[ \frac{1}{p-1} - \frac{d}{2} \right] \chi - \frac{1}{2} \nabla \chi . y + \Delta \chi \right) w \right\} \mathrm{d}s \\
&+ \int_{\tilde{s}_0}^{s_0} \nabla \cdot K_{s_0-s} * \left( \left[ \frac{1}{2} \chi \, y - 2 \nabla \chi \right] w \right) \mathrm{d}s + K_{s_0-\tilde{s}_0} * \nu(\tilde{s}_0).
\end{aligned} \tag{4.25}$$

We now estimate the  $\dot{H}^1$  norm of each term in the previous identity, using (4.24), (4.10), (A.2), Young and Hölder inequalities:

$$\|K_{s_0-\tilde{s}_0} * \nu(\tilde{s}_0)\|_{\dot{H}^1(\mathbb{R}^d)} \le \|\nu(\tilde{s}_0)\|_{\dot{H}^1(\mathbb{R}^d)} \le C\eta^{\frac{1}{p+1}},$$
(4.26)

$$\left\| \int_{\tilde{s}_{0}}^{s_{0}} K_{s_{0}-s} * \{ \left( \left[ \frac{1}{p-1} - \frac{d}{2} \right] \chi - \frac{\nabla \chi \cdot y}{2} + \Delta \chi \right) w \} + \nabla \cdot K_{s_{0}-s} * \left( \left[ \frac{\chi y}{2} - 2\nabla \chi \right] w \right) \right\|_{\dot{H}^{1}}$$

$$\leq C \int_{\tilde{s}_{0}}^{s_{0}} \|w\|_{H^{1}(B(0,2R))} ds + C \int_{\tilde{s}_{0}}^{s_{0}} \frac{1}{|s_{0}-s|^{\frac{1}{2}}} \|w\|_{H^{1}(B(0,2R))} ds$$

$$(4.27)$$

$$\leq C\eta^{\frac{p+3}{4(p+1)}} + C\left(\int_{\tilde{s}_0}^{s_0} \frac{\mathrm{d}s}{|\tilde{s}_1 - s|^{\frac{1}{2} \times \frac{4}{3}}}\right)^{\frac{1}{4}} \left(\int_{\tilde{s}_0}^{s_0} \|w\|_{H^1(B(0,2R))}^4 \mathrm{d}s\right)^{\frac{1}{4}} \leq C\eta^{\frac{p+3}{4(p+1)}}.$$

For the non-linear term in (4.25), one first compute from (4.20) that:

$$\nabla(\chi |w|^{p-1}w) = p\chi |w|^{p-1}\nabla w + \nabla\chi |w|^{p-1}w.$$
(4.28)

For the first term in the previous identity, using Sobolev embedding, one obtains:

$$\begin{aligned} \||w|^{p-1}\nabla w\|_{L^{\frac{2d}{d-2+(d-4)(p-1)}}(B(0,2R))} &\leq C \|w\|_{L^{\frac{2d}{d-4}}(B(0,2R))}^{p-1} \|\nabla w\|_{L^{\frac{2d}{d-2}}(B(0,2R))} \\ &\leq C \|w\|_{H^{2}(B(0,2R))}^{p}. \end{aligned}$$

Therefore, from (4.23) this force term satisfies:

$$\int_{\tilde{s}_0}^{s_0} \||w|^{p-1} \nabla w\|_{L^{\frac{2}{p-1}}(B(0,2R))}^{\frac{2}{p}} ds \leq \int_{\tilde{s}_0}^{s_0} \|w\|_{H^2(B(0,2R))}^2 ds \leq C\eta^{\frac{2}{p+1}}.$$

We let (q, r) be the Lebesgue conjugated exponents of  $\frac{2}{p}$  and  $\frac{2d}{(d-2)+(d-4)(p-1)}$ :

$$q = \frac{2}{2-p} > 2, \ r = \frac{2d}{d+2-(d-4)(p-1)} > 2.$$

They satisfy the Strichartz relation  $\frac{2}{q} + \frac{d}{r} = \frac{d}{2}$ . Therefore, using (A.3), one obtains:

$$\left\|\int_{\tilde{s}_{0}}^{s_{0}} K_{s_{0}-s} * (p\chi|w(s)|^{p-1}\nabla w(s)) \,\mathrm{d}s\right\|_{L^{2}} \leq C \left(\int_{\tilde{s}_{0}}^{s_{0}} \||w|^{p-1}\nabla w\|_{L^{\frac{2d}{p-2+(d-4)(p-1)}}(B(0,2R))}^{\frac{p}{p}} \mathrm{d}s\right)^{\frac{p}{2}} \leq C\eta^{\frac{p}{(p+1)}}.$$

For the second term in (4.28) using (4.22), (A.2) and Hölder, one has:

...

$$\left\|\int_{\tilde{s}_0}^{s_0} K_{s_0-s} * (\nabla \chi |w|^{p-1} w) \, \mathrm{d}s \right\|_{L^2} \leq C \int_{\tilde{s}_0}^{s_0} \|w\|_{L^{2p}(B(0,2R))}^p \leq C \eta^{\frac{1}{p+1}}.$$

The two above estimates and the identity (4.28) imply the following bound:

$$\left\| \int_{\tilde{s}_0}^{s_0} K_{s_0-s} * (\chi |w|^{p-1} w) \, \mathrm{d}s \right\|_{\dot{H}^1} \le C \eta^{\frac{1}{p+1}}$$

We come back to (4.25) where we found estimates for each term in the right-hand side in (4.26), (4.27) and the above identity, yielding  $\|v(s_0)\|_{\dot{H}^1} \leq C\eta^{\frac{1}{p+1}}$ . From (4.20), as v is compactly supported in B(0, 2R), the above estimate implies the desired estimate (4.18) at time  $s_0$ .  $\Box$ 

To prove Lemma 4.5, we need the following parabolic regularization result. Its proof uses standard parabolic tools and we do not give it here.

**Lemma 4.6** (Parabolic regularization). Let  $R, M > 0, 0 < s_0 \le 1$  and w be a global solution to (4.3) satisfying:

$$\forall (s, y) \in [0, +\infty) \times \mathbb{R}^{d}, \ \|w(s, y)\|_{H^{2}(B(0, R))} \le M.$$
(4.29)

Then there exists  $0 < r \le R$ , a constant  $C = C(R, s_0)$  and  $\alpha > 1$  such that:

л

$$\forall (s, y) \in [s_0, +\infty) \times B(0, r), \ |w(s, y)| \le C(M + M^{\alpha}).$$

$$\tag{4.30}$$

**Proof of Lemma 4.5.** Without loss of generality we take  $\eta' = \eta$ ,  $s_0 = 0$ , localize at scale  $\frac{R}{2}$  by defining  $\nu$  by (4.20). The assumption (4.18) implies that for  $s \ge 0$ :

$$\int_{\mathbb{R}^d} (|v(s)|^2 + |\nabla v(s)|^2) \, \mathrm{d}y \le C\eta.$$
(4.31)

We claim that for all  $s \ge \frac{s_1}{2}$ ,

 $\|v\|_{H^2} \leq C\eta.$ 

This will give the desired result (4.19) by applying Lemma 4.6 from (4.20). We now prove the above bound. By time invariance, we just have to prove it at time  $\frac{s_1}{2}$ .

**Step 1** First estimate on  $v_s$ . Since w is a global solution starting in  $W^{2,\infty}(\mathbb{R}^d)$  with  $E(w(0)) \le \eta$ , from (4.8), one obtains:

$$\int_{0}^{+\infty} \int_{\mathbb{R}^d} |v_s|^2 \, \mathrm{d}y \, \mathrm{d}s \le C\eta.$$
(4.32)

**Step 2** Second estimate on  $v_s$ . Let  $u = v_s$ . From (4.3) and (4.20), the evolution of u is given by:

$$u_{s} - \Delta u = p|w|^{p-1}u + \left(\left[\frac{1}{p-1} - \frac{d}{2}\right]\chi - \frac{1}{2}\nabla\chi\cdot y + \Delta\chi\right)w_{s} + \nabla\cdot\left(\left[\frac{1}{2}\chi\,y - 2\nabla\chi\right]w_{s}\right).$$
(4.33)

We first state a non-linear estimate. Using Sobolev embedding, Hölder inequality and (4.18), one obtains:

$$\int_{\mathbb{R}^d} |u|^2 |w|^{p-1} \mathrm{d}y \le \|u\|_{L^{\frac{2d}{d-2}}(\mathbb{R}^d)}^2 \|w\|_{L^{\frac{2d}{d-2}}(B(0,R))}^{p-1} \le C\eta^{\frac{p-1}{2}} \int_{\mathbb{R}^d} |\nabla u|^2 \mathrm{d}y.$$

We now perform an energy estimate. We multiply (4.33) by u and integrate in space using Young inequality for any  $\kappa > 0$  and the above inequality:

$$\begin{split} \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}s} \left[ \int_{\mathbb{R}^d} |u|^2 \mathrm{d}y \right] &= -\int_{\mathbb{R}^d} |\nabla u|^2 \mathrm{d}y + \int_{\mathbb{R}^d} \left( \left[ \frac{1}{p-1} - \frac{d}{2} \right] \chi - \frac{1}{2} \nabla \chi \cdot y + \Delta \chi \right) w_s u \, \mathrm{d}y \\ &+ \int \left( \left[ \frac{1}{2} \chi \, y - 2 \nabla \chi \right] w_s \right) \cdot \nabla u \, \mathrm{d}y + \int_{\mathbb{R}^d} u^2 |w|^{2(p-1)} \mathrm{d}y \\ &\leq -\int_{\mathbb{R}^d} |\nabla u|^2 \mathrm{d}y + C \int_{B(0,R)} (w_s^2 + u^2) \, \mathrm{d}y + \frac{C}{\kappa} \int_{B(0,R)} w_s^2 \mathrm{d}y \\ &+ C\kappa \int_{\mathbb{R}^d} |\nabla u|^2 \mathrm{d}y + C\eta^{\frac{p-1}{2}} \int_{\mathbb{R}^d} |\nabla u|^2 \mathrm{d}y \\ &\leq -\int_{\mathbb{R}^d} |\nabla u|^2 \mathrm{d}y + C(\kappa) \int_{B(0,R)} w_s^2 \, \mathrm{d}y \end{split}$$

if  $\kappa$  and  $\eta$  have been chosen small enough. Now because of the integrability (4.32), there exists at least one  $\tilde{s} \in [\max(0, \frac{s_1}{2} - 1), \frac{s_1}{2}]$  such that:

$$\int_{\mathbb{R}^d} |v_s(\tilde{s})|^2 \mathrm{d} y \leq C(s_1)\eta.$$

One then obtains from the two previous inequalities and (4.8):

$$\int_{\mathbb{R}^d} |v_s(s)|^2 dy \le \int_{\mathbb{R}^d} |v_s(\tilde{s})|^2 dy + C \int_{\tilde{s}}^{\frac{s_1}{2}} \int_{B(0,R)} w_s^2 dy \, ds \le C\eta.$$
(4.34)

**Step 3** Estimate on  $\Delta v$ . Applying Sobolev embedding and Hölder inequality, using the fact that  $\left(\frac{2d}{d-4}\right)' = \frac{d}{4} = \frac{\frac{2d}{d-2}}{2(p-1)}$ , one gets that for any  $s \ge 0$ :

$$\int_{\mathbb{R}^{d}} v^{2} |w|^{2(p-1)} dy \leq \|v^{2}\|_{L^{\frac{2d}{d-4}}(\mathbb{R}^{d})} \||w|^{2(p-1)}\|_{L^{\frac{2d}{d-2}}(B(0,R))}$$

$$= \|v\|_{L^{\frac{2d}{d-4}}(\mathbb{R}^{d})}^{2} \|w\|_{L^{\frac{2d}{d-2}}(B(0,R))}^{2(p-1)} \leq C \|v\|_{\dot{H}^{2}(\mathbb{R}^{d})}^{2} \|w\|_{H^{1}(B(0,R))}^{2(p-1)}$$

$$\leq C \eta^{p-1} \int_{\mathbb{R}^{d}} |\Delta v|^{2} dy,$$
(4.35)

where we injected the estimate (4.18). We inject the above estimate in (4.21), using (4.20), yielding for all  $s \ge 0$ :

$$\begin{split} \int_{\mathbb{R}^d} |\Delta v|^2 \mathrm{d}y &\leq C \left( \int_{\mathbb{R}^d} (|v_s|^2 + |w|^2 + |\nabla w|^2 + v^2 |w|^{2(p-1)}) \, \mathrm{d}y \right) \\ &\leq C \int_{\mathbb{R}^d} |v_s|^2 \mathrm{d}y + C\eta + C\eta^{p-1} \int_{\mathbb{R}^d} |\Delta v|^2 \mathrm{d}y, \end{split}$$

where we used (4.29). Injecting (4.34), for  $\eta$  small enough:

$$\int_{\mathbb{R}^d} \left| \Delta v \left( \frac{s_1}{2} \right) \right|^2 \mathrm{d}y \le C \int_{\mathbb{R}^d} \left| v_s \left( \frac{s_1}{2} \right) \right|^2 \mathrm{d}y + C\eta \le C\eta.$$
(4.36)

**Step 4** Conclusion. From (4.31) and (4.36) we infer  $\|v(\frac{s_1}{2})\|_{\dot{H}^2} \leq C\eta$ , which is exactly the bound we had to prove.  $\Box$ 

We now go from boundedness in  $L^{\infty}$  in self-similar variables provided by Proposition 4.3 to boundedness in  $L^{\infty}$  in original variables.

**Lemma 4.7** ([9]). Let  $0 \le a \le \frac{1}{p-1}$  and  $R, \epsilon_0 > 0$ . Let  $0 < \epsilon \le \epsilon_0$  and u be a solution to (1.1) on  $[-1, 0) \times \mathbb{R}^d$  satisfying

$$\forall (t,x) \in [-1,0) \times B(0,R), \ |u(t,x)| \le \frac{\epsilon}{|t|^{\frac{1}{p-1}-a}}.$$
(4.37)

For  $\epsilon_0$  small enough, the following holds for all  $(t, x) \in [-1, 0) \times B\left(0, \frac{R}{2}\right)$ .

If 
$$\frac{1}{p-1} - a < \frac{1}{2}, \quad |u(t,x)| \le C(a)\epsilon,$$
 (4.38)

$$lf \ \frac{1}{p-1} - a = \frac{1}{2}, \quad |u(t,x)| \le C\epsilon (1 + |ln(t)|), \tag{4.39}$$

$$|f|\frac{1}{p-1} - a > \frac{1}{2}, \quad |u(t,x)| \le \frac{C(a)\epsilon}{|t|^{\frac{1}{p-1} - a - \frac{1}{2}}}.$$
(4.40)

**Corollary 4.8.** Let R > 0 and  $0 < T_{-} < T_{+}$ . There exists  $\epsilon_{0} > 0$ ,  $0 < r \le R$  and C > 0 such that the following holds. For any  $0 < \epsilon < \epsilon_{0}$ ,  $T \in [T_{-}, T_{+}]$  and u solution to (1.1) on  $[0, T) \times \mathbb{R}^{d}$  satisfying

$$\forall (t,x) \in [0,T) \times B(0,R), \ |u(t,x)| \le \frac{\epsilon}{(T-t)^{\frac{1}{p-1}}},$$
(4.41)

one has:

$$\forall (t, x) \in [0, T) \times B(0, r), \ |u(t, x)| \le C\epsilon.$$

$$(4.42)$$

To prove Lemma 4.7, we need two technical Lemmas taken from [9], whose proof can be found there.

**Lemma 4.9** ([9]). Define for  $0 < \alpha < 1$  and  $0 < \theta < h < 1$  the integral  $I(h) = \int_{h}^{1} (s-h)^{-\alpha} s^{\theta} ds$ . It satisfies:

$$If \alpha + \theta > 1, \quad I(h) \le \left(\frac{1}{1-\alpha} + \frac{1}{\alpha+\theta-1}\right)h^{1-\alpha-\theta},\tag{4.43}$$

$$If \alpha + \theta = 1, \quad I(h) \le \frac{1}{1 - \alpha} + |\log(h)|, \tag{4.44}$$

$$If \alpha + \theta < 1, \quad I(h) \le \frac{1}{1 - \alpha - \theta}.$$
(4.45)

**Lemma 4.10** ([9]). If y, r and q are continuous functions defined on  $[t_0, t_1]$  with

$$y(t) \le y_0 + \int_{t_0}^t y(s) r(s) \, \mathrm{d}s + \int_{t_0}^t q(s) \, \mathrm{d}s$$

for  $t_0 \le t \le t_1$ , then for all  $t_0 \le t \le t_1$ :

$$y(t) \le e^{\int_{t_0}^{t} r(\tau) \, d\tau} \left[ y_0 + \int_{t_0}^{t} q(\tau) \, e^{-\int_{t_0}^{\tau} r(\sigma) \, d\sigma} \, d\tau \right].$$
(4.46)

**Proof of Lemma 4.7.** We only treat the case (i), as the proof is the same for the other cases. We first localize the problem, with  $\chi$  a smooth cut-off function, with  $\chi = 1$  on  $B(0, \frac{R}{2})$ ,  $\chi = 0$  outside B(0, R) and  $|\chi| \le 1$ . We define

$$v := \chi u \tag{4.47}$$

whose evolution, from (1.1), is given by:

$$v_t = \Delta v + |u|^{p-1}v + \Delta \chi u - 2\nabla \cdot (\nabla \chi u).$$
(4.48)

We apply Duhamel's formula to (4.48) to find that for  $t \in [-1, 0)$ :

$$v(t) = K_{t+1} * v(-1) + \int_{-1}^{t} K_{t-s} * (|u|^{p-1}v + \Delta \chi u - 2\nabla \cdot (\nabla \chi u)) \,\mathrm{d}s.$$
(4.49)

From (4.37) and (4.47), one has for free evolution term:

$$\|K_{t+1} * \nu(-1)\|_{L^{\infty}} \le \epsilon.$$

$$(4.50)$$

We now find an upper bound for the other terms in the previous equation. **Step 1** Case (i). For the linear terms, as  $\frac{1}{p-1} - a + \frac{1}{2} < 1$ , from (4.45) one has:

$$\begin{aligned} \|\int_{-1}^{t} K_{t-s} * (\Delta \chi u - 2\nabla \cdot (\nabla \chi u)) ds\|_{L^{\infty}} &\leq C \int_{-1}^{t} \frac{1}{(t-s)^{\frac{1}{2}}} \|u\|_{L^{\infty}(B(0,R))} \\ &\leq C \epsilon \int_{-1}^{t} \frac{1}{(t-s)^{\frac{1}{2}}} \frac{1}{|s|^{\frac{1}{p-1}-a}} \leq C(a) \epsilon \,. \end{aligned}$$

$$(4.51)$$

For the nonlinear term, as  $\frac{1}{p-1} - a < \frac{1}{2} < \frac{1}{2(p-1)} = \frac{d-2}{8}$  because  $d \ge 7$ , we compute, using (4.37):

$$\|\int_{-1}^{t} K_{t-s} * (\chi |u|^{p-1}v) ds\|_{L^{\infty}} \leq \int_{-1}^{t} \|u\|_{L^{\infty}(B(0,R))}^{p-1} \|v\|_{L^{\infty}} ds$$
  
$$\leq \epsilon^{p-1} \int_{-1}^{t} \frac{1}{|s|^{\frac{1}{2}}} \|v\|_{L^{\infty}} ds.$$
(4.52)

Gathering (4.50), (4.51) and (4.52), from (4.49), one has:

$$\|v(t)\|_{L^{\infty}} \leq C(a)\epsilon + \epsilon^{p-1} \int_{-1}^{t} \frac{1}{|s|^{\frac{1}{2}}} \|v\|_{L^{\infty}}.$$

Applying (4.46) one obtains:

$$\|\boldsymbol{\nu}(t)\|_{L^{\infty}} \leq C(a), \epsilon, e^{\int_{-1}^{t} |s|^{-\frac{1}{2}} \mathrm{d}s} \leq C(a)\epsilon$$

which from (4.47) implies the bound (4.38) we had to prove.  $\Box$ 

We can now end the proof of Proposition 4.2.

**Proof of Proposition 4.2.** For any  $a \in B(0, R)$ , from (4.1), (4.13) and (4.14),  $w_{a,T}$  satisfies  $E(w_{a,T}(0, \cdot)) \le \eta$  and:

$$|\Delta w_{a,T}| \leq \frac{1}{2} |w_{a,T}|^p + \eta T_+^{\frac{p}{p-1}}.$$

Applying Proposition 4.3 to  $w_{a,T}$ , one obtains that for any  $\eta' > 0$  if  $\eta$  is small enough:

$$\forall s \ge s\left(\frac{T_-}{4}\right), \ |w_{a,T}(s,0)| \le \eta'.$$

In original variables, this means:

$$\forall (t,x) \in B(0,R) \times [\frac{T_{-}}{4},T), \ |u(t,x)| \le \frac{\eta'}{(T-t)^{\frac{1}{p-1}}}.$$

Applying Corollary 4.8 for  $\eta'$  small enough, there exists r > 0 such that

$$\forall (t,x) \in B(0,R) \times [\frac{T_-}{4},T), \ |u(t,x)| \leq C\eta'.$$

Then, a standard parabolic estimate propagates this bound for higher derivatives, yielding the result (4.15).

#### Acknowledgements

F.M. is partly supported by the ERC advanced grant 291214 BLOWDISOL. P.R. and C.C are supported by the ERC-2014-CoG 646650 SingWave. P.R. is a junior member of the 'Institut Universitaire de France'.

#### Appendix A. Parabolic estimates

We recall here some parabolic estimates. We refer to the proof of Theorem 8.18 in [1] for a proof of the Strichartz-type estimate. Let  $d \ge 2$ . We say that a couple of real numbers (q, r) is admissible if they satisfy:

$$q, r \ge 2, \ (q, r, d) \ne (2, +\infty, 2) \text{ and } \frac{2}{q} + \frac{d}{r} = \frac{d}{2}.$$
 (A.1)

For any exponent  $p \ge 1$ , we denote by  $p' = \frac{p-1}{p}$  its Lebesgue conjugated exponent.

**Lemma 4.11** (Strichartz type estimates for solutions to the heat equation). Let  $d \ge 2$  be an integer. The two following inequalities hold. For any t > 0,

$$\forall j \in \mathbb{N}, \ \forall q \in [1, +\infty], \ \|\nabla^j K_t\|_{L^q} \le \frac{C(d, j)}{t^{\frac{d}{2q'} + \frac{j}{2}}} \ \text{where } \frac{1}{q} + \frac{1}{q'} = 1.$$
(A.2)

For any  $(q_1, r_1)$ ,  $(q_2, r_2)$  satisfying (A.1), there exists a constant  $C = C(d, q_1, q_2)$  such that for any source term  $f \in L^{q'_2}([0, +\infty), L^{r'_2}(\mathbb{R}^d))$ :

$$\left\| t \mapsto \int_{0}^{t} K_{t-t'} * f(t') dt' \right\|_{L^{q_1}([0,+\infty),L^{r_1}(\mathbb{R}^d))} \le C \| f \|_{L^{q'_2}([0,+\infty),L^{r'_2}(\mathbb{R}^d))}.$$
(A.3)

#### References

- [1] H. Bahouri, J.-Y. Chemin, R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, vol. 343, Springer Science Business, Media, 2011.
- [2] H. Brezis, T. Cazenave, A nonlinear heat equation with singular initial data, J. Anal. Math. 68 (1) (1996) 277-304.
- [3] C. Collot, F. Merle, P. Raphaël, Dynamics near the ground state for the energy critical nonlinear heat equation in large dimension, preprint, 2016.
- [4] C. Fermanian Kammerer, F. Merle, H. Zaag, Stability of the blow-up profile of non-linear heat equations from the dynamical system point of view, Math. Ann. 317 (2) (2000) 347-387.
- [5] S. Filippas, M.A. Herrero, J.J. Velazquez, Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity, Proc. R. Soc. Lond. A 456 (2004) (2000) 2957–2982.
- [6] Y. Giga, On elliptic equations related to self-similar solutions for nonlinear heat equations, Hiroshima Math. J. 16 (3) (1986) 539-552.
- [7] Y. Giga, R.V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Commun. Pure Appl. Math. 38 (3) (1985) 297-319.

[8] Y. Giga, R.V. Kohn, Characterizing blowup using similarity variables, Indiana Univ. Math. J. 36 (1987) 1-40.

- [9] Y. Giga, R.V. Kohn, Nondegeneracy of blowup for semilinear heat equations, Commun. Pure Appl. Math. 42 (6) (1989) 845-884.
- [10] Y. Giga, S.Y. Matsui, S. Sasayama, Blow up rate for semilinear heat equations with subcritical nonlinearity, Indiana Univ. Math. J. 53 (2) (2004) 483-514.
- [11] F. Merle, H. Zaag, Optimal estimates for blowup rate and behavior for nonlinear heat equations, Commun. Pure Appl. Math. 51 (2) (1998) 139–196.
- [12] F. Merle, H. Zaag, A Liouville theorem for vector-valued nonlinear heat equations and applications, Math. Ann. 316 (1) (2000) 103-137.
- [13] P. Quittner, P. Souplet, Superlinear Parabolic Problems: Blow-Up, Global Existence and Steady States, Springer Science and Business Media, 2007.
- [14] R. Schweyer, Type II blow-up for the four dimensional energy critical semi linear heat equation, J. Funct. Anal. 263 (12) (2012) 3922–3983.
- [15] F.B. Weissler, Local existence and nonexistence for semilinear parabolic equations in Lp, Indiana Univ. Math. J. 29 (1) (1980) 79-102.