Group theory

Sylow 2-subgroups of solvable \mathbb{Q}_{1}-groups

2-Sous-groupes de Sylow des \mathbb{Q}_{1}-groupes résolubles

Meysam Norooz-Abadian, Hesamuddin Sharifi
Department of Mathematics, Faculty of Science, Shahed University, Tehran, Iran

A R T I C L E I N F O

Article history:

Received 23 March 2016
Accepted after revision 8 November 2016
Available online 23 November 2016
Presented by the Editorial Board

Abstract

A finite group whose irreducible complex non-linear characters are rational is called a \mathbb{Q}_{1}-group. In this paper, we study the structure of a \mathbb{Q}_{1}-group through its Sylow 2-subgroups.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Ré S U M É

Un groupe fini dont les caractères complexes non linéaires sont rationnels est appelé un \mathbb{Q}_{1}-groupe. Nous étudions dans cette Note la structure d'un \mathbb{Q}_{1}-groupe par le biais de ses 2-sous-groupes de Sylow.
© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and preliminary

A finite group G is said to be rational or \mathbb{Q}-group if every complex irreducible character of G is rational. It is well known that rational groups have even order and hence they have non-trivial Sylow 2-subgroups [8]. M. Isaacs and G. Navarro proved that if a Sylow 2-subgroup of a rational group has nilpotence class at most two, then it is rational [7]. However, there is no classification of such groups, but the structure of rational groups with quaternion or Abelian Sylow 2-subgroups was given in [8]. In [2], the authors proved that if G is a supersolvable rational group, then its Sylow 2 -subgroup is also rational, and they studied solvable rational groups with an extraspacial Sylow 2-subgroup. In this paper, we will restrict our attention to finite groups G, whose non-linear complex irreducible characters are rational-valued. Such a group is called a \mathbb{Q}_{1}-group. We study the Sylow 2-subgroups of a \mathbb{Q}_{1}-group and determine the general structure of this type of solvable groups. This paper can be considered as an attempt to describe solvable non-Abelian \mathbb{Q}_{1}-groups. For some elementary properties of \mathbb{Q}_{1}-groups, we refer the reader to [1]. Similar to rational groups, \mathbb{Q}_{1}-groups have also even orders and hence they have non-trivial Sylow 2-subgroups [1].

Throughout the paper, we consider finite groups and we employ the following notation and terminology.
The semi-direct product of group K with group H is denoted by $K: H$. The symbol \mathbb{Z}_{n} denotes a cyclic group of order n. For a prime p and a non-negative integer n, the symbol $E\left(p^{n}\right)$ denotes the elementary Abelian p-group of order p^{n},

[^0]p a prime number; Q_{8} and D_{8} are employed to denote the quaternion and dihedral group of order 8, respectively. Here we write $\pi(G)$ for $\pi(|G|)$, where $\pi(n)$ is the set of primes dividing the natural number n.

Let us mention some important consequences of rational groups and \mathbb{Q}_{1}-groups. Let G be a finite group. Let $\operatorname{nl}(G)$ denote the set of non-linear irreducible characters of G.

An element $x \in G$ is called rational if $\chi(x) \in \mathbb{Q}$ for every $\chi \in \operatorname{Irr}(G)$; otherwise it is called an irrational element. Also, $\chi \in \operatorname{Irr}(G)$ is called a rational character if $\chi(x) \in \mathbb{Q}$ for every $x \in G$.

Lemma 1.1. ([8, p. 11] and [5, p.31]) A finite group G is $a \mathbb{Q}$-group if and only if for every $x \in G$ of order n, the elements x and x^{m} are conjugate in G, whenever $(m, n)=1$. Equivalently, $N_{G}(\langle x\rangle) / C_{G}(\langle x\rangle) \cong \operatorname{Aut}(\langle x\rangle)$ for each $x \in G$.

The detailed proofs of Theorems 1.2 and 1.4 are given in [1].
Theorem 1.2. Let G be a non-Abelian \mathbb{Q}_{1}-group. Then the following are true:
(1) $|G|$ is even;
(2) each quotient of G is a \mathbb{Q}_{1}-group;
(3) if G is nilpotent, then it is a 2-group.

Definition 1.3. Let G be a non-Abelian finite group. The vanishing-off subgroup of G is defined as follows:

$$
V(G)=\langle g \in G \mid \exists \chi \in \operatorname{nl}(G): \chi(g) \neq 0\rangle
$$

Notice that $V(G)$ is a characteristic subgroup of G. It is well known that $V(G)$ is the smallest subgroup $V \leq G$ such that every character in $\mathrm{nl}(G)$ vanishes on $G-V$.

Theorem 1.4. Let G be a non-Abelian finite group. Then G is $a \mathbb{Q}_{1}$-group if and only if every element of $V(G)$ is a rational element of G.

Our study is based on whether a Sylow 2-subgroup of a \mathbb{Q}_{1}-group G is included in $V(G)$ or not. The main result of this paper is as follows.

Main Theorem. Suppose G is a non-Abelian solvable \mathbb{Q}_{1}-group with Sylow 2-subgroup P. Then one of the following occurs:
(1) if $P \subseteq V(G)$, then $G \cong V(G): \mathbb{Z}_{m}$ or $G \cong V(G): \mathrm{E}\left(p^{n}\right)$, where m is an odd integer and p is coprime to $|V(G)|$;
(2) if P is non-Abelian and $P \nsubseteq V(G)$, then $G \cong K: P$, where K is a $\{3,5,7\}$-group;
(3) if P is Abelian and $P \nsubseteq V(G)$ then $G \cong G^{\prime}:\left(Z_{m} \times E\left(2^{n}\right)\right)$, where the derived subgroup G^{\prime} is a Hall subgroup of odd order and m, n are integers.

2. Proof of the Main Theorem

We have divided the proof of the main results into a sequence of statements.

Lemma 2.1. Let P be a Sylow p-subgroup of group G such that $P \nsubseteq V(G)$. Then G has a normal p-complement.
Proof. Since $P \nsubseteq V(G)$, so there exists p-element g such that $g \notin V(G)$. Therefore, every non-linear irreducible character of G vanishes on g. By Remark 4.1 in [3] and a well-known theorem of Thompson [11], G has a normal p-complement.

We point out the fact that similar to rational groups, we have the following:
Corollary 2.2. Let G be a \mathbb{Q}_{1}-group with a non-Abelian Sylow 2-subgroup P. If P is a dihedral group or a generalized quaternion group, then P is isomorphic to D_{8} or Q_{8}.

Proof. By Lemma 2.1, if $P \nsubseteq V(G)$ then P is a \mathbb{Q}_{1}-group. Therefore, by [1, Remark 2.2], the results are achieved. And if $P \subseteq V(G)$, then every element of P is rational in G. Now, it follows, by a similar reasoning in proof of lemma 1 in [2], that $P \cong Q_{8}$ or by [8, p. 23], it may be concluded that $P \cong D_{8}$.

But, when a \mathbb{Q}_{1}-group G has an Abelian Sylow 2-subgroup, the situation is different from that of rational groups. We will see it in Theorem 2.8.

Proposition 2.3. Suppose G is a \mathbb{Q}_{1}-group, $p \in \pi(G)$ and $p>2$. If $p \| G: V(G) \mid$, then $p \nmid|V(G)|$.
Proof. Suppose, contrary to our claim, that p divides $|V(G)|$. So, there exists $x \in V(G)$ of order p^{n}. By Theorem 1.4, x is rational. Hence, by Lemma 1.1, we have

$$
\left|N_{G}(\langle x\rangle)\right| /\left|C_{G}(\langle x\rangle)\right|=p^{n-1}(p-1)
$$

On the other hand, by Lemma 2.1, G has a normal p-complement. Now, it follows from Theorem 5.26 of [6] that $N_{G}(\langle x\rangle) / C_{G}(\langle x\rangle)$ is a p-group, which is a contradiction. Therefore, $p \nmid|V(G)|$.

By Proposition 2.3, if the Sylow 2-subgroups of a \mathbb{Q}_{1}-group G are included in $V(G)$, then $V(G)$ is a Hall subgroup of G. We need the following theorem.

Theorem 2.4. ([9]) Let G be a non-Abelian finite group. Then

(1) if G has a non-Abelian nilpotent quotient, then $G / V(G)$ is elementary Abelian.
(2) If G has a Frobenius quotient with an Abelian Frobenius complement, then $G / V(G)$ is cyclic.

Therefore, the first part of Main Theorem is a consequence of Proposition 2.3 and Theorem 2.4.
In order to prove the next lemma, we recall the definition of a p-rational group. Let \mathbb{Q}_{n} be a field that is obtained by adjoining a primitive nth root of unity to \mathbb{Q}. Also, suppose that p is a prime divisor of $|G|$ and \mathbb{Q}_{n} is the smallest complex field that contains all character values of G. Then, we say that G is p-rational, if p does not divide n.

Lemma 2.5. Let P be a Sylow p-subgroup of the \mathbb{Q}_{1}-group G such that $P \subseteq V(G)$. Then G is p-rational.
Proof. Let $x \in G$ and $\chi \in \operatorname{Irr}(G)$. If χ is non-linear, then, by hypothesis, $\chi(x)$ is rational. Now, suppose that χ is linear and x_{p} and $x_{p^{\prime}}$ are p-part and p^{\prime}-part of x, respectively. Then $\chi(x)=\chi\left(x_{p}\right) \chi\left(x_{p^{\prime}}\right)$. Since $P \subseteq V(G)$, so $\chi\left(x_{p}\right)$ is rational. Therefore $\chi(x)$ is a p^{\prime}-root of unity. We deduce that G is p-rational.

Corollary 2.6. Suppose that G is a solvable \mathbb{Q}_{1}-group and P is a Sylow 2-subgroup of G. If P has nilpotence class two, then
(a) If $P \nsubseteq V(G)$ then P is $a \mathbb{Q}_{1}$-group;
(b) If $P \subseteq V(G)$ then P is $a \mathbb{Q}$-group.

Proof. Assume that P is a Sylow 2-subgroup of G. If $P \nsubseteq V(G)$, then it follows from Lemma 2.1 that G has a normal 2-complement. Thus, by part two of Theorem 1.2, P is a \mathbb{Q}_{1}-group. If $P \subseteq V(G)$, then by Lemma $2.5, G$ is 2-rational. Now, we conclude from the main result of [7] that P is a rational group.

Let G be a \mathbb{Q}_{1}-group. If G has a Frobenius quotient, then every prime number can be a divisor of $|G|$, because, for every odd prime p, a Frobenius group of order $p(p-1)$ with cyclic complement of order $p-1$ is a \mathbb{Q}_{1}-group [10]. The case where G has a non-Abelian nilpotent quotient is discussed in the next theorem. Indeed, we show that, in this case, the prime divisors of $|G|$ are in $\{2,3,5,7\}$.

Theorem 2.7. Suppose G is a solvable \mathbb{Q}_{1}-group with a non-Abelian nilpotent quotient. Then, $\pi(G) \subseteq\{2,3,5,7\}$.
Proof. By [5, Lemma 12.3], every finite solvable group G has a non-Abelian nilpotent or Frobenius quotient, because if K is a maximal normal subgroup of G such that G / K is non-Abelian, then $(G / K)^{\prime}$ is the unique minimal normal subgroup of G / K. Thus, we can assume that G / K is a nilpotent \mathbb{Q}_{1}-group.

Hence, by Theorem 1.2(3), G / K is a 2 -group. On the other hand, by [9, Lemma 3.3], we have $K \subseteq V(G)$. Hence, we conclude from Theorem 2.4 that $G / V(G)$ must be an elementary Abelian 2-group.

Now, assume that $x \in G-V(G)$ and for some $\lambda \in \operatorname{lin}(G), \lambda(x)$ be irrational. Then $x^{2} \in V(G)$. Thus $\lambda(x)^{2}=\lambda\left(x^{2}\right)= \pm 1$. Consequently, $\lambda(x)= \pm \mathrm{i}$. Since for every $\chi \in \operatorname{nl}(G)$, we have $\chi(x)=0$ and every element of $V(G)$ is rational in G, so $|\mathbb{Q}(G): \mathbb{Q}|=2$, where $\mathbb{Q}(G)$ is the smallest complex field containing all character values of G. Hence, it follows from [4, Theorem 2.3(c)] that $\pi(G) \subseteq\{2,3,5,7\}$.

Now, suppose that G is a non-Abelian \mathbb{Q}_{1}-group with non-Abelian Sylow 2-subgroup P. If $P \nsubseteq V(G)$, then it follows from Lemma 2.1 that G has a normal 2-complement, say K. Therefore, G has a non-Abelian nilpotent quotient. Consequently, by Theorem 2.7, we have $\pi(K) \subseteq\{3,5,7\}$. This completes the proof of the second part of the Main Theorem.

Now, we prove the third part of the Main Theorem, which we restate here.

Theorem 2.8. Let G be $a \mathbb{Q}_{1}$-group with a Sylow 2-subgroup P. If P is Abelian and $P \nsubseteq V(G)$ then $G \cong G^{\prime}:\left(\mathbb{Z}_{m} \times E\left(2^{n}\right)\right)$, where G^{\prime} is Hall derivation subgroup of odd order and m, n are integers.

Proof. First, we show that $P \cap V(G)$ is an elementary Abelian 2-group. Take $x \in P \cap V(G)$ to be of order 2^{k}. We have $\left|N_{G}(\langle x\rangle) / C_{G}(\langle x\rangle)\right|=2^{k-1}$. Since P is Abelian, $P \subseteq C_{G}(\langle x\rangle)$. Consequently, $k=1$. Therefore $P \cap V(G) \cong E\left(2^{n}\right)$ for some integer n.

Since $P \nsubseteq V(G)$, there exists a 2-element g such that $g \notin V(G)$. Therefore, for every $\chi \in \operatorname{nl}(G), \chi(g)=0$. Hence, by [9, Lemma 2.1], $C_{G}(\langle g\rangle)=\left|G: G^{\prime}\right|$. The order of G^{\prime} is odd, because $P \subseteq C_{G}(\langle g\rangle)$. On the other hand, by [9, Lemma 3.2], $G^{\prime} \leqslant V(G)$. We know that every rational element of odd order belongs to G^{\prime}. Thus G^{\prime} is a normal 2-complement for $V(G)$. By Proposition 2.3, G^{\prime} is also a Hall subgroup of G.

By Theorem 2.4, there are two cases for G. We claim G has not a non-Abelian nilpotent quotient. If it is true then for some subgroup $K, G / K$ is a non-Abelian nilpotent \mathbb{Q}_{1}-group, so by Theorem $1.2, G / K$ is a non-Abelian 2-group, which violates the fact that P is an Abelian subgroup. Hence, $G / V(G)$ is cyclic, therefore, it is isomorphic to \mathbb{Z}_{m} for some integer m. The statements of the theorem should now be clear.

Acknowledgements

The authors wishes to express their thanks to the referee for her/his useful comments, specially for drawing the author's attention to Theorem 2.8.

References

[1] M.R. Darafsheh, A. Iranmanesh, S.A. Moosavi, Groups whose non-linear irreducible characters are rational valued, Arch. Math. (Basel) 94 (5) (2010) 411-418.
[2] M.R. Darafsheh, H. Sharifi, Sylow 2-subgroups of solvable \mathbb{Q}-groups, Extr. Math. 22 (1) (2007) 83-91.
[3] S. Dolfi, E. Pacifici, L. Sanus, P. Spiga, On the orders of zeros of irreducible characters, J. Algebra 321 (2009) 345-352.
[4] E. Farias e Soares, Big primes and character values for solvable groups, J. Algebra 100 (1986) 305-324.
[5] I.M. Isaacs, Character Theory of Finite Groups, Academic Press, 1976.
[6] I.M. Isaacs, Finite Group Theory, American Mathematical Society, 2008.
[7] M. Isaacs, G. Navarro, Sylow 2-subgroups of rational groups, Math. Z. 272 (3-4) (2012) 937-945.
[8] D. Kletzing, Structure and Representations of \mathbb{Q}-Group, Lecture Notes in Mathematics, vol. 1084, Springer-Verlag, 1984.
[9] M.L. Lewis, The vanishing-off subgroup, J. Algebra 321 (2009) 1313-1325.
[10] M. Norooz-Abadian, H. Sharifi, Frobenius \mathbb{Q}_{1}-groups, Arch. Math. (Basel) 105 (2015) 509-517.
[11] J.G. Thompson, Normal p-complements and irreducible characters, J. Algebra 14 (1970) 129-134.

[^0]: E-mail address: hsharifi@shahed.ac.ir (H. Sharifi).
 http://dx.doi.org/10.1016/j.crma.2016.11.001
 1631-073X/© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

