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A finite group whose irreducible complex non-linear characters are rational is called 
a Q1-group. In this paper, we study the structure of a Q1-group through its Sylow 
2-subgroups.
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r é s u m é

Un groupe fini dont les caractères complexes non linéaires sont rationnels est appelé un 
Q1-groupe. Nous étudions dans cette Note la structure d’un Q1-groupe par le biais de ses 
2-sous-groupes de Sylow.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and preliminary

A finite group G is said to be rational or Q-group if every complex irreducible character of G is rational. It is well known 
that rational groups have even order and hence they have non-trivial Sylow 2-subgroups [8]. M. Isaacs and G. Navarro proved 
that if a Sylow 2-subgroup of a rational group has nilpotence class at most two, then it is rational [7]. However, there is no 
classification of such groups, but the structure of rational groups with quaternion or Abelian Sylow 2-subgroups was given 
in [8]. In [2], the authors proved that if G is a supersolvable rational group, then its Sylow 2-subgroup is also rational, and 
they studied solvable rational groups with an extraspacial Sylow 2-subgroup. In this paper, we will restrict our attention to 
finite groups G , whose non-linear complex irreducible characters are rational-valued. Such a group is called a Q1-group. We 
study the Sylow 2-subgroups of a Q1-group and determine the general structure of this type of solvable groups. This paper 
can be considered as an attempt to describe solvable non-Abelian Q1-groups. For some elementary properties of Q1-groups, 
we refer the reader to [1]. Similar to rational groups, Q1-groups have also even orders and hence they have non-trivial 
Sylow 2-subgroups [1].

Throughout the paper, we consider finite groups and we employ the following notation and terminology.
The semi-direct product of group K with group H is denoted by K : H . The symbol Zn denotes a cyclic group of or-

der n. For a prime p and a non-negative integer n, the symbol E(pn) denotes the elementary Abelian p-group of order pn , 
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p a prime number; Q 8 and D8 are employed to denote the quaternion and dihedral group of order 8, respectively. Here we 
write π(G) for π(|G|), where π(n) is the set of primes dividing the natural number n.

Let us mention some important consequences of rational groups and Q1-groups. Let G be a finite group. Let nl(G) denote 
the set of non-linear irreducible characters of G .

An element x ∈ G is called rational if χ(x) ∈ Q for every χ ∈ Irr(G); otherwise it is called an irrational element. Also, 
χ ∈ Irr(G) is called a rational character if χ(x) ∈ Q for every x ∈ G .

Lemma 1.1. ([8, p. 11] and [5, p. 31]) A finite group G is a Q-group if and only if for every x ∈ G of order n, the elements x and xm are 
conjugate in G, whenever (m, n) = 1. Equivalently, NG(〈x〉)/CG (〈x〉) ∼= Aut(〈x〉) for each x ∈ G.

The detailed proofs of Theorems 1.2 and 1.4 are given in [1].

Theorem 1.2. Let G be a non-Abelian Q1-group. Then the following are true:

(1) |G| is even;
(2) each quotient of G is a Q1-group;
(3) if G is nilpotent, then it is a 2-group.

Definition 1.3. Let G be a non-Abelian finite group. The vanishing-off subgroup of G is defined as follows:

V (G) = 〈g ∈ G | ∃χ ∈ nl(G) : χ(g) �= 0〉.

Notice that V (G) is a characteristic subgroup of G . It is well known that V (G) is the smallest subgroup V ≤ G such that 
every character in nl(G) vanishes on G − V .

Theorem 1.4. Let G be a non-Abelian finite group. Then G is a Q1-group if and only if every element of V (G) is a rational element 
of G.

Our study is based on whether a Sylow 2-subgroup of a Q1-group G is included in V (G) or not. The main result of this 
paper is as follows.

Main Theorem. Suppose G is a non-Abelian solvable Q1-group with Sylow 2-subgroup P . Then one of the following occurs:

(1) if P ⊆ V (G), then G ∼= V (G) : Zm or G ∼= V (G) : E(pn), where m is an odd integer and p is coprime to |V (G)|;
(2) if P is non-Abelian and P � V (G), then G ∼= K : P , where K is a {3, 5, 7}-group;
(3) if P is Abelian and P � V (G) then G ∼= G ′ : (Zm × E(2n)), where the derived subgroup G ′ is a Hall subgroup of odd order and 

m, n are integers.

2. Proof of the Main Theorem

We have divided the proof of the main results into a sequence of statements.

Lemma 2.1. Let P be a Sylow p-subgroup of group G such that P � V (G). Then G has a normal p-complement.

Proof. Since P � V (G), so there exists p-element g such that g /∈ V (G). Therefore, every non-linear irreducible character of 
G vanishes on g . By Remark 4.1 in [3] and a well-known theorem of Thompson [11], G has a normal p-complement. �

We point out the fact that similar to rational groups, we have the following:

Corollary 2.2. Let G be a Q1-group with a non-Abelian Sylow 2-subgroup P . If P is a dihedral group or a generalized quaternion 
group, then P is isomorphic to D8 or Q 8 .

Proof. By Lemma 2.1, if P � V (G) then P is a Q1-group. Therefore, by [1, Remark 2.2], the results are achieved. And if 
P ⊆ V (G), then every element of P is rational in G . Now, it follows, by a similar reasoning in proof of lemma 1 in [2], that 
P ∼= Q 8 or by [8, p. 23], it may be concluded that P ∼= D8. �

But, when a Q1-group G has an Abelian Sylow 2-subgroup, the situation is different from that of rational groups. We 
will see it in Theorem 2.8.
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Proposition 2.3. Suppose G is a Q1-group, p ∈ π(G) and p > 2. If p||G : V (G)|, then p � ||V (G)|.

Proof. Suppose, contrary to our claim, that p divides |V (G)|. So, there exists x ∈ V (G) of order pn . By Theorem 1.4, x is 
rational. Hence, by Lemma 1.1, we have

|NG(〈x〉)|/|CG(〈x〉)| = pn−1(p − 1).

On the other hand, by Lemma 2.1, G has a normal p-complement. Now, it follows from Theorem 5.26 of [6] that 
NG(〈x〉)/CG (〈x〉) is a p-group, which is a contradiction. Therefore, p � ||V (G)|. �

By Proposition 2.3, if the Sylow 2-subgroups of a Q1-group G are included in V (G), then V (G) is a Hall subgroup of G . 
We need the following theorem.

Theorem 2.4. ([9]) Let G be a non-Abelian finite group. Then

(1) if G has a non-Abelian nilpotent quotient, then G/V (G) is elementary Abelian.
(2) If G has a Frobenius quotient with an Abelian Frobenius complement, then G/V (G) is cyclic.

Therefore, the first part of Main Theorem is a consequence of Proposition 2.3 and Theorem 2.4.
In order to prove the next lemma, we recall the definition of a p-rational group. Let Qn be a field that is obtained by 

adjoining a primitive nth root of unity to Q. Also, suppose that p is a prime divisor of |G| and Qn is the smallest complex 
field that contains all character values of G . Then, we say that G is p-rational, if p does not divide n.

Lemma 2.5. Let P be a Sylow p-subgroup of the Q1-group G such that P ⊆ V (G). Then G is p-rational.

Proof. Let x ∈ G and χ ∈ Irr(G). If χ is non-linear, then, by hypothesis, χ(x) is rational. Now, suppose that χ is linear 
and xp and xp′ are p-part and p′-part of x, respectively. Then χ(x) = χ(xp)χ(xp′ ). Since P ⊆ V (G), so χ(xp) is rational. 
Therefore χ(x) is a p′-root of unity. We deduce that G is p-rational. �
Corollary 2.6. Suppose that G is a solvable Q1-group and P is a Sylow 2-subgroup of G. If P has nilpotence class two, then

(a) If P � V (G) then P is a Q1-group;
(b) If P ⊆ V (G) then P is a Q-group.

Proof. Assume that P is a Sylow 2-subgroup of G . If P � V (G), then it follows from Lemma 2.1 that G has a normal 
2-complement. Thus, by part two of Theorem 1.2, P is a Q1-group. If P ⊆ V (G), then by Lemma 2.5, G is 2-rational. Now, 
we conclude from the main result of [7] that P is a rational group. �

Let G be a Q1-group. If G has a Frobenius quotient, then every prime number can be a divisor of |G|, because, for every 
odd prime p, a Frobenius group of order p(p − 1) with cyclic complement of order p − 1 is a Q1-group [10]. The case 
where G has a non-Abelian nilpotent quotient is discussed in the next theorem. Indeed, we show that, in this case, the 
prime divisors of |G| are in {2, 3, 5, 7}.

Theorem 2.7. Suppose G is a solvable Q1-group with a non-Abelian nilpotent quotient. Then, π(G) ⊆ {2, 3, 5, 7}.

Proof. By [5, Lemma 12.3], every finite solvable group G has a non-Abelian nilpotent or Frobenius quotient, because if K
is a maximal normal subgroup of G such that G/K is non-Abelian, then (G/K )′ is the unique minimal normal subgroup of 
G/K . Thus, we can assume that G/K is a nilpotent Q1-group.

Hence, by Theorem 1.2(3), G/K is a 2-group. On the other hand, by [9, Lemma 3.3], we have K ⊆ V (G). Hence, we 
conclude from Theorem 2.4 that G/V (G) must be an elementary Abelian 2-group.

Now, assume that x ∈ G − V (G) and for some λ ∈ lin(G), λ(x) be irrational. Then x2 ∈ V (G). Thus λ(x)2 = λ(x2) = ±1. 
Consequently, λ(x) = ±i. Since for every χ ∈ nl(G), we have χ(x) = 0 and every element of V (G) is rational in G , so 
|Q(G) : Q| = 2, where Q(G) is the smallest complex field containing all character values of G . Hence, it follows from [4, 
Theorem 2.3(c)] that π(G) ⊆ {2, 3, 5, 7}. �

Now, suppose that G is a non-Abelian Q1-group with non-Abelian Sylow 2-subgroup P . If P � V (G), then it follows from 
Lemma 2.1 that G has a normal 2-complement, say K . Therefore, G has a non-Abelian nilpotent quotient. Consequently, by 
Theorem 2.7, we have π(K ) ⊆ {3, 5, 7}. This completes the proof of the second part of the Main Theorem.

Now, we prove the third part of the Main Theorem, which we restate here.
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Theorem 2.8. Let G be a Q1-group with a Sylow 2-subgroup P . If P is Abelian and P � V (G) then G ∼= G ′ : (Zm × E(2n)), where G ′
is Hall derivation subgroup of odd order and m, n are integers.

Proof. First, we show that P ∩ V (G) is an elementary Abelian 2-group. Take x ∈ P ∩ V (G) to be of order 2k . We have 
|NG(〈x〉)/CG (〈x〉)| = 2k−1. Since P is Abelian, P ⊆ CG (〈x〉). Consequently, k = 1. Therefore P ∩ V (G) ∼= E(2n) for some inte-
ger n.

Since P � V (G), there exists a 2-element g such that g /∈ V (G). Therefore, for every χ ∈ nl(G), χ(g) = 0. Hence, by 
[9, Lemma 2.1], CG (〈g〉) = |G : G ′|. The order of G ′ is odd, because P ⊆ CG(〈g〉). On the other hand, by [9, Lemma 3.2], 
G ′ � V (G). We know that every rational element of odd order belongs to G ′ . Thus G ′ is a normal 2-complement for V (G). 
By Proposition 2.3, G ′ is also a Hall subgroup of G .

By Theorem 2.4, there are two cases for G . We claim G has not a non-Abelian nilpotent quotient. If it is true then 
for some subgroup K , G/K is a non-Abelian nilpotent Q1-group, so by Theorem 1.2, G/K is a non-Abelian 2-group, which 
violates the fact that P is an Abelian subgroup. Hence, G/V (G) is cyclic, therefore, it is isomorphic to Zm for some integer m. 
The statements of the theorem should now be clear. �
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