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RESUME

Un groupe fini dont les caractéres complexes non linéaires sont rationnels est appelé un
Q1 -groupe. Nous étudions dans cette Note la structure d’'un Qq-groupe par le biais de ses
2-sous-groupes de Sylow.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and preliminary

A finite group G is said to be rational or Q-group if every complex irreducible character of G is rational. It is well known
that rational groups have even order and hence they have non-trivial Sylow 2-subgroups [8]. M. Isaacs and G. Navarro proved
that if a Sylow 2-subgroup of a rational group has nilpotence class at most two, then it is rational [7]. However, there is no
classification of such groups, but the structure of rational groups with quaternion or Abelian Sylow 2-subgroups was given
in [8]. In [2], the authors proved that if G is a supersolvable rational group, then its Sylow 2-subgroup is also rational, and
they studied solvable rational groups with an extraspacial Sylow 2-subgroup. In this paper, we will restrict our attention to
finite groups G, whose non-linear complex irreducible characters are rational-valued. Such a group is called a Q-group. We
study the Sylow 2-subgroups of a Q-group and determine the general structure of this type of solvable groups. This paper
can be considered as an attempt to describe solvable non-Abelian (Q1-groups. For some elementary properties of Q1-groups,
we refer the reader to [1]. Similar to rational groups, QQ;-groups have also even orders and hence they have non-trivial
Sylow 2-subgroups [1].

Throughout the paper, we consider finite groups and we employ the following notation and terminology.

The semi-direct product of group K with group H is denoted by K : H. The symbol Z, denotes a cyclic group of or-
der n. For a prime p and a non-negative integer n, the symbol E(p") denotes the elementary Abelian p-group of order p",
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p a prime number; Qg and Dg are employed to denote the quaternion and dihedral group of order 8, respectively. Here we
write 1t(G) for n(|G|), where m(n) is the set of primes dividing the natural number n.

Let us mention some important consequences of rational groups and Q-groups. Let G be a finite group. Let nl(G) denote
the set of non-linear irreducible characters of G.

An element x € G is called rational if x (x) € Q for every x € Irr(G); otherwise it is called an irrational element. Also,
x € Irr(G) is called a rational character if x (x) € Q for every x € G.

Lemma 1.1. (/8, p. 11] and [5, p. 31]) A finite group G is a Q-group if and only if for every x € G of order n, the elements x and X™ are
conjugate in G, whenever (m, n) = 1. Equivalently, N ({(x))/Cc ({x)) = Aut({x)) for each x € G.

The detailed proofs of Theorems 1.2 and 1.4 are given in [1].
Theorem 1.2. Let G be a non-Abelian Q1-group. Then the following are true:
(1) |G| is even;
(2) each quotient of G is a Qq-group;
(3) if G is nilpotent, then it is a 2-group.
Definition 1.3. Let G be a non-Abelian finite group. The vanishing-off subgroup of G is defined as follows:

V(G)=(geG|Ix enl(G): x(g) #0).

Notice that V (G) is a characteristic subgroup of G. It is well known that V (G) is the smallest subgroup V < G such that
every character in nl(G) vanishes on G — V.

Theorem 1.4. Let G be a non-Abelian finite group. Then G is a Q1-group if and only if every element of V(G) is a rational element
of G.

Our study is based on whether a Sylow 2-subgroup of a Q;-group G is included in V(G) or not. The main result of this
paper is as follows.

Main Theorem. Suppose G is a non-Abelian solvable Q-group with Sylow 2-subgroup P. Then one of the following occurs:
(1) ifPCV(G), then G =V (G): Zy or G =V (G) : E(p™), where m is an odd integer and p is coprime to |V (G)|;
(2) if P is non-Abelian and P ¢ V(G), then G = K : P, where K is a {3, 5, 7}-group;

(3) if P is Abelian and P ¢ V (G) then G = G’ : (Zjy x E(2")), where the derived subgroup G’ is a Hall subgroup of odd order and
m, n are integers.

2. Proof of the Main Theorem
We have divided the proof of the main results into a sequence of statements.
Lemma 2.1. Let P be a Sylow p-subgroup of group G such that P ¢ V(G). Then G has a normal p-complement.

Proof. Since P ¢ V(G), so there exists p-element g such that g ¢ V(G). Therefore, every non-linear irreducible character of
G vanishes on g. By Remark 4.1 in [3] and a well-known theorem of Thompson [11], G has a normal p-complement. 0O

We point out the fact that similar to rational groups, we have the following:

Corollary 2.2. Let G be a Qq-group with a non-Abelian Sylow 2-subgroup P. If P is a dihedral group or a generalized quaternion
group, then P is isomorphic to Dg or Qs.

Proof. By Lemma 2.1, if P ¢ V(G) then P is a Qq-group. Therefore, by [1, Remark 2.2], the results are achieved. And if
P C V(G), then every element of P is rational in G. Now, it follows, by a similar reasoning in proof of lemma 1 in [2], that
P = Qg or by [8, p. 23], it may be concluded that P = Dg. O

But, when a Q-group G has an Abelian Sylow 2-subgroup, the situation is different from that of rational groups. We
will see it in Theorem 2.8.
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Proposition 2.3. Suppose G is a Q1-group, p € ©(G) and p > 2. If p||G : V(G)|, then p NV (G)|.

Proof. Suppose, contrary to our claim, that p divides |V (G)|. So, there exists x € V(G) of order p". By Theorem 1.4, x is
rational. Hence, by Lemma 1.1, we have

ING((X)I/ICc ()] = p" ' (p = 1).

On the other hand, by Lemma 2.1, G has a normal p-complement. Now, it follows from Theorem 5.26 of [6] that
N¢({x))/Cc({x)) is a p-group, which is a contradiction. Therefore, p |V (G)|. O

By Proposition 2.3, if the Sylow 2-subgroups of a Q-group G are included in V (G), then V (G) is a Hall subgroup of G.
We need the following theorem.

Theorem 2.4. ([9]) Let G be a non-Abelian finite group. Then

(1) if G has a non-Abelian nilpotent quotient, then G/V (G) is elementary Abelian.
(2) If G has a Frobenius quotient with an Abelian Frobenius complement, then G/V (G) is cyclic.

Therefore, the first part of Main Theorem is a consequence of Proposition 2.3 and Theorem 2.4.

In order to prove the next lemma, we recall the definition of a p-rational group. Let @, be a field that is obtained by
adjoining a primitive nth root of unity to Q. Also, suppose that p is a prime divisor of |G| and Q, is the smallest complex
field that contains all character values of G. Then, we say that G is p-rational, if p does not divide n.

Lemma 2.5. Let P be a Sylow p-subgroup of the Q1-group G such that P C V (G). Then G is p-rational.

Proof. Let x € G and x € Irr(G). If x is non-linear, then, by hypothesis, x (x) is rational. Now, suppose that x is linear
and x, and x, are p-part and p’-part of x, respectively. Then x (x) = x (xp)x (xp'). Since P € V(G), so x(xp) is rational.
Therefore x (x) is a p’-root of unity. We deduce that G is p-rational. O

Corollary 2.6. Suppose that G is a solvable Q1-group and P is a Sylow 2-subgroup of G. If P has nilpotence class two, then

(@) If P € V(G) then P is a Qq-group;
(b) If P C V(G) then P is a Q-group.

Proof. Assume that P is a Sylow 2-subgroup of G. If P ¢ V(G), then it follows from Lemma 2.1 that G has a normal
2-complement. Thus, by part two of Theorem 1.2, P is a Q-group. If P € V(G), then by Lemma 2.5, G is 2-rational. Now,
we conclude from the main result of [7] that P is a rational group. O

Let G be a Qq-group. If G has a Frobenius quotient, then every prime number can be a divisor of |G|, because, for every
odd prime p, a Frobenius group of order p(p — 1) with cyclic complement of order p — 1 is a Qq-group [10]. The case
where G has a non-Abelian nilpotent quotient is discussed in the next theorem. Indeed, we show that, in this case, the
prime divisors of |G| are in {2, 3,5, 7}.

Theorem 2.7. Suppose G is a solvable Q1 -group with a non-Abelian nilpotent quotient. Then, n(G) < {2, 3,5, 7}.

Proof. By [5, Lemma 12.3], every finite solvable group G has a non-Abelian nilpotent or Frobenius quotient, because if K
is a maximal normal subgroup of G such that G/K is non-Abelian, then (G/K)’ is the unique minimal normal subgroup of
G/K. Thus, we can assume that G/K is a nilpotent QQ;-group.

Hence, by Theorem 1.2(3), G/K is a 2-group. On the other hand, by [9, Lemma 3.3], we have K C V(G). Hence, we
conclude from Theorem 2.4 that G/V (G) must be an elementary Abelian 2-group.

Now, assume that x € G — V(G) and for some A € lin(G), A(x) be irrational. Then x% € V(G). Thus A(x)2 = A(x?) = £1.
Consequently, A(x) = +i. Since for every x € nl(G), we have x(x) =0 and every element of V(G) is rational in G, so
|Q(G) : Q| =2, where Q(G) is the smallest complex field containing all character values of G. Hence, it follows from [4,
Theorem 2.3(c)] that n(G) € {2,3,5,7}. O

Now, suppose that G is a non-Abelian Q;-group with non-Abelian Sylow 2-subgroup P. If P ¢ V (G), then it follows from
Lemma 2.1 that G has a normal 2-complement, say K. Therefore, G has a non-Abelian nilpotent quotient. Consequently, by
Theorem 2.7, we have n(K) C {3, 5, 7}. This completes the proof of the second part of the Main Theorem.

Now, we prove the third part of the Main Theorem, which we restate here.
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Theorem 2.8. Let G be a Q;-group with a Sylow 2-subgroup P. If P is Abelian and P ¢ V (G) then G = G’ : (Zm x E(2")), where G’
is Hall derivation subgroup of odd order and m, n are integers.

Proof. First, we show that P N V(G) is an elementary Abelian 2-group. Take x € P N V(G) to be of order 2¥. We have
ING((x))/Cc((x))| = 2¥=1. Since P is Abelian, P C C¢({x)). Consequently, k = 1. Therefore P N V(G) = E(2") for some inte-
ger n.

Since P ¢ V(G), there exists a 2-element g such that g ¢ V(G). Therefore, for every x € nl(G), x (g) = 0. Hence, by
[9, Lemma 2.1], Cc({g)) = |G : G'|. The order of G’ is odd, because P C C¢({g)). On the other hand, by [9, Lemma 3.2],
G’ < V(G). We know that every rational element of odd order belongs to G’. Thus G’ is a normal 2-complement for V(G).
By Proposition 2.3, G’ is also a Hall subgroup of G.

By Theorem 2.4, there are two cases for G. We claim G has not a non-Abelian nilpotent quotient. If it is true then
for some subgroup K, G/K is a non-Abelian nilpotent QQ-group, so by Theorem 1.2, G/K is a non-Abelian 2-group, which
violates the fact that P is an Abelian subgroup. Hence, G/V (G) is cyclic, therefore, it is isomorphic to Z;, for some integer m.
The statements of the theorem should now be clear. O
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