Complex analysis

Continuity properties of certain weighted log canonical thresholds

Propriétés de continuité de certains seuils log canoniques pondérés

Pham Hoang Hiep
Hanoi Institute of Mathematics, VAST, Viet Nam

ARTICLE INFO

Article history:

Received 8 November 2016
Accepted after revision 23 November 2016
Available online 13 December 2016
Presented by Jean-Pierre Demailly

Abstract

In this note, we prove a semicontinuity theorem for a class of weighted log canonical thresholds, and obtain some related results for restrictions of plurisubharmonic functions to k-dimensional subspaces and for multiplier ideal sheaves.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Rés U Mé

Dans cette note, nous démontrons un théorème de semi-continuité pour une classe de seuils log-canoniques pondérés et obtenons des résultats connexes pour des restrictions de fonctions plurisubharmoniques à des sous-espaces k-dimensionnels et pour des faisceaux d'idéaux multiplicateurs.
© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

Let Ω be a domain in \mathbb{C}^{n} and let φ be in the set $\operatorname{PSH}(\Omega)$ of plurisubharmonic functions on Ω. Following Demailly and Kollár [7], we introduce the \log canonical threshold of φ at point $0 \in \Omega$:

$$
c(\varphi)=\sup \left\{c>0: \mathrm{e}^{-2 c \varphi} \text { is } L^{1}\left(\mathrm{~d} V_{2 n}\right) \text { on a neighborhood of } 0\right\} \in(0,+\infty]
$$

where $\mathrm{d} V_{2 n}$ denotes the Lebesgue measure in \mathbb{C}^{n}. It is an invariant of the singularity of φ at 0 . We refer to $[1,3,4,6-8,11,12$, $15,16]$ for further information about this number.

For every non-negative Radon measure μ on a neighborhood of $0 \in \mathbb{C}^{n}$, we introduce the weighted log canonical threshold of φ with weight μ at 0 to be:

$$
c_{\mu}(\varphi)=\sup \left\{c \geq 0: \mathrm{e}^{-2 c \varphi} \text { is } L^{1}(\mu) \text { on a neighborhood of } 0\right\} \in[0,+\infty]
$$

In this note, we study the quantity

[^0]$$
(-n,+\infty) \times \operatorname{PSH}(\Omega) \ni(t, \varphi) \rightarrow c_{\|z\| \|^{2 t} \mathrm{~d} V_{2 n}}(\varphi)
$$
as a function of the two arguments (t, φ). The main results are contained in the following theorems.
Theorem 1.1. Let $\left\{\varphi_{j}\right\}_{j \geq 1} \subset \operatorname{PSH}(\Omega)$ and $\varphi \in \operatorname{PSH}(\Omega)$ be such that $\varphi_{j} \rightarrow \varphi$ in $L_{\mathrm{loc}}^{1}(\Omega)$. Then
$$
\liminf _{j \rightarrow \infty} c_{\|z\| \|^{2 t} \mathrm{~d} V_{2 n}}\left(\varphi_{j}\right) \geq c_{\|z\|}{ }^{2 t} \mathrm{~d} V_{2 n}(\varphi), \quad \forall t \in(-n, 1]
$$

As in [13], we denote by $\mathcal{I}(\varphi)$ the sheaf of germs of holomorphic functions $f \in \mathcal{O}_{\mathbb{C}^{n}, z}$ such that

$$
\int_{U}|f|^{2} \mathrm{e}^{-2 \varphi}<+\infty
$$

on some neighborhood U of z. This is a coherent ideal sheaf over Ω (see [13]). Moreover, Theorem 1.1 and the main result of [10] imply as a consequence the following corollary.

Corollary 1.2. Let $\left\{\varphi_{j}\right\}_{j \geq 1} \subset \operatorname{PSH}(\Omega)$ and $\varphi \in \operatorname{PSH}(\Omega)$ be such that $\varphi_{j} \rightarrow \varphi$ in $L_{\mathrm{loc}}^{1}(\Omega)$. Then the two following statements hold true:
i) if $\varphi_{j} \leq \varphi$ for all $j \geq 1$, then for $\Omega^{\prime} \Subset \Omega$ there exists $j_{0} \geq 1$ such that $\mathcal{I}\left(\varphi_{j}\right)=\mathcal{I}(\varphi)$ on Ω^{\prime} for all $j \geq j_{0}$;
ii) if $\left\{z_{1}, \ldots, z_{n}\right\} \in \mathcal{I}(\varphi)_{0}$, then there exists $j_{0} \geq 1$ such that $\left\{z_{1}, \ldots, z_{n}\right\} \in \mathcal{I}\left(\varphi_{j}\right)_{0}$ for all $j \geq j_{0}$.

For $1 \leq k \leq n$, we denote

$$
\begin{aligned}
& c_{k}(\varphi)=\sup \left\{c\left(\varphi_{H}\right): \text { when H runs over all } k \text {-dimensional linear subspaces through } 0\right\} \\
& \tilde{c}_{k}(\varphi)=\sup \left\{c\left(\varphi_{H}\right): \text { for all germs of smooth submanifolds } H \text { of dimension } k \text { through } 0\right\},
\end{aligned}
$$

where φ_{H} is the restriction of φ to H.

Theorem 1.3. Let $\varphi \in \operatorname{PSH}(\Omega)$. Then

$$
\tilde{c}_{k}(\varphi)=c_{k}(\varphi)=c_{\|z\| \|^{2(k-n)} \mathrm{d} V_{2 n}}(\varphi)
$$

Remark 1.4.

i) Consider $\varphi_{j}, \varphi \in \operatorname{PSH}(\Omega), t \in \mathbb{R}, c \geq 0$ and a holomorphic function f on Ω such that $\varphi_{j} \leq \varphi, \varphi_{j} \rightarrow \varphi$ in $L_{\text {loc }}^{1}(\Omega)$ and

$$
\int_{\Omega} \mathrm{e}^{-2 c \varphi}|f|^{2 t} \mathrm{~d} V_{2 n}<+\infty
$$

Then $\mathrm{e}^{-2 c \varphi_{j}}|f|^{2 t} \rightarrow \mathrm{e}^{-2 c \varphi}|f|^{2 t}$ in $L_{\text {loc }}^{1}(\Omega)$. Indeed, let $m \in \mathbb{N}$ be such that $m \geq t$. We have:

$$
\int_{\Omega} \mathrm{e}^{-2 c \varphi-2(m-t) \log |f|}|f|^{2 m} \mathrm{~d} V_{2 n}=\int_{\Omega} \mathrm{e}^{-2 c \varphi}|f|^{2 t} \mathrm{~d} V_{2 n}<+\infty
$$

By the main theorem in [10], we get that

$$
\mathrm{e}^{-2 c \varphi_{j}-2(m-t) \log |f|}|f|^{2 m} \rightarrow \mathrm{e}^{-2 c \varphi-2(m-t) \log |f|}|f|^{2 m}
$$

in $L_{\text {loc }}^{1}(\Omega)$. This implies that $\mathrm{e}^{-2 c \varphi_{j}}|f|^{2 t} \rightarrow \mathrm{e}^{-2 c \varphi}|f|^{2 t}$ in $L_{\text {loc }}^{1}(\Omega)$.
ii) The semicontinuity theorem for the weighted \log canonical thresholds is not true in the case of the measure $\mu=$ $\left|z_{1}\right|^{2} \mathrm{~d} V_{2 n}$ without the condition $\varphi_{j} \leq \varphi$. Indeed, as in Remark 1.3 of [10], we can choose $\varphi(z)=\log \left|z_{1}\right|$ and $\varphi_{j}(z)=$ $\log \left|z_{1}+\frac{z_{2}}{j}\right|$ for $j \geq 1$. One has $\varphi_{j} \rightarrow \varphi$ in $L_{\text {loc }}^{1}\left(\mathbb{C}^{n}\right)$, however $\forall j \geq 1$, we find $c_{\mu}\left(\varphi_{j}\right)=1<c_{\mu}(\varphi)=2$.

Remark 1.5. Hölder's inequality implies that the function

$$
(-n,+\infty) \ni t \rightarrow c_{\|z\| \|^{2 t} \mathrm{~d} V_{2 n}}(\varphi)
$$

is concave and increasing for all $\varphi \in \operatorname{PSH}(\Omega)$. In particular, this function is continuous and increasing in t for all $\varphi \in \operatorname{PSH}(\Omega)$. Moreover, by Theorem 1.3, we obtain inequalities similar to the ones proved in [9]:

$$
c_{k}(\varphi)-c_{k-1}(\varphi) \leq c_{k-1}(\varphi)-c_{k-2}(\varphi), \quad \forall k=2, \ldots, n
$$

2. Proof of Theorem 1.1

As we argued in Remark 1.4, we only need to prove the theorem for the case $t=1$. Take $c<c_{\|z\|^{2} \mathrm{~d} V_{2 n}}(\varphi)$. Without loss of generality, we can assume that $\varphi_{j}, \varphi \in \operatorname{PSH}^{-}\left(\Delta^{n}\right)$ and

$$
\int_{\Delta^{n}} \mathrm{e}^{-2 c \varphi}\|z\|^{2} \mathrm{~d} V_{2 n}<+\infty
$$

where Δ is the unit polydisc in \mathbb{C}. By Fubini's theorem we have

$$
\int_{\Delta}\left[\int_{\Delta^{n-1}} \mathrm{e}^{-2 c \varphi\left(z^{\prime}, z_{n}\right)} \mathrm{d} V_{2 n-2}\left(z^{\prime}\right)\right]\left|z_{n}\right|^{2} \mathrm{~d} V_{2}\left(z_{n}\right)<+\infty
$$

By well-known properties of pluripotential theory, the L^{1} convergence of φ_{j} to φ implies that $\varphi_{j} \rightarrow \varphi$ almost everywhere with respect to the Lebesgue measure. Then $\varphi_{j}\left(\bullet, z_{n}\right) \rightarrow \varphi\left(\bullet, z_{n}\right)$ in the topology of $L_{\text {loc }}^{1}\left(\Delta^{n-1}\right)$ for almost every $z_{n} \in \Delta$. Therefore, we can find $w_{n} \in \Delta \backslash\{0\}$ such that

$$
\int_{\Delta^{n-1}} \mathrm{e}^{-2 c \varphi\left(z^{\prime}, w_{n}\right)}\left|w_{n}\right|^{2} \mathrm{~d} V_{2 n-2}\left(z^{\prime}\right) \leq \frac{\epsilon^{2}}{\left|w_{n}\right|^{2}}
$$

and $\varphi_{j}\left(\cdot, w_{n}\right) \rightarrow \varphi\left(\cdot, w_{n}\right)$ in the topology of $L_{\text {loc }}^{1}\left(\Delta^{n-1}\right)$. By the effective version of the semicontinuity theorem for weighted \log canonical thresholds (see [7] and see also [10]), we can find $j_{0} \geq 1$ and $\rho>0$ such that

$$
\int_{\Delta_{\rho}^{n-1}} \mathrm{e}^{-2 c \varphi_{j}\left(z^{\prime}, w_{n}\right)}\left|w_{n}\right|^{2} \mathrm{~d} V_{2 n-2}\left(z^{\prime}\right) \leq \frac{\epsilon^{2}}{\left|w_{n}\right|^{2}}, \quad \forall j \geq j_{0}
$$

Thanks to the L^{2}-extension theorem of Ohsawa and Takegoshi (see [14] and see also [2,5]), there exists a holomorphic function $f_{j n}$ on $\Delta_{\rho}^{n-1} \times \Delta$ such that $f_{j n}\left(z^{\prime}, w_{n}\right)=w_{n}$ for all $z^{\prime} \in \Delta_{\rho}^{n-1}$, and

$$
\begin{aligned}
& \int_{\Delta_{\rho}^{n-1} \times \Delta}\left|f_{j n}(z)\right|^{2} \mathrm{e}^{-2 c \varphi_{j}(z)} \mathrm{d} V_{2 n}(z) \\
& \quad \leq A \int_{\Delta_{\rho}^{n-1}} \mathrm{e}^{-2 c \varphi_{j}\left(z^{\prime}, w_{n}\right)}\left|w_{n}\right|^{2} \mathrm{~d} V_{2 n-2}\left(z^{\prime}\right) \\
& \quad \leq \frac{A \epsilon^{2}}{\left|w_{n}\right|^{2}}
\end{aligned}
$$

where A is a constant. By the mean value inequality for the plurisubharmonic function $\left|f_{j n}\right|^{2}$, we get

$$
\begin{aligned}
\left|f_{j n}(z)\right|^{2} & \leq \frac{1}{\pi^{n}\left(\rho-\left|z_{1}\right|\right)^{2} \ldots\left(\rho-\left|z_{n}\right|\right)^{2}} \int_{\Delta_{\rho-\left|z_{1}\right|}\left(z_{1}\right) \times \ldots \times \Delta_{\rho-\left|z_{n}\right|}\left(z_{n}\right)}\left|f_{j n}\right|^{2} \mathrm{~d} V_{2 n} \\
& \leq \frac{A \epsilon^{2}}{\pi^{n}\left(\rho-\left|z_{1}\right|\right)^{2} \ldots\left(\rho-\left|z_{n}\right|\right)^{2}\left|w_{n}\right|^{2}},
\end{aligned}
$$

where $\Delta_{\rho}(z)$ is the disc of center z and radius ρ. Hence, for any $r<\rho$, we infer

$$
\left\|f_{j n}\right\|_{L^{\infty}\left(\Delta_{r}^{n}\right)} \leq \frac{2^{n} A^{\frac{1}{2}} \epsilon}{\pi^{\frac{n}{2}}(\rho-r)^{n}\left|w_{n}\right|}
$$

Since $f_{j n}\left(z^{\prime}, w_{n}\right)-w_{n}=0, \forall z^{\prime} \in \Delta_{\rho}^{n-1}$, we can write $f_{j n}(z)=z_{n}+\left(z_{n}-w_{n}\right) g_{j n}(z)$ for some function $g_{j n}(z)=\sum_{\alpha \in \mathbb{N}^{n}} a_{j n, \alpha} z^{\alpha}$ on $\Delta_{\rho}^{n-1} \times \Delta$. We have

$$
\begin{aligned}
\left\|g_{j n}\right\|_{\Delta_{r}^{n}}=\left\|g_{j n}\right\|_{\Delta_{r}^{n-1} \times \partial \Delta_{r}} & \leq \frac{1}{r-\left|w_{n}\right|}\left(\left\|f_{j n}\right\|_{L^{\infty}\left(\Delta_{r}^{n}\right)}+1\right) \\
& \leq \frac{1}{r-\left|w_{n}\right|}\left(\frac{2^{n} A^{\frac{1}{2}} \epsilon}{\pi^{\frac{n}{2}}(\rho-r)^{n}\left|w_{n}\right|}+1\right)
\end{aligned}
$$

Thanks to the Cauchy integral formula, we find

$$
\left|a_{j n, \alpha}\right| \leq \frac{\left\|g_{j}\right\|_{\Delta_{r}^{n}}}{r^{|\alpha|}} \leq \frac{1}{\left(r-\left|w_{n}\right|\right) r^{|\alpha|}}\left(\frac{2^{n} A^{\frac{1}{2}} \epsilon}{\pi^{\frac{n}{2}}(\rho-r)^{n}\left|w_{n}\right|}+1\right)
$$

We take in any case $\eta \leq \epsilon \leq \frac{1}{2} r$. As $\left|w_{n}\right|<\eta \leq \frac{1}{2} r$, this implies

$$
\left|w_{n}\right|\left|a_{j n, \alpha}\right| r^{|\alpha|} \leq \frac{2}{r}\left(\frac{2^{n} A^{\frac{1}{2}} \epsilon}{\pi^{\frac{n}{2}}(\rho-r)^{n}}+\left|w_{n}\right|\right) \leq A^{\prime} \epsilon
$$

Similarly, for $\epsilon_{1}, \ldots, \epsilon_{n}>0$, we can find $w_{1}, \ldots, w_{n} \in \Delta_{\frac{1}{4}} \backslash\{0\}$, holomorphic functions $f_{j k}$ and $g_{j k}=\sum_{\alpha \in \mathbb{N}^{n}} a_{j k, \alpha} z^{\alpha}$ on Δ_{ρ}^{n} with $\left|w_{k} \| a_{j k, \alpha}\right| \leq 2^{|\alpha|} \epsilon_{k}$ such that

$$
\int_{\Delta_{\rho}^{n}}\left|f_{j k}(z)\right|^{2} \mathrm{e}^{-2 c \varphi_{j}(z)} \mathrm{d} V_{2 n}(z) \leq \frac{\epsilon_{k}^{2}}{\left|w_{k}\right|^{2}}
$$

$$
f_{j k}(z)=z_{k}+\left(z_{k}-w_{k}\right) g_{j k}(z)
$$

for all $1 \leq k \leq n, j \geq j_{0}$. Now, we only need to prove that there exist $\delta_{j}, \theta_{j}>0$ such that

$$
\sum_{1 \leq k \leq n}\left|f_{j k}(z)\right|^{2} \geq \theta_{j}\|z\|^{2}
$$

for all $z \in \Delta_{\delta_{j}}^{n}, j \geq j_{0}$. First, if $f_{j k}(0)=w_{k} g_{j k}(0) \neq 0$ for some $k \in\{1, \ldots, n\}$ then there exist $\delta_{j}, \theta_{j}>0$ such that

$$
\sum_{1 \leq k \leq n}\left|f_{j k}(z)\right|^{2} \geq \theta_{j}, \quad \forall z \in \Delta_{\delta_{j}}^{n}
$$

Now, we only consider the case of $f_{j k}(0)=w_{k} g_{j k}(0)=0$ for all $k \in\{1, \ldots, n\}$. Since $\left|w_{k} \| a_{j k, \alpha}\right| \leq 2^{|\alpha|} \epsilon_{k}$, we get

$$
\left|g_{j k}(z)\right| \leq \frac{4 n \epsilon_{k}}{\left|w_{k}\right|}\|z\|, \quad \forall z \in \Delta_{\frac{1}{4}}^{n}
$$

Hence

$$
\left|f_{j k}(z)\right| \geq\left|z_{k}\right|-8 n \epsilon_{k}\|z\|, \quad \forall z \in \Delta_{\min \left(\left|w_{1}\right|, \ldots,\left|w_{n}\right|\right)}^{n}
$$

By choosing $\epsilon_{1}, \ldots, \epsilon_{n}>0$ small enough, we get

$$
\sum_{1 \leq k \leq n}\left|f_{j k}(z)\right|^{2} \geq \theta_{j}\|z\|^{2}, \quad \forall z \in \Delta_{\delta_{j}}^{n}, \quad j \geq j_{0}
$$

3. Proof of Theorem 1.3

First, we will prove that

$$
c_{k}(\varphi) \geq c_{\|z\|^{2(k-n)} \mathrm{d} V_{2 n}}(\varphi)
$$

Indeed, take $c<c_{\|z\|^{2(k-n)} \mathrm{d} V_{2 n}}(\varphi)$. We choose $\delta>0$ such that

$$
\int_{\mathbb{B}(0, \delta)} \mathrm{e}^{-2 c \varphi}\|z\|^{2(k-n)} \mathrm{d} V_{2 n}<+\infty
$$

where $\mathbb{B}(0, \delta)$ is the ball with center at 0 and radius δ. By Fubini's theorem we have

$$
\int_{H \in \operatorname{Gr}(k, n)} \mathrm{d} \mu(H) \int_{H \cap \mathbb{B}(0, \delta)} \mathrm{e}^{-2 c \varphi} \mathrm{~d} V_{2 k}=0(1) \int_{\mathbb{B}(0, \delta)} \mathrm{e}^{-2 c \varphi}\|z\|^{2(k-n)} \mathrm{d} V_{2 n}<+\infty
$$

where $\operatorname{Gr}(k, n)$ is the Grassmannian manifold of k-dimensional subspaces in \mathbb{C}^{n} and $\mathrm{d} \mu$ is the Haar measure on $\operatorname{Gr}(k, n)$. This implies that there exists $H \in \operatorname{Gr}(k, n)$ such that

$$
\int_{H \cap \mathbb{B}(0, \delta)} \mathrm{e}^{-2 c \varphi} \mathrm{~d} V_{2 k}<+\infty
$$

Hence $c_{k}(\varphi) \geq c$. Second, we will prove that

$$
c_{k}(\varphi) \leq c_{\|z\|^{2(k-n)} \mathrm{d} V_{2 n}}(\varphi)
$$

Indeed, take $c<c_{k}(\varphi)$. We choose $\delta>0$ and $H \in \operatorname{Gr}(k, n)$ such that

$$
\int_{H \cap \mathbb{B}(0, \delta)} \mathrm{e}^{-2 c \varphi} \mathrm{~d} V_{2 k}<+\infty
$$

Without loss of generality, we can assume that $H=\left\{z \in \mathbb{C}^{n}: z_{k+1}=\ldots z_{n}=0\right\}$. As in the proof of Theorem 2.5 in [7], thanks to the L^{2}-extension theorem of Ohsawa and Takegoshi (see [14]), we can find a holomorphic function f on $\mathbb{B}(0, \delta)$ such that $f=1$ on H and

$$
\int_{\mathbb{B}(0, \delta)}|f|^{2} \mathrm{e}^{-2 c \varphi}\left(\sum_{j=k+1}^{n}\left|z_{j}\right|^{2}\right)^{(k-n)+\epsilon} \mathrm{d} V_{2 k} \leq 0(1) \int_{H \cap \mathbb{B}(0, \delta)} \mathrm{e}^{-2 c \varphi} \mathrm{~d} V_{2 k}<+\infty
$$

for all $\epsilon>0$. This implies that there exists $0<\delta_{1}<\delta$ such that

$$
\int_{\mathbb{B}\left(0, \delta_{1}\right)} \mathrm{e}^{-2 c \varphi}\|z\|^{2(k-n)+2 \epsilon} \mathrm{~d} V_{2 k}<+\infty
$$

for all $\epsilon>0$. Hence

$$
c_{\|z\|^{2(k-n)+2 \epsilon}}(\varphi) \geq c, \quad \forall \epsilon>0
$$

Letting $\epsilon \rightarrow 0$, we get

$$
c_{\|z\| \|^{2(k-n)}}(\varphi) \geq c .
$$

Now, we will only need to show that

$$
\tilde{c}_{k}(\varphi) \leq c_{k}(\varphi)
$$

We choose a smooth k-dimensional submanifold H through 0 such that $\tilde{c}_{k}(\varphi)=c\left(\left.\varphi\right|_{H}\right)$. We can find a biholomorphic $\Phi: U \rightarrow V$ such that $\Phi(0)=0$ and $\Psi(H)$ is a k-dimensional subspace in \mathbb{C}^{n}, where U, V are neighborhoods of $0 \in \mathbb{C}^{n}$. Since $c_{k}(\varphi)=c_{\|z\| \|^{2(k-n)} \mathrm{d} V_{2 n}}(\varphi)$, we have

$$
\tilde{c}_{k}(\varphi)=c\left(\left.\varphi\right|_{H}\right)=c\left(\left.\varphi_{o} \Phi^{-1}\right|_{\Phi(H)}\right) \leq c_{k}\left(\varphi_{o} \Phi^{-1}\right)=c_{k}(\varphi)
$$

Acknowledgements

This article was written while the author was a visiting member at the Fourier Institute, Grenoble. We would like to thank Professor Jean-Pierre Demailly and the members of the Fourier Institute for their kind hospitality. The author is supported by Vietnam Academy of Science and Technology, under the program "Building a research team and research trends in complex analysis", decision VAST.CTG.01/16-17.

References

[1] B. Berndtsson, The openness conjecture for plurisubharmonic functions, in: Complex Geometry and Dynamics: The Abel Symposium, 2013.
[2] Z. Blocki, Suita conjecture and the Ohsawa-Takegoshi extension theorem, Invent. Math. 193 (2013) 149-158.
[3] J.-P. Demailly, Monge-Ampère operators, Lelong numbers and intersection theory, in: V. Ancona, A. Silva (Eds.), Complex Analysis and Geometry, in: University Series in Mathematics, Plenum Press, New York, 1993.
[4] J.-P. Demailly, A numerical criterion for very ample line bundles, J. Differential Geom. 37 (1993) 323-374.
[5] J.-P. Demailly, Complex analytic and differential geometry, http://www-fourier.ujf-grenoble.fr/demailly/books.html.
[6] J.-P. Demailly, P.H. Hiep, A sharp lower bound for the log canonical threshold, Acta Math. 212 (2014) 1-9.
[7] J.-P. Demailly, J. Kollár, Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds, Ann. Sci. Éc. Norm. Supér. (4) 34 (2001) 525-556.
[8] Q. Guan, X. Zhou, A proof of Demailly's strong openness conjecture, Ann. of Math. (2) 182 (2015) 605-616.
[9] Q. Guan, X. Zhou, Multiplier ideal sheaves, jumping numbers, and the restriction formula, arXiv:1504.04209 [math.CV].
[10] P.H. Hiep, The weighted log canonical threshold, C. R. Acad. Sci. Paris, Ser. I 352 (2014) 283-288.
[11] P.H. Hiep, Log canonical thresholds and Monge-Ampère masses, arXiv:1604.01506v4.
[12] C.O. Kiselman, Attenuating the singularities of plurisubharmonic functions, Ann. Pol. Math. 60 (1994) 173-197.
[13] A. Nadel, Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature, Ann. of Math. (2) 132 (1990) $549-596$.
[14] T. Ohsawa, K. Takegoshi, On the extension of L^{2} holomorphic functions, Math. Z. 195 (1987) 197-204.
[15] D.H. Phong, J. Sturm, Algebraic estimates, stability of local zeta functions, and uniform estimates for distribution functions, Ann. of Math. (2) 152 (2000) 277329.
[16] H. Skoda, Sous-ensembles analytiques d'ordre fini ou infini dans \mathbb{C}^{n}, Bull. Soc. Math. Fr. 100 (1972) 353-408.

[^0]: E-mail address: phhiep@math.ac.vn.
 http://dx.doi.org/10.1016/j.crma.2016.11.005
 1631-073X/© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

