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We show that, for a quadratic extension of p-adic fields, no cuspidal representation of 
the quasi-split unitary group admits a non-trivial linear form invariant by the symplectic 
subgroup. Our proof is purely local.
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r é s u m é

Nous montrons que, pour une extension quadratique de corps p-adiques, aucune représen-
tation cuspidale du groupe unitaire semi-déployé n’admet de forme linéaire non nulle 
invariante par l’action du sous-groupe symplectique. Notre preuve est purement locale.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let G be a reductive p-adic group and H a closed subgroup. A smooth, complex valued representation (π, V ) of G is 
called H-distinguished if there exists a non-zero linear form � on V such that �(π(h)v) = �(v) for all h ∈ H and v ∈ V .

The class of H-distinguished representations plays an important role in the harmonic analysis of the homogeneous space 
G/H (see [2]). Furthermore, distinguished representations are crucial for the global theory of period integrals of automorphic 
forms, have applications to the study of special values of L-functions and to the description of the image of functorial lifts 
in the sense of Langlands functoriality conjectures.

We say that (G, H) is a vanishing pair if no irreducible cuspidal representation of G is H-distinguished. The terminology 
is borrowed from [1] where the global analogue is defined.

This note provides a new family of vanishing pairs. The groups concerned are as follows. Let E/F be a quadratic extension 
of non-Archimedean local fields of characteristic different than two. The symplectic group Sp2n(F ) naturally embeds in the 
quasi-split unitary group Un,n(F ) on 2n variables associated with the extension E/F .

E-mail addresses: 00.arnab.mitra@gmail.com (A. Mitra), offen@tx.technion.ac.il (O. Offen).
http://dx.doi.org/10.1016/j.crma.2016.11.009
1631-073X/© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

http://dx.doi.org/10.1016/j.crma.2016.11.009
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:00.arnab.mitra@gmail.com
mailto:offen@tx.technion.ac.il
http://dx.doi.org/10.1016/j.crma.2016.11.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crma.2016.11.009&domain=pdf


16 A. Mitra, O. Offen / C. R. Acad. Sci. Paris, Ser. I 355 (2017) 15–19
Theorem 1.1. (See Theorem 3.1.) The pair (Un,n(F ), Sp2n(F )) is a vanishing pair.

In [1], Ash, Ginzburg and Rallis provide many examples of global vanishing pairs. The proof of Theorem 1.1 is inspired by 
their proof, but is purely local. We sometimes refer to an Sp2n(F )-invariant linear form as a symplectic period. The vanishing 
of symplectic periods for tame cuspidal representations was obtained in [10, Theorem 1.3] using the explicit construction 
of such representations due to J.K. Yu. Our proof of the generalization to all cuspidal representations is elementary in 
comparison.

We also remark that following [1] more directly, the techniques of this paper can also show the global analogue of our 
result.

Theorem 1.2. Let k be a global field of characteristic different than two. Then (Un,n, Sp2n) is a global vanishing pair. That is,∫

Sp2n(k)\ Sp2n(Ak)

φ(h) dh = 0

for any cuspidal automorphic form on Un,n(k)\Un,n(Ak).

Here Ak is the ring of adeles of k. As the global approach follows [1] closely, we omit the proof here. The novelty of this 
work is that the same techniques can be adapted in a local setting.

The discrete series representations of the quasi-split unitary groups are completely classified by Mœglin and Tadíc mod-
ulo cuspidal representations [8]. The classification in [8] is then extended to the class of tempered representations of these 
groups in [9] and [5]. The results in this paper are a first step in an ongoing project by the authors aiming at the classifica-
tion of Sp2n(F )-distinguished tempered representations of Un,n(F ) and in particular, at determining if distinguished discrete 
series representations exist.

Remark 1.3. After completion of this work, it came to our attention that Dijols and Prasad independently obtained the main 
result of this paper, which will be published in an upcoming work [3].

2. Notation and preliminaries

Let E/F be a quadratic extension of non-Archimedean local fields of characteristic different from two with Galois action 
a �→ ā. Fix a trace zero element ı ∈ E∗ .

In this note, we will be concerned with two families of reductive groups, the quasi-split unitary groups and the sym-
plectic groups.

Let J = Jn = ( wn

−wn

)
, where wn = (δi,n+1− j) ∈ GLn(F ). Let G = Gn be the quasi-split unitary group with respect to the 

Hermitian matrix ı J and H = Hn the symplectic group defined by the symplectic matrix J . Explicitly,

G = {g ∈ GL2n(E) | t ḡ J g = J }
and

H = {g ∈ GL2n(F ) | t g J g = J }.
Thus, H is the subgroup of G of the fixed points under the involution g �→ ḡ = J t g−1 J−1.

When G ′ is either G or H , we call a parabolic subgroup of G ′ standard if it contains the subgroup of upper-triangular 
matrices in G ′ . The map Q �→ Q ∩ H is a bijection between standard parabolic subgroups of G and of H .

The standard parabolic subgroups of G are in bijection with compositions (n1, . . . , nr; m) of n with m, r ≥ 0, n1, . . . , nr ≥ 1
and n1 + · · · + nr + m = n. Denote by

Q (n1,...,nr ;m) = L(n1,...,nr ;m)V (n1,...,nr ;m)

the standard parabolic subgroup with unipotent radical V (n1,...,nr ;m) and standard Levi subgroup

L(n1,...,nr ;m) = {diag(g1, . . . , gr,h, g∗
r , . . . , g∗

1) : h ∈ Gm, gi ∈ GLni (E), i = 1, . . . , r}
isomorphic to GLn1(E) × · · · × GLnr (E) × Gm . The involution g �→ g∗ on GLk(E) (for any k) is defined by g∗ = wk

t ḡ−1 w−1
k .

We also set

P (n1,...,nr ;m) = M(n1,...,nr ;m)U (n1,...,nr ;m) = Q (n1,...,nr ;m) ∩ H

where

M(n ,...,nr ;m) = L(n ,...,nr ;m) ∩ H 	 GLn1(F ) × · · · × GLnr (F ) × Hm
1 1
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and

U (n1,...,nr ;m) = V (n1,...,nr ;m) ∩ H .

Of particular interest to us will be the parabolic subgroups Q (1;n−1) and P (1;n−1) and their Levi decompositions. Set 
V = V (1;n−1) and U = U (1;n−1) . Explicitly,

V =
⎧⎨
⎩

⎛
⎝1 x z

I2(n−1) x′
1

⎞
⎠ : x ∈ E2(n−1), x′ = − Jn−1

t x̄, z ∈ E, z − z̄ = x Jn−1
t x̄ = −xx′

⎫⎬
⎭

and

U =
⎧⎨
⎩

⎛
⎝1 x z

I2(n−1) x′
1

⎞
⎠ : x ∈ F 2(n−1), x′ = − Jn−1

tx, z ∈ F

⎫⎬
⎭ .

It is straightforward that U is a normal subgroup of V and that F 2(n−1) 	 U\V . An explicit isomorphism is given by 
x �→ U v(x), where

v(x) =
⎛
⎝1 ıx 0

I2(n−1) (ıx)′
1

⎞
⎠ , x ∈ F 2(n−1).

Fix a non-trivial character ψ of F . For any k and a = (a1, . . . , ak) ∈ F k , let ψa be the character of F k defined by 
ψa(x1, . . . , xk) = ψ(a1x1 + · · · + akxk).

The dual group is therefore

Û\V = {χa : a ∈ F 2(n−1)}
where for a = (a1, . . . , a2(n−1)), we set

χa

⎛
⎝1 x z

I2(n−1) x′
1

⎞
⎠ = ψa((2ı)−1(x − x̄)).

For any k ≤ n, denote by ιn = ιn,k : Gk → G the embedding defined by

ιn(g) = diag(In−k, g, In−k).

For a subgroup S of Gk , let S(n) denote its image under ιn (a subgroup of L(n−k;k)).

The group S = H (n)
n−1 normalizes both U and V and therefore acts on U\V via conjugation. For h ∈ Hn−1 and s = ιn(h) ∈ S , 

we observe that sv(x)s−1 = v(xh−1) and therefore, for the dual action

(s · χ)(v) = χ(s−1 vs), s ∈ S, v ∈ U\V , χ ∈ Û\V

we have

s · χa = χa th.

Since Hk acts transitively on F 2k \ {0}, it follows that

Û\V = {χ0} � S · χe1

consists of two S-orbits, where e1 = (1, 0, . . . , 0) ∈ F 2(n−1) . We further note that the stabilizer S1 of χe1 satisfies S1 = R(n)
n−1, 

where for any k we set

Rk = {h ∈ P (1;k−1) : h1,1 = 1}.
Note that Rn−1 and Hn−1 are both unimodular and there is therefore a unique Hn−1-invariant measure dh on Rn−1\Hn−1 	
S1\S . Since the Haar measure on F 2(n−1) is Hn−1-invariant, by restricting to the open dense subset F 2(n−1) \ {0} it induces 
dh on Rn−1\Hn−1 up to a positive constant. With the appropriate normalization of measures, by Pontryagin duality, for 
every f ∈ C∞

c (U\V ), we therefore have (I is the identity matrix in V )

f (I) =
∫

R(n)
n−1\H(n)

n−1

∫

U\V

f (v)χe1(h
−1 vh) dv dh. (1)
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3. The main result

Let σ be a representation of G . For a linear form � on σ and a vector w in the space of σ , let

c�,w(g) = �(σ (g)w), g ∈ G

be the associated generalized matrix coefficient.

Theorem 3.1. Let σ be an irreducible cuspidal representation of G. Then

HomH (σ ,1) = 0.

Proof. We first remark that, since σ is cuspidal, we have

HomV (σ ,1) = 0 (2)

whenever V is the unipotent radical of a proper parabolic subgroup of G .
Let � ∈ HomH (σ , 1). It follows from [6, Proposition 8.1] (see also [7] for related results) that c�,w ∈ C∞

c (H\G) for every 
w ∈ σ (note that G has compact center).

For k = 0, 1, . . . , n let

Vk = V (1(k);n−k), Vk = V (n)

(1;n−k)
, Uk = Vk ∩ H and Uk = Vk ∩ H .

(By a(k) we mean the composition (a, . . . , a) of ak.) Recall that {ιn(v(x)) : x ∈ F 2(n−k)} is a complete set of representatives 
for Uk\Vk .

Note that V0 is the trivial group and Vn is the unipotent radical of the standard Borel subgroup of G . For k = 0, 1, . . . , n −
1, let μk be the (degenerate) character of Vn defined by

μk(ν) = ψ((2ı)−1
k∑

i=1

(νi,i+1 − ν̄i,i+1)).

Then, μk is trivial on Un as well as on the unipotent radical V (n;0) of the Siegel parabolic subgroup of G . Let

�k(w) =
∫

Uk\Vk

c�,w(ν)μk(ν) dν.

We show by (reverse) induction on k that �k = 0 for k = 0, 1, . . . , n − 1. Since �0 = �, the theorem will follow.
We first make the following observations. Note that Vk+1 ⊆ G(n)

n−k ⊆ L(1(k);n−k) , and therefore Vk+1 normalizes Vk . Since 
also Vk+1 = Vk+1Vk and Vk+1 ∩ Vk = 1, it follows that

Vk+1 = Vk+1 � Vk and similarly Uk+1 = Uk+1 � Uk. (3)

With an appropriate normalization of invariant measures, we therefore have∫

Uk+1\Vk+1

f (ν) dν =
∫

Uk+1\Vk+1

∫

Uk\Vk

f (νv) dν dv, f ∈ C∞
c (Uk+1\Vk+1). (4)

Note further that

μk(v−1νv) = μk(ν), ν ∈ Vk, v ∈ Vk+1. (5)

It follows from (5) that c�k,w(ug) = c�k,w(g), u ∈ Uk+1, g ∈ G . Since c�,w has compact support modulo H , its restriction to 
Vk+1 has compact support modulo Uk+1. It therefore follows from (3) and the definition of �k that the restriction to Vk+1
of c�k,w lies in C∞

c (Uk+1\Vk+1).
For 1 ≤ k < n let e1(k) = (1, 0, . . . , 0) ∈ F 2(n−k) and let χk = χe1(k) be the associated character of Uk\Vk . Note that 

χk = μk|Vk .
Since μk and μk+1 coincide on Vk for k < n − 1, it follows that

μk+1(νv) = μk(ν)χk+1(v), v ∈ Vk+1, ν ∈ Vk. (6)

Finally, we also observe that

μk(h
−1νh) = μk(ν), ν ∈ Vk, h ∈ H (n)

. (7)
n−k−1
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Note that Un = Vn . It therefore follows from (4) that

�n−1(w) =
∫

Un\Vn

c�,w(ν)μn−1(ν) dν

and therefore that �n−1 ∈ HomVn (σ , μ−1
n−1). Since μn−1 is trivial on V (n;0) , it follows from (2) applied to V = V (n;0) that 

�n−1 = 0.
Assume now that k < n − 1 and that �k+1 = 0. We apply (1) to the restriction to Vk+1 of c�k,w for w ∈ σ . We get that

�k(w) =
∫

R(n)

n−k−1\H(n)

n−k−1

⎡
⎢⎣

∫

Uk+1\Vk+1

∫

Uk\Vk

�(σ (νv)w)μk(ν) dνχk+1(h
−1 vh) dv

⎤
⎥⎦ dh.

Note that H (n)

n−k−1 normalizes each of the groups Vk+1, Uk+1, Vk and Uk . Making the changes of variables v �→ hvh−1 and 
ν �→ hνh−1 and applying (7) and the H-invariance of �, we therefore have

�k(w) =
∫

R(n)

n−k−1\H(n)

n−k−1

⎡
⎢⎣

∫

Uk+1\Vk+1

∫

Uk\Vk

�(σ (νvh−1)w)μk(ν) dνχk+1(v) dv

⎤
⎥⎦ dh.

Applying (4) and (6) we get that

�k(w) =
∫

R(n)

n−k−1\H(n)

n−k−1

�k+1(σ (h−1)w) dh

which is zero by the induction hypothesis. �
Remark 3.2. In [4], Heumos and Rallis showed that (GL2n(F ), Sp2n(F )) is a vanishing pair by disjointness of Whittaker and 
symplectic models. With a few minor modifications, our proof adapts to this pair and provides a new local proof that does 
not apply the fact that cuspidal representations of GLm(F ) are generic.
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