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A stationary boundary-value problem for the Navier–Stokes equations of an incompressible 
fluid in a domain of a spherical layer type is considered. The velocity vector on the 
boundary is given. The solvability of this problem was proven by Jean Leray (1933) under 
an additional condition of a zero flux through each connected component of the flow 
domain boundary. The following problem is open up to now: does a solution to the flux 
problem exist if only the necessary condition of a zero total flux is satisfied? The present 
communication is devoted to the consideration of the Leray problem in a spherical-layer-
type domain. An a priori estimate of the solution under the condition of flow symmetry 
with respect to a plane is obtained. This estimate implies the solvability of the problem.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On considère le problème avec conditions au bord pour les équations de Navier–Stokes 
stationnaires régissant l’écoulement d’un fluide incompressible dans une couche sphérique. 
On donne la vitesse au bord. Jean Leray (1933) a démontré la solvabilité de ce problème 
sous la condition d’un flux nul à travers chacune des composantes connexes du bord. Le 
problème suivant est à présent ouvert : est-ce qu’une solution du problème avec flux existe 
sous la seule condition d’un flux total nul ? La note ci-dessous considère le problème de 
Leray dans une couche sphérique. On obtient une estimation a priori de la solution, sous 
la condition de symétrie par rapport à un plan. Cette estimation implique la solvabilité du 
problème.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Statement of the problem

Let us consider the stationary motion of an incompressible viscous fluid in a domain � of a spherical-layer type with 
an interior boundary �1 and an exterior boundary �2 of class C2. For simplicity, we assume that the surfaces �1 and �2
are star-like with respect to the origin. Let us denote the cylindrical coordinates in R3 as r, ϕ , and z and the corresponding 

E-mail address: pukhnachev@gmail.com.
http://dx.doi.org/10.1016/j.crma.2016.11.010
1631-073X/© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

http://dx.doi.org/10.1016/j.crma.2016.11.010
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:pukhnachev@gmail.com
http://dx.doi.org/10.1016/j.crma.2016.11.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crma.2016.11.010&domain=pdf


114 V. Pukhnachev / C. R. Acad. Sci. Paris, Ser. I 355 (2017) 113–117
components of the velocity vector u by u, v , and w . The Navier–Stokes equations in these cylindrical coordinates have the 
form
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Here p is the ratio of the pressure to the liquid density and ν = const > 0 is coefficient of viscosity.
The function u satisfies the boundary conditions

u = ai(x), x ∈ �i, i = 1, 2, (2)

where the functions ai ∈ W 1/2, 2(�i) satisfy the flux condition
∫
�1

a1 · n1 d�1 = −
∫
�2

a2 · n2 d�2 = F (3)

(ni is the unit exterior normal vector to the surface �i). Problem (1)–(3) is a particular case of the flux problem for the 
Navier–Stokes equations. The solvability of this problem in the case where F = 0 follows from the classical results of Jean 
Leray [1]. In this paper, we prove the solvability of problem (1)–(3) in the class of symmetric flows with respect to a plane.

2. General case of the flux problem

Let us consider a more general situation. We assume that the boundary ∂ � ∈ C2 of the bounded domain � ∈ R
n

(n = 2, 3) consists of N connected components �i . The task is to find the solution u, p of the boundary-value problem

−ν �u + u · ∇u + ∇p = 0, div u = 0, x ∈ �, (4)

u = a, x ∈ ∂ �. (5)

In view of the continuity equation (5), the function a satisfies the condition
∫

∂ �

a · n dS = 0, (6)

where n is the unit exterior normal vector to the surface ∂ �. Equality (7) means that the total flux of an incompressible 
fluid through the boundary of the flow domain equals zero.

Let Fi be the flux of vector a through the surface �i . Let us assume that a stronger condition than condition (2) is 
satisfied:∫

�i

a · n dS ≡ Fi = 0, i = 1, ..., N. (7)

Then problem (4)–(6) has at least one solution [1]. We are interested in the case where Fi �= 0. Problem (4)–(6) is also 
called the Leray problem because it actually goes back to his paper [1]. Fujita [2] and Finn [3] proved the solvability of the 
three-dimensional problem (4)–(5) for small values of Fi . Fujita and Morimoto [4] established the existence theorem for 
flows that are close to potential ones. Korobkov, Pileckas, and Russo obtained a positive solution to the flux problem for 
planar and axially symmetric flows without restrictions on the flux values (see [5] and references therein).

According to [6], we define the space H(�) as the closure of the set of vector-functions ξ ∈ C∞
0 (�), div ξ = 0 in the norm 

of the Dirichlet integral

‖∇w‖2
L2( � )

=
∫
�

3∑
i, k=1

(∂ wi/∂xk)
2dx. (8)
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Lemma 2.1. [7,6]. Let the vector field a belongs to the class W 1/2, 2(∂ �). If condition (7) is satisfied, then a solenoidal continuation 
b (x, ε) ∈ W 1, 2 ( � ) of the vector a into the domain � exists so that for any ε > 0 we have∣∣∣∣∣∣

∫
�

b · w · ∇w dx

∣∣∣∣∣∣ ≤ ε ‖w‖2
w1, 2( � )

, ∀w ∈ H(�). (9)

3. Symmetric solutions to the planar flux problem

Let the domain � ∈ R
2 have an axis of symmetry x2 = 0 and let the vector a = (a1, a2) specified on ∂� possess a 

symmetry property in following sense: a1 is an even function in x1 and a2 is an odd function in x1. We also assume that 
the symmetry axis intersects each of the connected components �i of ∂�. If a ∈ W 1/2, 2(∂ �) then problem (4), (5) has a 
solution u ∈ W 1,2(�), ∇ p ∈ L2(�) for any value of Fi . Moreover, the functions u1, p are even functions in x1, while u2 is 
an odd function in x1. At first, this result was obtained by Amick [8] and independently by Sazonov [9] with arguments 
from contradiction. The flow domain � in those papers was a curvilinear ring. Probably Sazonov did not know about 
Amick’s work, but he proved the existence theorem by a simpler method using the notion of a virtual drain. This term was 
introduced by Fujita [10], who obtained an a priori estimate of the norm ‖u‖W 1, 2(�) for the planar symmetric flux problem 
in a multiply connected domain providing the solvability of the problem.

4. Modification of the cutting off function

We define a family of functions ςκ ( t ) depending on the parameter κ > 0 by virtue of the relations

ςκ ∈ C2, Lip(R)
0 ; ςκ ≥ 0, ςκ (− t ) = ςκ ( t ), t ∈ R; ςκ ≤ 1

t
(0 < t < ∞ ), (10)
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2
), ς ′

κ = 0 (0 ≤ t ≤ κ

2
).

In comparison with the construction of the cutting-off function proposed by Hopf [7] and Fujita [10], we added here a 
restriction on the value of 

∣∣ς ′
κ

∣∣ and a requirement ςκ = const if |t| < κ/2.

Setting γκ = ∫ ∞
− ∞ ςκ ( t ) dt = ∫ ∞

− ∞ ςκ ( t ) dt , we see that γκ ≥ 2 
∫ 1/2
κ

dt
t → ∞ as κ → 0. Now we introduce an 

auxiliary function η ( t ) = η ( t; δ, κ ) by means of the equality

η ( t ) = 1

γκ

1

δ
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)
, t ∈ R, (11)

where δ = const > 0 is small enough, but has a fixed value. From Eq. (10), (11), we derive the estimates
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which imply the relations

sup
t

| t | η ( t ) → 0, sup
t

t2
∣∣ η′( t )

∣∣ → 0 if κ → +0. (12)

5. A priori estimate of the Dirichlet integral

Let us return to problem (1)–(3). Assume that there exists a function b with the properties b ∈ W 1, 2(�),

div b = 0, x ∈ �, (13)

b = ai, x ∈ �i, i = 1, 2. (14)

Further we consider that the domain � has a symmetry plane z = 0. In addition, we assume that the projections of the 
vectors a1 and a2 onto the axes r and ϕ of the cylindrical coordinate system are even functions of the variable z, while 
their projections onto the z axis are odd functions of z. In this situation, we expect that problem (1)–(3) has a symmetric 
solution where the projections of the velocity vector u onto the axes r and ϕ and the pressure p are even functions of the 
variable z and the projection of u onto the axis z is an odd function of z.

Below Hs(�) denotes a subspace of the space H(�) generated by the vector-functions that are symmetric in the above-
mentioned sense. The function u is called a weak solution to problem (1)–(3) if u = U + b, where U ∈ Hs(�), and the 
following integral identity is satisfied:
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ν

∫
�

∇U · ∇η dx −
∫
�

((U + b) · ∇)η · U dx −
∫
�

(U · ∇)η · b dx = (15)

= −ν

∫
�

∇b · ∇η dx +
∫
�

(b · ∇)η · b dx ∀ η ∈ Hs(�).

Lemma 5.1. Let us assume that ∂� = �1 ∪ �2 is a surface of the class C2 and a1, a2 ∈ W 1/2, 2(∂ �). Let the domain � and the 
functions a1 , a2 be symmetric in the above-mentioned sense. Then for any weak solution to problem (1)–(3), the following estimate is 
valid:

‖∇U‖2
L2( � )

≤ C1. (16)

6. Scheme for proving Lemma 5.1

Let us set η = U in Eq. (15). We obtain

ν

∫
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∫
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∫
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For our purpose, it is sufficient to derive the inequality
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We construct the vector-function b satisfying relations (13), (14) in the form b = c + d, where

c = (cr, 0, 0), cr = F

2πr
η(z) (19)

(virtual drain) and d satisfies the condition of zero partial fluxes (7) with N = 2. The second term in the left part of equality 
(17) can be written as
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(Here U , V , and W are projections of the vector U onto the corresponding coordinate axis.) Integrating by parts and taking 
into account the continuity equation, we can rewrite the last identity as

∫
�

b · (U · ∇)U dx = F

2π

∫
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η′ U W dr dϕ dz + F

2π

∫
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�
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On the basis of Lemma 2.1, we are able to choose d in order to guarantee the fulfillment of the inequality

|I3| =
∣∣∣∣∣∣
∫
�

d · U · ∇U dx

∣∣∣∣∣∣ ≤ ν

6
‖∇U‖2

L2( � )
, ∀U ∈ Hs(�). (21)

Further we represent the functions U and V in the form U = U1 + U2, V = V 1 + V 2, where

U1 = [1 − χ (z) ] U , U2 = χ (z) U , V 1 = [1 − χ (z) ] V , V 2 = χ (z) V

and the function χ has the following properties: χ (z) ∈ C∞(R), χ(−z) = χ(z), χ ≥ 0, χ ′ ≤ 0, z ∈ R+; χ (0) = 1, χ = 0, 
z ≥ κ2; let also κ ≤ 1/2. Let us denote the first integral in the right part of Eq. (20) as I4. We have

|I4| ≤ C2 |F | sup
z

(z2
∣∣η′∣∣) ‖U1‖H1(�) ‖W ‖H1(�) ≤ ν

6
‖∇U‖2

L2(�)
(22)

in view of (12), if κ is small enough. Here C2 depends on the domain �. In deriving this estimate, we used the Hardy 
inequality, the estimate 

∣∣η′∣∣ ≤ 2/γκ z2, and the equalities U1(r, ϕ, 0) = 0 and η′ U2 = 0 in �.
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Let denote the second integral in the right part of Eq. (20) as I5 and evaluate its absolute value

|I5| =
∣∣∣∣∣∣
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(23)

if κ is sufficiently small. Here ρ = dist (�1, {0}) and the domain �′ is the region of intersection of the domain � and 
the layer |z| < κ2; the number δ is fixed; C3 and C4 depend on the domain � only. To obtain estimate (23), we used 
the Ladyzhenskaya and Young inequalities together with estimates following from definition (10), (11) of the function η: 
η ≤ a/κ for any t ∈R and γκ ≥ b ln (1/κ) (one can take a = 2 and b = 1). Inequalities (21)–(23) provide the desired estimate 
(18) of the norm ‖∇U‖L2(�) , which completes the proof of Lemma 5.1.

Theorem 6.1. Let the conditions of Lemma 5.1 be satisfied. Then problem (1)–(3) has the solution v ∈ W 1, 2 ( � ), ∇p ∈ L2(�).

The proof of Theorem 6.1 is omitted here. It is based on standard arguments of the theory of the Navier–Stokes equations 
[6].
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