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Given a lattice � in a locally compact Abelian group G and a measurable subset � with 
finite and positive measure, then the set of characters associated with the dual lattice form 
a frame for L2(�) if and only if the distinct translates by � of � have almost empty 
intersections. Some consequences of this results are the well-known Fuglede theorem for 
lattices, as well as a simple characterization for frames of modulates.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit � un réseau. On prouve que les caractères de G associés au réseau dual forment une 
trame de L2(�) si et seulement si les différents translatés de � par � sont d’intersection 
presque vide. Ceci entraîne le théorème bien connu de Fuglede pour les réseaux, ainsi 
qu’une caractérisation simple des trames de modulation.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let G denote a locally compact and second countable Abelian group (LCA group). A closed subgroup � of G is called a 
lattice if it is discrete and co-compact, i.e. the quotient group G/� is compact. Recall that, since G is second countable, then 
any discrete subgroup of G is also countable (see, e.g., [19, Section 12, Example 17]). Assume that G is Abelian, and denote 
the dual group by Ĝ . The dual lattice of � is defined as follows:

�⊥ = {χ ∈ Ĝ : 〈χ,λ〉 = 1 ∀λ ∈ �}, (1)

where 〈χ, λ〉 indicates the action of character χ on the group element λ.
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We recall that, by the duality theorem between subgroups and quotient groups (see, e.g., [21, Lemma 2.1.2]), the dual 
lattice �⊥ is a subgroup of Ĝ which is topologically isomorphic to the dual group of G/�, i.e. �⊥ ∼= Ĝ/�. Moreover, since 
G/� is compact, the dual lattice �⊥ is discrete. Notice also that Ĝ/�⊥ ∼= �̂, which implies that �⊥ is co-compact, hence it 
is a lattice.

Let dg denote a Haar measure on G . For a function f in L1(G), the Fourier transform of f is defined by

FG( f )(χ) =
∫
G

f (g)〈χ, g〉 dg , χ ∈ Ĝ,

where 〈χ, g〉 denotes the action of the character χ on g . By the inversion theorem [21, Section 1.5.1], a Haar measure dχ
can be chosen on Ĝ so that the Fourier transform FG is an isometry from L2(G) onto L2(Ĝ). More precisely,

〈FG( f ),FG(g)〉L2(Ĝ,dχ) = 〈 f , g〉L2(G,dg) f , g ∈ L2(G) . (2)

For any χ ∈ Ĝ , we define the exponential function eχ by

eχ : G →C, eχ (g) := 〈χ, g〉.
For any measurable subset � of G , we let |�| denote the Haar measure of �. Throughout this paper, we let 1� denote the 
characteristic function of the set �. We shall also use the addition symbol ‘+’ for the group action, and 0 for the neutral 
element, since G is Abelian.

Definition 1 (Sub-tiling). Let � ⊂ G be a measurable set with finite and positive Haar measure, and let � be a lattice 
subgroup of G . We say that (�, �) is a sub-tiling pair for G if∑

λ∈�

1�(g − λ) ≤ 1 a.e. g ∈ G . (3)

By replacing the inequality with an equality, the definition is that of a tiling pair. In this weaker form, it is equivalent to 
say that the translates of � by elements of � are a.e. disjoint, i.e. (�, �) is a sub-tiling pair for G if and only if

|� ∩ (� + λ)| = 0 ∀ λ ∈ �, λ �= 0.

Observe also that any sub-tiling set is a subset of a tiling set.
Our main result is the following. Recall that a cross section Q � ⊂ G for a group G and a lattice � is a measurable set of 

representatives of G/�.

Theorem 2 (Main result). Let � be a lattice in G, let � ⊂ G be a set with finite and positive measure, and let Q � ⊂ G be a cross section 
for G/�. Then the following are equivalent.

1) The pair (�, �) is sub-tiling for G.

2) For a.e. χ ∈ Ĝ it holds∑
λ̃∈�⊥

|FG(1�)(χ + λ̃)|2 = |Q �| |�|.

3) The system of translates {√|�| −11�(· − λ) : λ ∈ �} is orthonormal in L2(G).

4) The exponential set E�⊥ = {eλ̃ : λ̃ ∈ �⊥} is a frame for L2(�).

Moreover, if any of the above conditions holds, then the frame in point 4) is tight, with constant |Q �|.

As a first corollary, we can obtain the following result, which was proved by B. Fuglede in the Euclidean setting [6], and 
in the present setting by S. Pedersen with a different approach [18].

Corollary 3. A set of finite and positive measure � tiles G with translations by � if and only if the exponential set E�⊥ is an orthogonal 
basis for L2(�).

Let us now denote with M : �⊥ → U(L2(�)) the modulations Mλ̃ f (g) = eλ̃(g) f (g). As a second consequence of Theo-
rem 2, we obtain the following.

Corollary 4. Conditions 1)–4) of Theorem 2 are equivalent to
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5) The system of modulates ��⊥ = {Mλ̃ψ : λ̃ ∈ �⊥} is a frame for L2(�), with frame bounds 0 < A|Q �| ≤ B|Q �| < ∞, for any 
ψ ∈ L2(�) satisfying

0 < A ≤ ess inf |ψ |2 ≤ ess sup |ψ |2 ≤ B < ∞.

The novelty of this paper is that it relates subtilings with frames of exponentials. Moreover, the proof of 2) ⇒ 3) in 
Theorem 2 is shown by using the bracket map of a system of translates (Corollary 8) that have been introduced to study 
some properties of translation invariant spaces (see [7] and the references therein).

The setting of LCA groups allows us to prove simultaneously results for a large variety of groups, namely Rn, Zd, Tk , and 
all finite groups F with discrete topology, as well as the so-called elementary LCA groups G = Rn × Zd × Tk × F . Observe 
that knowing Theorem 2 and Corollary 3 for every factor group does not immediately provide the corresponding results 
for G .

The motivation for this paper comes from the problem of studying the relationship between spectrum sets and tiling 
pairs, whose roots dates back to a 1974 paper of B. Fuglede [6]. There he proved that a set E ⊂ Rd , d ≥ 1, of positive 
Lebesgue measure, tiles Rd by translations with a lattice � if and only if L2(E) has an orthogonal basis of exponentials 
indexed by the annihilator of �. A more general statement in Rd , which says that if E ⊂ Rd , d ≥ 1, has positive Lebesgue 
measure, then L2(E) has an orthogonal basis of exponentials (not necessary indexed by a lattice) if and only if E tiles Rd

by translations, has been known as the Fuglede Conjecture.
A variety of results were proved, establishing connections between tiling and orthogonal exponential bases. See, for 

example, [17,11,16,14,12]. In 2001, I. Laba proved that the Fuglede conjecture is true for the union of two intervals in the 
plane [15]. In 2003, A. Iosevich, N. Katz and T. Tao [9] proved that the Fuglede conjecture holds for convex planar domains. 
It was also proved in [11] and [17] that � tiles Rd by the unit cube Q d if and only if � is a spectral set for Q d . In 
2004, T. Tao [22] disproved the Fuglede Conjecture in dimension d = 5 and larger, by exhibiting a spectral set in R5, which 
does not tile the space by translations. In [13], M. Kolountzakis and M. Matolcsi also disproved the reverse implication of 
the Fuglede Conjecture for dimensions d = 4 and higher. In [4] and [3], the dimension of counter-examples was further 
reduced. In fact, B. Farkas, M. Matolcsi and P. Mora show in [3] that the Fuglede conjecture is false in R3. The general 
feeling in the field is that sooner or later the counter-examples of both implications will cover all dimensions. However, 
in [10] the authors showed that the Fuglede Conjecture holds in two-dimensional vector spaces over prime fields. Then, in 
[2] the authors prove that tiling implies spectral in Z3

p , p prime, and that the Fuglede Conjecture is true for Z3
2 and Z3

3. 
Very recently, important developments in LCA groups, with crucial implications on sampling theory, have been developed 
by E. Agora, J. Antezana and C. Cabrelli in [1], where the authors could obtain a full characterization of Riesz bases for 
multi-tiling sets in LCA groups.

2. Notations and preliminaries

Let � be a lattice in an LCA group G . Denote by Q � ⊂ G a measurable cross section of G/�. By definition, a cross section 
is a set of representatives of all cosets in G/�, so that the intersection of Q � with any coset g + � has only one element. 
The existence of a Borel measurable cross section is guaranteed by [5, Theorem 1]. Moreover, it is evident that (Q � , �) is a 
tiling pair for G , while any tiling set � differs from a cross section at most for a zero measure set.

Let dġ be a normalized Haar measure for G/�. Then the relation between the Haar measure on G and the Haar measure 
for G/� is given by Weil’s formula: for any function f ∈ L1(G), the periodization map �(ġ) = ∑

λ∈� f (g + λ), ġ ∈ G/� is 
well defined almost everywhere in G/�, belongs to L1(G/�), and∫

G

f (g)dg = |Q �|
∫

G/�

∑
λ∈�

f (g + λ)dġ. (4)

This formula is a special case of [20, Theorem 3.4.6]. The constant |Q �|, called the lattice size, appears in (4) because G/�

is equipped with the normalized Haar measure dġ .

Definition 5 (Dual integrable representations [7]). Let G be an LCA group, and let π be a unitary representation of G on a 
Hilbert space H. We say that π is dual integrable if there exists a sesquilinear map [·, ·]π : H × H → L1(Ĝ), called bracket 
map for π, such that

〈φ,π(g)ψ〉H =
∫
Ĝ

[φ,ψ]π(χ)e−g(χ)dχ ∀ g ∈ G , ∀ φ,ψ ∈ H.

Example 6. Let � be a lattice in an LCA group G . For any λ ∈ �, define Tλφ(g) = φ(g − λ) on φ ∈ L2(G) and Mλh(χ) =
eλ(χ)h(χ) on h ∈ L2(Ĝ). Let us denote with Q �⊥ a cross section for the annihilator lattice �⊥ . Thus, by Plancherel’s formula 
(2) and Weil’s formula (4), we have
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〈φ, Tλψ〉L2(G) = 〈FG(φ), MλFG(ψ)〉L2(Ĝ) =
∫
Ĝ

FG(φ)(χ)FG(ψ)(χ)e−λ(χ)dχ

= |Q �⊥|
∫

Ĝ/�⊥

∑
λ̃∈�⊥

FG(φ)(χ̇ + λ̃)FG(ψ)(χ̇ + λ̃)e−λ(χ̇ + λ̃)dχ̇

= |Q �⊥|
∫

Ĝ/�⊥

∑
λ̃∈�⊥

FG(φ)(χ̇ + λ̃)FG(ψ)(χ̇ + λ̃)e−λ(χ̇ )dχ̇ .

Since FG(φ)FG(ψ) ∈ L1(Ĝ), we have that

[φ,ψ]T (χ̇ ) := |Q �⊥|
∑

λ̃∈�⊥
FG(φ)(χ̇ + λ̃)FG(ψ)(χ̇ + λ̃) a.e. χ̇ ∈ Ĝ/�⊥

defines a sesquilinear map [·, ·]T : L2(G) × L2(G) → L1(Ĝ/�⊥), so T is a dual integrable representation of � on H = L2(G).

A relevant application of dual integrable representations is the possibility to characterize bases of unitary orbits in terms 
of their associated bracket maps. The following result has been proved in [7, Proposition 5.1].

Theorem 7. Let G be a countable Abelian group, let π be a dual integrable representation of G on a Hilbert space H, and let φ ∈ H. 
The system {π(g)φ : g ∈ G} is orthonormal in H if and only if [φ, φ]π(χ) = 1 for almost every χ ∈ Ĝ .

As a consequence of Theorem 7 and of Example 6, and of the basic fact |Q �||Q �⊥| = 1 (for completeness, we have 
provided a proof in the appendix), we have the following result.

Corollary 8. Let T and � be as in Example 6, and let φ ∈ L2(G). Then the system of translates {Tλφ : λ ∈ �} is an orthonormal system 
in L2(G) if and only if∑

λ̃∈�⊥
|FG(φ)(χ + λ̃)|2 = |Q �| a.e. χ ∈ Ĝ .

3. Proof of Theorem 2

In this section we shall prove Theorem 2 and its corollaries.

Proof of Theorem 2.

1) ⇒ 4) It is well-known [21] that, for any cross section Q � , the exponential set E�⊥ is an orthogonal basis for L2(Q �). 
Thus, for all f ∈ L2(Q �),∑

λ̃∈�⊥
|〈 f ,

1√|Q �|eλ̃〉L2(Q �)|2 = ‖ f ‖2
L2(Q �)

. (5)

Since condition (1) says that � is contained in some cross section Q � , then the previous identity still holds for all f ∈ L2(�). 
Hence E�⊥ is a tight frame for L2(�) with constant |Q �|.

4) ⇒ 1) Suppose, by contradiction, that � is not a subtiling set. Then we claim that for all cross section Q � , there exist 
λ1, λ2 ∈ �, λ2 �= 0, such that

|(Q � + λ1) ∩ � ∩ (� + λ2)| > 0. (6)

If this is true, then let �1 = (Q � + λ1) ∩ � ∩ (� + λ2), and �2 = �1 − λ2. Both are subsets of � with positive measure and, 
since λ2 �= 0, they are disjoint because �1 ⊂ Q � + λ1 and �2 ⊂ Q λ + λ1 − λ2. Therefore, the function

f = 1�1 − 1�2

is nonzero and belongs to L2(�). Then, for all λ̃ ∈ �⊥ we have

〈 f , eλ̃〉L2(�) =
∫
�1

eλ̃(g)dg −
∫
�2

eλ̃(g)dg =
∫
�1

(
eλ̃(g) − eλ̃(g − λ2)

)
dg = 0.

This implies that the system E�⊥ can not be a frame for L2(�).
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In order to prove (6), let us proceed by contradiction and suppose that for all λ ∈ � and all λ∗ ∈ �, λ∗ �= 0, we have

|(Q � + λ) ∩ � ∩ (� + λ∗)| = 0.

Now take λ′ ∈ �, λ′ �= 0. By definition of cross section, we have

� ∩ (� + λ′) =�
λ∈�

(Q � + λ) ∩ � ∩ (� + λ′)

which implies that |� ∩ (� + λ′)| = 0. Hence, � would be a subtiling set of G by �, which is a contradiction.
1) ⇒ 2) Since (5) holds, we can obtain 2) by choosing f = eχ 1� .

2) ⇒ 3) This follows as an application of Corollary 8.

3) ⇒ 1) By orthogonality, we have that for all λ ∈ �, λ �= 0

0 = 〈1�,1�(· − λ)〉L2(G) = |� ∩ (� + λ)|
so � is sub-tiling. �
Proof of Corollary 3. If (�, �) is a tiling pair, then it is well-known that E�⊥ is an orthogonal basis for L2(�). To prove the 
converse, assume by contradiction that � is not tiling. Then one of the following cases holds:

i. � is a strictly sub-tiling set, i.e. there exists a cross section Q � such that � ⊂ Q � and |Q � \ �| > 0;
ii. � is not a sub-tiling set, so that (6) holds.

For case i., observe that the assumption of E�⊥ being an orthogonal basis for L2(�) implies

∑
λ̃∈�⊥

|〈 f ,
1√|�|eλ̃〉L2(�)|2 = ‖ f ‖2

L2(�)
∀ f ∈ L2(�).

On the other hand, since E�⊥ is an orthogonal basis for L2(Q �), we have

∑
λ̃∈�⊥

|〈 f 1�,
1√|Q �|eλ̃〉L2(Q �)|2 = ‖ f 1�‖2

L2(Q �)
∀ f ∈ L2(�)

so that |�| = |Q �|, which contradicts i.
For case ii., in Theorem 2 we already proved that E�⊥ can not even be a frame. �

Proof of Corollary 4. Assume 4) holds, i.e. that E�⊥ is a tight frame for L2(�) with constant |Q �|. Then∑
λ̃∈�⊥

|〈 f , Mλ̃ψ〉L2(�)|2 =
∑

λ̃∈�⊥
|〈 f ψ, eλ̃〉L2(�)|2 = |Q �| ‖ f ψ‖2

L2(�)
∀ f ∈ L2(�) .

Since A‖ f ‖2
L2(�)

≤ ‖ f ψ‖2
L2(�)

≤ B‖ f ‖2
L2(�)

, this proves 5). Conversely, assume that 5) holds. Then, since A > 0, for all f ∈
L2(�) we can write∑

λ̃∈�⊥
|〈 f , eλ̃〉L2(�)|2 =

∑
λ̃∈�⊥

|〈 f /ψ, Mλ̃ψ〉L2(�)|2 ,

so that, by the hypotheses on ψ , we get

A

B
|Q �| ‖ f ‖2

L2(�)
≤

∑
λ̃∈�⊥

|〈 f , eλ̃〉L2(�)|2 ≤ B

A
|Q �| ‖ f ‖2

L2(�)
∀ f ∈ L2(�).

Thus E�⊥ is a frame, hence proving 4). Observe that, by Theorem 2, this implies that E�⊥ is a tight frame with constant 
|Q �|, hence improving the inequalities above. �
4. Comments on the related work

The statement of Theorem 2 relating subtilings pairs (�, �) for a lattice � and frames of exponentials for L2(�) is new. 
However, the proof has similarities with existing proofs of the similar statement for tiling sets by lattices and orthonormal 
bases of exponentials.

The result in Corollary 3 is proved by B. Fuglede ([6], Lemma 6) for G = Rn and by S. Pedersen ([18], Theorem 3.6) for 
LCA groups.
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In both papers, [6] and [18], as well as in the present work, the implication 1) ⇒ 4) is done in the same way by observing 
that E�⊥ is an orthogonal basis of exponentials of L2(Q �). As for the implication 4) ⇒ 1), both papers give a direct proof 
of the fact that � ∩ (� + λ) have measure zero for all λ ∈ � and that also the set G \

⋃
λ∈�

(� + λ) has measure zero. In the 

present paper, we give an argument by contradiction assuming that 1) does not hold and exhibiting a non-zero function in 
L2(�), which is perpendicular to all eλ̃, ̃λ ∈ �⊥ .

The manuscript [8] by A. Iosevich gives a proof of the equivalence of 1) and 2) in Theorem 2 for a tiling set � ∈ Rn by 
a lattice �. It is then stated without proof that 2) and 4) are equivalent by a density argument. The proof of 1) ⇔ 2) in [8]
goes as follows. Consider the functions

f (x) ≡
∑
λ∈�

1�(x + λ) , x ∈ Rn and H(ξ) ≡
∑

λ̃∈�⊥
|FRn(1�)(ξ + λ̃)|2 .

Using Fourier Analysis, it can be shown that, as a periodic function in L2(Q �⊥ ), the Fourier coefficients of H are

Ĥ(λ) = |� ∩ (� + λ)|
|Q �⊥| , λ ∈ �, (7)

and the Fourier coefficients of f , as a periodic function in L2(Q �), are

f̂ (λ̃) = FRn(1�)(λ̃)

|Q �| , λ̃ ∈ �̃ . (8)

Assuming that 1) of Theorem 2 holds for a tiling set �, equation (7) shows, using the Fourier inversion theorem, that H
is constant with value |�| |Q �| a.e., since |Q �| |Q �⊥| = 1. This shows 2) of Theorem 2. Conversely, assuming that 2) of 
Theorem 2 holds, equation (7) shows that � is a subtiling set of Rn by �. Equation (8) is then used to show that f (x) = 1
a.e., which shows 1).

A proof along the lines described above can be designed for LCA groups and subtiles. In the proof given in the present 
work, we have proved the equivalence of 1), 2) and 3) in Theorem 2 by using the notion of bracket map (see [7] and the 
references therein) and the characterization of frame sequences of translates of a single function along lattices stated in 
Theorem 7 and Corollary 8. As in [8], our paper also uses Fourier Analysis to compute Fourier coefficients (see Example 6).
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Appendix A

We provide here a self-contained proof of the following basic result.

Lemma 9. Let G be an LCA group, let ̂G be its dual group, and let the Haar measures dg on G and dχ on ̂G be chosen in such a way 
that the group Fourier transform be an isometry, i.e. such that (2) holds. Let � ⊂ G be a lattice subgroup of G, and denote with Q � ⊂ G
a cross section for G/�, let �⊥ ⊂ Ĝ be the dual lattice of �, and denote with Q �⊥ ⊂ Ĝ a cross section for ̂G/�⊥ . Then

|Q �||Q �⊥| = 1

i.e. the product of the size of the lattice times the size of the dual lattice, computed with respect to Haar measures satisfying (2), is 1.

Proof. Observe first that, by (2), we have

|Q �| =
∫
G

|1Q �(g)|2dg =
∫
Ĝ

|FG(1Q �)(χ)|2dχ

=
∫

Q
�⊥

∑
λ̃∈�⊥

|FG(1Q �)(χ + λ̃)|2dχ, (9)
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where the last identity is due to the fact that (Q �⊥ , �⊥) is a tiling pair for Ĝ by definition of cross-section. We can thus 
apply the same argument used to prove point 2) of Theorem 2: since {eλ̃ : λ̃ ∈ �⊥} is an orthogonal basis of L2(Q �), then 
it satisfies (5), so by choosing f = eχ 1Q � we get∑

λ̃∈�⊥
|FG(1Q �)(χ + λ̃)|2 = |Q �|2 a.e. χ ∈ Ĝ.

The claim then follows by inserting this identity in (9). �
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