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In this note, we characterize the solution to a system of elliptic integro-differential 
equations describing a phenotypically structured population subject to mutation, selection, 
and migration. Generalizing an approach based on the Hamilton–Jacobi equations, we 
identify the dominant terms of the solution when the mutation term is small (but 
nonzero). This method was initially used, for different problems arisen from evolutionary 
biology, to identify the asymptotic solutions, while the mutations vanish, as a sum of Dirac 
masses. A key point is a uniqueness property related to the weak KAM theory. This method 
allows us to go further than the Gaussian approximation commonly used by biologists, and 
is an attempt to fill the gap between the theories of adaptive dynamics and quantitative 
genetics.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Dans cette note, nous étudions un système d’équations intégro-différentielles elliptiques, 
décrivant une population structurée par trait phénotypique soumise à des mutations, à la 
sélection et à des migrations. Nous généralisons une approche basée sur des équations 
de Hamilton–Jacobi pour détérminer les termes dominants de la solution lorsque les 
effets des mutations sont petits (mais non nuls). Cette méthode était initialement utilisée, 
pour différents problèmes venant de la biologie évolutive, pour identifier les solutions 
asymptotiques, lorsque les effets des mutations tendent vers 0, sous forme de sommes 
de masses de Dirac. Un point-clé est une propriété d’unicité en rapport avec la théorie 
de KAM faible. Cette méthode nous permet d’aller au-delà des approximations gaussiennes 
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habituellement utilisées par les biologistes, et contribue ainsi à relier les théories de la 
dynamique adaptative et de la génétique quantitative.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

During the last decade, an approach based on Hamilton–Jacobi equations with constraints has been developed to de-
scribe the asymptotic evolutionary dynamics of phenotypically structured populations, in the limit of vanishing mutations. 
Mathematical modeling of such phenomena leads to parabolic (or elliptic for the steady case) integro-differential equations, 
whose solutions tend, as the diffusion term vanishes, toward a sum of Dirac masses, corresponding to dominant traits. 
These asymptotic solutions can be described using the Hamilton–Jacobi approach. There is a large literature on this method. 
We refer to [4,17,13] for the establishment of the basis of this approach for problems from evolutionary biology. Note that 
related tools were already used in the case of local equations (for instance KPP type equations) to describe the propagation 
phenomena (see, for instance, [8,5]).

In almost all the previous works, the Hamilton–Jacobi approach has been used to describe the limit of the solution, 
corresponding to the population’s phenotypical distribution, as the mutations steps vanish. However, from the biological 
point of view, it is sometimes more relevant to consider non-vanishing mutation steps. A recent work [16] has pointed out 
that such tools can also be used, for a simple model with homogeneous environment, to characterize the solution, while 
mutation steps are small, but nonzero. In this note, we show how such results can be obtained in a more complex situation 
with a heterogeneous environment.

Our purpose in this note is to study the solutions to the following system, for z ∈ R,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ε2n′′
ε,1(z) = nε,1(z)R1(z, Nε,1) + m2nε,2(z) − m1nε,1(z),

−ε2n′′
ε,2(z) = nε,2(z)R2(z, Nε,2) + m1nε,1(z) − m2nε,2(z),

Nε,i =
∫
R

nε,i(z)dz, for i = 1,2,
(1)

with

Ri(z, Ni) = ri − gi(z − θi)
2 − κi Ni, with θ1 = −θ and θ2 = θ. (2)

This system represents the equilibrium of a phenotypically structured population under mutation, selection and migration 
between two habitats. For more details on the modeling and the biological motivations, see Section 2.

Note that the asymptotic behavior, as ε → 0 and along subsequences, of the solutions to this system, under the assump-
tion mi > 0, for i = 1, 2, and for bounded domains, was already studied in [14]. In the present work, we go further than 
the asymptotic limit along subsequences, and we obtain uniqueness of the limit and identify the dominant terms of the 
solution when ε is small but nonzero.

The main elements of the method: To describe the solutions nε,i(z), we use a WKB ansatz

nε,i(z) = 1√
2πε

exp

(
uε,i(z)

ε

)
.

Note that a first approximation, which is commonly used in the theory of ‘quantitative genetics’ (a theory in evolutionary 
biology that investigates the evolution of continuously varying traits, see [18], chapter 7), is a Gaussian distribution of the 
form:

nε,i(z) = Ni√
2πεσ

exp

(−(z − z∗)2

ε σ 2

)
= 1√

2πε
exp

(− 1
2σ 2 (z − z∗)2 + ε log Ni

σ

ε

)
.

Here, we try to go further than this a priori Gaussian assumption and to approximate directly uε,i . To this end, we write an 
expansion for uε,i in terms of ε:

uε,i = ui + εvi + ε2 wi + O (ε3). (3)

We prove that u1 = u2 = u is the unique viscosity solution to a Hamilton–Jacobi equation with constraint. The uniqueness 
of the viscosity solution to such Hamilton–Jacobi equation with constraint is related to the uniqueness of the Evolutionary 
Stable Strategy (ESS), see Section 3 for a definition and for the result on the uniqueness of the ESS, and to the weak KAM 
theory [7]. In section 4, we compute explicitly u, which indeed satisfies

max u(z) = 0,

R
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with the maximum points attained at one or two points corresponding to the ESS points of the problem. We then notice 
that, while u(z) < 0, nε,i(z) is exponentially small. Therefore, only the values of vi and wi at the points close to the zero 
level set of u matter, i.e. the ESS points. In section 5, we provide the main elements to compute formally vi and hence its 
second-order Taylor expansion around the ESS points and the value of wi at those points. Then, we show, in section 6, that 
these approximations together with a fourth-order Taylor expansion of u around the ESS points are enough to approximate 
the moments of the population’s distribution with an error in the order of ε2.

The mathematical details of our results will be provided in [12]. The biological applications will be detailed in [15].

2. Model and motivation

The solution to (1) corresponds to the steady solution to the following system, for (t, z) ∈ R
+ ×R,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂tni(t, z) − ε2 ∂2

∂z2
ni(t, z) = ni(t, z)Ri(z, Ni(t)) + m jn j(t, z) − mini(t, z), i = 1,2, j = 2,1,

Ni(t) =
∫
R

ni(t, z)dz, for i = 1,2.
(4)

This system represents the dynamics of a population that is structured by a phenotypical trait z, and lives in two habitats. 
We denote by ni(t, z) the density of the phenotypical distribution in habitat i, and by Ni the total population’s size in habitat 
i. The growth rate Ri(z, Ni) is given by (2), where ri represents the maximum intrinsic growth rate, gi is the strength of the 
selection, θi is the optimal trait in habitat i, and κi represents the intensity of the competition. The constants mi are the 
migration rates between the habitats. In this note we assume that there is positive migration rate in both directions, i.e.

mi > 0, i = 1, 2. (5)

However, the source and sink case, where for instance m2 = 0, can also be analyzed using similar tools. We refer to [15] for 
the analysis of this case. We additionally assume that

max(r1 − m1, r2 − m2) > 0. (6)

This guarantees that the population does not get extinct.
Such phenomena have already been studied by several approaches. A first class of results are based on the adaptive 

dynamics approach, where one considers that the mutations are very rare, so that the population has time to attain its 
equilibrium between two mutations and hence the population’s distribution has discrete support (one or two points in 
a two-habitat model) [11,2,6]. A second class of results is based on an approach known as ‘quantitative genetics’, which 
allows more frequent mutations and does not separate the evolutionary and the ecological time scales. A main assumption 
in this class of works is that one considers that the population’s distribution is a Gaussian [9,19] or, to take into account 
the possibility of dimorphic populations, a sum of one or two Gaussian distributions [20,3].

In our work, as in the quantitative genetics framework, we also consider continuous phenotypical distributions. However, 
we do not assume any a priori Gaussian assumption. We compute directly the population’s distribution and in this way 
we correct the previous approximations. To this end, we also provide some results in the framework of adaptive dynamics 
and, in particular, we generalize previous results on the identification of the ESS to the case of nonsymmetric habitats. 
Furthermore, our work makes a connection between the two approaches of adaptive dynamics and quantitative genetics.

3. The adaptive dynamics framework

In this section, we introduce some notions from the theory of adaptive dynamics that we will be using in the next 
sections [11]. We also provide our main result in this framework.

Effective fitness. The effective fitness W (z; N1, N2) is the largest eigenvalue of the following matrix:

A(z; N1, N2) =
(

R1(z; N1) − m1 m2
m1 R2(z; N2) − m2

)
. (7)

This indeed corresponds to the effective growth rate associated with trait z in the whole metapopulation when the total 
population sizes are given by (N1, N2).

Demographic equilibrium. Consider a set of points � = {z1, · · · zm}. The demographic equilibrium corresponding to this 
set is given by (n1(z), n2(z)), with the total population sizes (N1, N2), such that

ni(z) =
m∑

j=1

αi, jδ(z − z j), Ni =
m∑

j=1

αi, j, W (z j, N1, N2) = 0,

and such that (α1, j, α2, j)
T is the right eigenvector associated with the largest eigenvalue W (z j, N1, N2) = 0 of A(z j; N1, N2).
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Evolutionary stable strategy. A set of points �∗ = {z∗
1, · · · , z∗

m} is called an evolutionary stable strategy (ESS) if

W (z, N∗
1, N∗

2) = 0, for z ∈ A and, W (z, N∗
1, N∗

2) ≤ 0, for z /∈ A,

where (N∗
1, N∗

2) are the total population sizes corresponding to the demographic equilibrium associated with the set �∗ .
Since, there are only two habitats for which we expect that at most two distinct traits coexist at the evolutionary stable 

equilibrium. We prove indeed the following.

Theorem 3.1. Assume (5)–(6). There exists a unique set of points �∗ which is an evolutionary stable strategy. Such set has at most two 
elements.

We call an evolutionary stable strategy which has one (respectively two) element(s), a monomorphic (respectively di-
morphic) ESS. We can indeed give a criterion to have monomorphic or dimorphic ESS, and we can identify the dimorphic 
ESS in the general case (see [12] for more details).

4. How to compute the zero-order terms ui

The identification of the zero-order terms ui is based on the following result. Note that the part (ii) of the theorem 
below is a variant of Theorem 1.1 in [14].

Theorem 4.1. Assume (5)–(6).
(i) As ε → 0, (nε,1, nε,2) converges to (n∗

1, n
∗
2), the demographic equilibrium of the unique ESS of the model. Moreover, as ε → 0, Nε,i

converges to N∗
i , the total population size in patch i corresponding to this demographic equilibrium.

(ii) As ε → 0, both sequences (uε,i)ε , for i = 1, 2, converge along subsequences and locally uniformly in R to a continuous function 
u ∈ C(R), such that u is a viscosity solution to the following equation{ −|u′|2 = W (z, N∗

1, N∗
2), in R,

max
z∈R

u(z) = 0.
(8)

Moreover, we have the following condition on the zero-level set of u:

suppn∗
1 = suppn∗

2 ⊂ {z | u(z) = 0} ⊂ {z | W (z, N∗
1, N∗

2) = 0}.
(iii) There exists constants (λi, νi), for i = 1, 2, which can be determined explicitly from m1, m2 , g1 , g2 , κ1 , κ2 and θ , such that, under 
the condition

r2 	= λ1r1 + ν1, r1 	= λ2r2 + ν2, (9)

we have

suppn∗
1 = suppn∗

2 = {z | u(z) = 0} = {z | W (z, N∗
1, N∗

2) = 0}. (10)

The solution to (8)–(10) is unique, and hence the whole sequence (uε,i)ε converges locally uniformly in R to u.

Note that a Hamilton–Jacobi equation of type (8) in general might admit several viscosity solutions. Here, the unique-
ness is obtained thanks to (10) and a property from the weak KAM theory, which is the fact that viscosity solutions are 
completely determined by one value taken on each static class of the Aubry set ([10], Chapter 5 and [1]). In what follows, 
we assume that (9) and hence (10) always hold. We then give an explicit formula for u considering two cases.

(i) Monomorphic ESS. We consider the case where there exists a unique monomorphic ESS z∗ and where the corre-
sponding demographic equilibrium is given by (N∗

1δ(z∗), N∗
2δ(z∗)). Then u is given by

u(z) = −∣∣ z∫
z∗

√
−W (x; N∗

1, N∗
2) dx

∣∣. (11)

(ii) Dimorphic ESS. We next consider the case where there exists a unique dimorphic ESS (z∗
a , z∗

b) with the demographic 
equilibrium: ni = νa,iδ(z − z∗

a) + νb,iδ(z − z∗
b), and νa,i + νb,i = N∗

i . Then u is given by

u(z) = max
(

− |
z∫

z∗
a

√
−W (x; N∗

1, N∗
2)dx|,−|

z∫
z∗

b

√
−W (x; N∗

1, N∗
2)dx|

)
.
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5. How to compute the next-order terms

In this section, we give the main elements to compute formally vi and the value of wi at the ESS point, with vi and 
wi the correctors introduced by (3), in the case of a monomorphic population. For the details of the computations for both 
monomorphic and dimorphic populations, we refer the interested reader to [12].

We consider the case of monomorphic population where the demographic equilibrium corresponding to the monomor-
phic ESS is given by (N∗

1δ(z − z∗), N∗
2δ(z − z∗)). One can compute, using (11), a Taylor expansion of order 4 around the ESS 

point z∗:

u(z) = − A

2
(z − z∗)2 + B(z − z∗)3 + C(z − z∗)4 + O (z − z∗)5.

To provide an approximation of the moments of the population’s distribution, we have to compute constants Di , Ei and Fi
such that

vi(z) = vi(z∗) + Di(z − z∗) + Ei(z − z∗)2 + O (z − z∗)3, wi(z∗) = Fi .

A first element of the computations is obtained by replacing the functions u, vi and wi by the above approximations to 
compute Nε,i = ∫

R
nε,i(z) dz. This leads to

vi(z∗) = log
(
N∗

i

√
A
)
, Nε,i = N∗

i + εK ∗
i + O (ε2), with K ∗

i = N∗
i

(3C

A2
+ Ei

A
+ Fi

)
.

Note also that writing (1) in terms of uε,i we obtain⎧⎪⎨
⎪⎩

−εu′′
ε,1(z) = |u′

ε,1|2 + R1(z, Nε,1) + m2 exp
(uε,2 − uε,1

ε

) − m1,

−εu′′
ε,2(z) = |u′

ε,2|2 + R2(z, Nε,2) + m1 exp
(uε,1 − uε,2

ε

) − m2.

(12)

A second element is obtained by keeping the zero-order terms in the first line of (12) and using (8) to obtain

v2(z) − v1(z) = log
( 1

m2

(
W (z, N∗

1, N∗
2) − R1(z, N∗

1) + m1
))

. (13)

The last element is derived from keeping the terms of order ε in (12), which leads to

−u′′ = 2u′v ′
i − κi K ∗

i + m j exp(v j − vi)(w j − wi), for {i, j} = {1,2}. (14)

The functions vi and the coefficients Di , Ei and Fi can be computed by combining the above elements.

6. Approximation of the moments

The above approximations of u, vi and wi around the ESS points allow us to estimate the moments of the population’s 
distribution. In the monomorphic case these approximations are given below:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nε,i =
∫

nε,i(z)dz = N∗
i (1 + ε(Fi + Ei

A
+ 3C

A2
)) + O (ε2),

με,i = 1

Nε,i

∫
znε,i(z)dz = z∗ + ε(

3B

A2
+ Di

A
) + O (ε2),

σ 2
ε,i = 1

Nε,i

∫
(z − με,i)

2nε,i(z)dz = ε

A
+ O (ε2),

sε,i = 1

σ 3
ε,i Nε,i

∫
(z − με,i)

3nε,i(z)dz = 6B

A
3
2

√
ε + O (ε

3
2 ).

One can obtain similar approximations in the case of dimorphic ESS. To compute the above integrals, replacing the ap-
proximation (3) in the integrals, a natural change of variable is to take z − z∗ = √

ε y. Therefore, each term z − z∗ can be 
considered as of order 

√
ε in the integration. This is why, to obtain a first-order approximation of the integrals in terms 

of ε, it is enough to have a fourth-order approximation of u(z), a second-order approximation of vi(z), and a zero-order 
approximation of wi(z), in terms of z around z∗ .
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