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We establish several estimates of the distance between two surfaces immersed in the 
three-dimensional Euclidean space in terms of the distance between their fundamental 
forms, measured in various Sobolev norms. These estimates, which can be seen as 
nonlinear versions of linear Korn inequalities on a surface appearing in the theory of 
linearly elastic shells, generalize in particular the nonlinear Korn inequality established in 
2005 by P. G. Ciarlet, L. Gratie, and C. Mardare.
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r é s u m é

Nous établissons plusieurs majorations de la distance entre deux surfaces immergées 
dans l’espace euclidien tridimensionnel en fonction de la distance entre leurs formes 
fondamentales, mesurée à l’aide de diverses normes de Sobolev. Ces estimations, qui 
peuvent être vues comme des versions non linéaires des inégalités de Korn linéaires sur 
une surface apparaissant dans la théorie de coques linéairement élastiques, généralisent en 
particulier l’inégalité de Korn non linéaire sur une surface établie en 2005 par P. G. Ciarlet, 
L. Gratie et C. Mardare.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The various notions and notations, notably from the differential geometry of surfaces, used in this introduction are 
defined in Sect. 2.
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A nonlinear Korn inequality on a surface is an inequality that estimates the deformation of a surface in terms of the 
variation of the fundamental forms of the surface induced by this deformation.

We establish here such inequalities for deformations with as little regularity as possible, that is, just enough to define the 
fundamental forms of the deformed surface in appropriate Lebesgue spaces Lq . This is motivated by the theory of nonlinearly 
elastic shells, in particular by the well-known nonlinear Koiter shell model, where the deformations with finite energy are 
those whose first two fundamental forms have covariant components in the Lebesgue space L2 .

More specifically, let ω ⊂ R
2 be a domain, let γ0 be a non-empty relatively open subset of the boundary of ω, and let 

θ : ω → R
3 be a sufficiently smooth immersion. Consider a shell with middle surface θ (ω) ⊂ R

3 and half-thickness h > 0, 
made of a homogeneous and isotropic nonlinearly elastic material whose Lamé constants λ and μ satisfy 3λ + 2μ > 0 and 
μ > 0.

In the nonlinear Koiter shell model, so named after Koiter [11], the strain energy associated with a sufficiently smooth 
deformation θ̃ : ω → R

3 of the middle surface θ(ω) of a shell is defined by (the notations for the fundamental forms 
associated with θ and θ̃ are defined in Sect. 3)

E
(
θ̃
) := 1

2

∫
ω

{
hW (

1

2
I−1( Ĩ − I)) + h3

3
W (I−1(ĨI − II))

}√
det I dy

where the function W :M2 → R is the two-dimensional stored energy function defined by

W (A) := 2λμ

λ + 2μ
(tr A)2 + 2μ tr A2 for each A ∈M

2.

It is easy to prove that there exist two constants 0 < C1 ≤ C2, depending only on h, ω, and θ , such that

C1

{
‖ Ĩ − I‖2

L2(ω)
+ ‖ĨI − II‖2

L2(ω)

}
≤ E

(
θ̃
) ≤ C2

{
‖ Ĩ − I‖2

L2(ω)
+ ‖ĨI − II‖2

L2(ω)

}

for all immersions θ̃ ∈ W 1,4(ω; R3) that satisfy a3(θ̃) ∈ W 1,4(ω; R3).
Combined with the above estimate, the nonlinear Korn inequalities on a surface established in this paper show that the strain 

energy E
(
θ̃
)

“controls” the “magnitude” of the deformation of the middle surface of the shell. In particular, Theorem 3.2(b) implies 
that there exists a constant C3, which depends only on h, ω, and θ , such that

{
‖θ̃ − θ‖4

W 1,4(ω)
+ ‖a3(θ̃) − a3(θ)‖4

W 1,4(ω)

}
≤ C3

{
‖ Ĩ − I‖2

L2(ω)
+ ‖ĨI − II‖2

L2(ω)

}
≤ C3

C1
E
(
θ̃
)

and

{
‖θ̃ − θ‖2

H1(ω)
+ ‖a3(θ̃) − a3(θ)‖2

H1(ω)

}
≤ C3

{
‖ Ĩ − I‖2

L2(ω)
+ ‖ĨI − II‖2

L2(ω)

}
≤ C3

C1
E
(
θ̃
)

for all immersions θ̃ ∈ W 1,4(ω; R3) that satisfy a3(θ̃) ∈ W 1,4(ω; R3), θ̃ = θ on γ0, a3(θ̃) = a3(θ) on γ0, and

|R̃α | ≥ ε a.e. in ω, | Ĩ | ≤ 1

ε
a.e. in ω, and

∣∣ Ĩ
−1∣∣ ≤ 1

ε
a.e. in ω.

Note that a formal linearization of the latter nonlinear Korn inequality with respect to the displacement field

ζ := θ̃ − θ

coincides with the following linear Korn inequality on a surface, due to Bernadou & Ciarlet [2] (see also [3,4]), which is the 
key to proving the existence and uniqueness of a solution to the linear Koiter shell model (in the strain energy of which the 
differences ( Ĩ − I) and (ĨI − II) are replaced by their linear parts with respect to ζ ): There exists a constant C4 depending 
only on h, ω, and θ , such that

{ 2∑
α=1

‖ζα‖2
H1(ω)

+ ‖ζ3‖2
H2(ω)

}
≤ C4

{
‖γ (ζ )‖2

L2(ω)
+ ‖ρ(ζ )‖2

L2(ω)

}
,

for all vector fields ζ : ω → R
3 whose components ζi := ζ · ai(θ) : ω →R, 1 ≤ i ≤ 3, satisfy

ζα ∈ H1(ω) and ζα = 0 on γ0, and ζ3 ∈ H2(ω) and ζ3 = ∂αζ3 = 0 on γ0,

where γ (ζ ), resp. ρ(ζ ), denotes the linear part with respect to ζ of the difference (I(θ + ζ ) − I(θ)), resp. of the difference 
(II(θ + ζ ) − II(θ)).
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2. Notation

A domain in Rm is a connected, bounded, and open, subset of Rm , whose boundary is Lipschitz-continuous (in the sense 
of Adams [1] or Nečas [12]), and which is locally on the same side of its boundary.

Let ω ⊂ R
2 be a domain. A generic point in ω is denoted y = (yα), and partial derivatives with respect to yα , both in 

the classical or distributional sense, are denoted ∂α . Here and subsequently, Greek indices range in the set {1, 2}.
The notation S2 designates the space of 2 × 2 real symmetric matrices and the notations M2 and M3×2 respectively 

designate the spaces of 2 × 2 and 3 × 2 real matrices. The inner product and the vector product of vectors in R3 are 
respectively denoted · and ∧. The Euclidean norm in R3, the Frobenius norm in S2, and the Frobenius norm in M3×2, are 
all denoted by | · |.

A proper isometry of R3 is a mapping r :R3 →R
3 defined by

r(x) = a + R x for each x ∈ R
3,

where a ∈ R
3 and R is a 3 × 3 real orthogonal matrix with det R = 1. The set of all proper isometries of R3 is denoted 

Isom(R3).
Mappings from ω into a finite-dimensional vector space are denoted by boldface letters. Such a mapping is of 

class C1(ω), resp. of class W 1,p(ω), if all its components belong to C1(ω), resp. to W 1,p(ω). A function f : ω → R is 
of class C1(ω) if it can be extended into a function of class C1 over R2.

The Lp(ω)-norm, 1 ≤ p < ∞, of a measurable mapping A : ω → X , where X is one of the spaces R3, S2, or M3×2, is 
denoted and defined by

‖A‖L p(ω) :=
(∫
ω

|A(y)|p dy
)1/p

,

where | · | denotes the Euclidean or Frobenius norm in X .
The W 1,p(ω)-norm of a mapping ϕ : ω →R

3 of class W 1,p(ω), 1 ≤ p < ∞, is denoted and defined by

‖ϕ‖W 1,p(ω) := ‖ϕ‖L p(ω) + ‖∇ϕ‖L p(ω),

where ∇ϕ : ω →M
3×2 denotes the gradient of ϕ (that is, ∇ϕ is the matrix field with ∂αϕ as its column vector fields).

We now briefly review the notions from differential geometry of surfaces needed in this Note; for a detailed presentation 
of these notions, see, e.g., [5] or [10].

A mapping ϕ : ω → R
3 of class C1(ω), resp. of class W 1,p(ω), p ≥ 1, is an immersion if the two vector fields ∂αϕ : ω →

R
3 are linearly independent at each point of ω, resp. almost everywhere in ω.

Given any immersion ϕ : ω → R
3 of class W 1,2q(ω), q ≥ 1, the vector field

a3(ϕ) := ∂1ϕ ∧ ∂2ϕ

|∂1ϕ ∧ ∂2ϕ| : ω →R
3,

which is well-defined almost everywhere in ω, is a unit normal vector field to the surface ϕ(ω), i.e.

a3(ϕ) = 1 and a3(ϕ) · ∂αϕ = 0 in ω.

Given any immersion ϕ : ω → R
3 of class W 1,2q(ω), q ≥ 1, such that a3(ϕ) is also of class W 1,2q(ω), the matrix fields

I(ϕ) := ∇ϕT∇ϕ : ω → S
2,

II(ϕ) := −∇a3(ϕ)T∇ϕ = −∇ϕT∇a3(ϕ) : ω → S
2,

III(ϕ) := ∇a3(ϕ)T∇a3(ϕ) : ω → S
2,

are well-defined and belong to Lq(ω; S2). Note that the equality appearing in the definition of II(ϕ) holds thanks to the re-
lations a3(ϕ) · ∂αϕ = 0 in ω; cf. [6, Lemma 3.3]. The components of the matrix fields I (ϕ), II(ϕ), and III(ϕ) are respectively 
the covariant components of the first, second, and third fundamental forms of the surface ϕ(ω).

If ϕ ∈ W 1,2q(ω; R3), q ≥ 1, is an immersion, the matrix field I(ϕ) is positive definite almost everywhere in ω; hence the 
matrix field I(ϕ)−1 : ω → S

2, where

I(ϕ)−1(y) := (
I(ϕ)(y)

)−1
for almost all y ∈ ω,

is well defined almost everywhere in ω. The components of the matrix fields I (ϕ)−1 are the contravariant components of 
the first fundamental form of the immersion ϕ .

The principal radii of curvature R1(ϕ) and R2(ϕ) of the surface ϕ(ω) are the inverses of the eigenvalues of the matrix 
field (I(ϕ)−1II(ϕ)); they are well defined almost everywhere in ω.
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3. Main results

This section gathers the main results (Theorems 3.1 and 3.2 below) of this Note. The details of the proofs, which are 
only briefly sketched below, will appear in a forthcoming paper [9], where the case of higher Sobolev norms will also be 
considered.

The first theorem estimates the distance in W 1,p(ω; R3) between two immersions θ : ω → R
3 and θ̃ : ω → R

3 in terms of the 
distance in Lq(ω; S2) between their three fundamental forms.

The second theorem estimates the distance in W 1,p(ω; R3) between two immersions θ : ω → R
3 and θ̃ : ω → R

3 in terms of 
the distance in Lq(ω; S2) between their first two fundamental forms, under an additional assumption on the first fundamental 
form of θ̃ that intuitively “prevents infinite stretching or compression” of the deformed surfaces θ̃(ω).

For notational brevity, we let in what follows

I := I(θ), II := II(θ), III := III(θ),

Ĩ := I(θ̃), ĨI := II(θ̃), ˜III := III(θ̃).

Note also that the various constants c1(ε, θ), c2(ε, θ), C1(�), etc., appearing in the statements of Theorems 3.1 and 3.2
below and in their proofs also depend on ω, p, and q, but these dependences are not mentioned, again for notational 
brevity.

Theorem 3.1. Let ω ⊂ R
2 be a domain, let θ : ω → R

3 be an immersion of class C1 such that a3(θ) : ω → R
3 is also of class C1 , and 

let p > 1 and q ≥ 1 be two parameters such that p/2 ≤ q ≤ p. Then the following nonlinear Korn inequalities hold.
(a) For each ε > 0, there exist two constants c1(ε, θ) and c2(ε, θ) such that

inf
r∈Isom(R3)

{
‖r ◦ θ̃ − θ‖W 1,p(ω) + ‖a3(r ◦ θ̃) − a3(θ)‖W 1,p(ω)

}

≤ c1(ε, θ)
{
‖ Ĩ − I‖Lq(ω) + ‖ĨI − II‖Lq(ω) + ‖ ˜III − III‖Lq(ω)

}q/p
,

and

‖θ̃ − θ‖W 1,p(ω) + ‖a3(θ̃) − a3(θ)‖W 1,p(ω) ≤ c2(ε, θ)
({

‖θ̃ − θ‖L p(ω) + ‖a3(θ̃) − a3(θ)‖L p(ω)

}

+
{
‖ Ĩ − I‖Lq(ω) + ‖ĨI − II‖Lq(ω) + ‖ ˜III − III‖Lq(ω)

}q/p)
,

for all immersions θ̃ ∈ W 1,2q(ω; R3) satisfying a3(θ̃) ∈ W 1,2q(ω; R3) and |R̃α | ≥ ε a.e. in ω.
(b) For each ε > 0 and each non-empty relatively open subset γ0 ⊂ ∂ω, there exists a constant c3(ε, θ , γ0) such that

‖θ̃ − θ‖W 1,p(ω) + ‖a3(θ̃) − a3(θ)‖W 1,p(ω)

≤ c3(ε, θ , γ0)
{
‖ Ĩ − I‖Lq(ω) + ‖ĨI − II‖Lq(ω) + ‖ ˜III − III‖Lq(ω)

}q/p

for all immersions θ̃ ∈ W 1,2q(ω; R3) satisfying a3(θ̃) ∈ W 1,2q(ω; R3), |R̃α | ≥ ε a.e. in ω, θ̃ = θ on γ0 , and a3(θ̃) = a3(θ) on γ0 .

Sketch of proof. Let θ̃ : ω → R
3 be an immersion that satisfies the assumptions of part (a) of the theorem.

First, we show that there exists a constant δ = δ(θ) such that the mappings � : 
 → R
3 and �̃ : 
 → R

3 defined over 
the three-dimensional open set 
 := ω × (−εδ, εδ) by

�(y, x3) := θ(y) + x3a3(θ)(y) for all (y, x3) ∈ 
,

�̃(y, x3) := θ̃(y) + x3a3(θ̃)(y) for almost all (y, x3) ∈ 
,

satisfy

� ∈ C1(
) and det ∇� > 0 in 
,

�̃ ∈ W 1,2q(
) and det ∇�̃ > 0 a.e. in 
.

Note that the assumption that ω is a domain in R2 implies that 
 is a domain in R3.
The above relations then allow us to use the special case m = 3 of the nonlinear Korn inequalities on open domains in Rm

established in [8, Thm. 1(b) and Thm. 2(b)], which assert that there exist constants C1(�) and C2(�) such that

inf
R∈O3+

‖R∇�̃ − ∇�‖L p(
) ≤ C1(�)‖∇�̃
T∇�̃ − ∇�T∇�‖q/p

Lq(
),

‖�̃ − �‖W 1,p(
) ≤ C2(�)
(
‖�̃ − �‖L p(
) + ‖∇�̃

T∇�̃ − ∇�T∇�‖q/p
Lq(
)

)
.
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Second, using in particular Clarkson’s inequality in Lp(
) (see, e.g., [1]) and Fubini’s theorem, we show that there exist 
constants C3(ε, θ) > 0 and C4(ε, θ) > 0 such that

‖R∇�̃ − ∇�‖L p(
) ≥ C3(ε, θ)
{
‖R∇θ̃ − ∇θ‖L p(ω) + ‖Rã3(θ̃) − a3(θ)‖W 1,p(ω)

}
,

‖�̃ − �‖W 1,p(
) ≥ C4(ε, θ)
{
‖θ̃ − θ‖W 1,p(ω) + ‖ã3(θ̃) − a3(θ)‖W 1,p(ω)

}
.

Besides, the Poincaré–Wirtinger inequality implies that there exists a vector v = v(θ , ̃θ, R) ∈R
3 such that

‖R∇θ̃ − ∇θ‖L p(ω) ≥ C5‖(v + R θ̃) − θ‖W 1,p(ω),

where C5 > 0 is a constant depending only on ω and p.
Third, the definition of the mapping �̃ : 
 → R

3, resp. � : 
 → R
3, in terms of the immersion θ̃ : ω → R

3, resp. 
θ : ω → R

3, allows to express the matrix field ∇�̃
T∇�̃ : 
 → S

3, resp. ∇�T∇� : 
 → S
3, in terms of the fundamental 

forms of the surface θ̃(ω), resp. of the surface θ(ω). Combined with Fubini’s theorem, this implies that there exists a 
constant C6(ε, θ) such that

‖∇�̃
T∇�̃ − ∇�T∇�‖Lq(
) ≤ C6(ε, θ)

{
‖ Ĩ − I‖Lq(ω) + ‖ĨI − II‖Lq(ω) + ‖ ˜III − III‖Lq(ω)

}
.

Besides, Minkowski’s inequality in Lp(
) and Fubini’s theorem together imply that there exists a constant C7(ε, θ) such 
that

‖�̃ − �‖L p(
) ≤ C7(ε, θ)
{
‖θ̃ − θ‖L p(ω) + ‖a3(θ̃) − a3(θ)‖L p(ω)

}
.

Combining the above inequalities then yields the nonlinear Korn inequalities of part (a) of the theorem.
Next, let an immersion θ̃ : ω → R

3 satisfy the assumptions of part (b) of the theorem, and let the immersions �̃ and �
be defined as above in terms of the immersions θ̃ and θ . We already saw that

� ∈ C1(
) and det ∇� > 0 in 
,

�̃ ∈ W 1,2q(
) and det ∇�̃ > 0 a.e. in 
.

Besides,

�̃ = � on �0,

where �0 := γ0 × (−εδ, εδ) is a relatively open subset of the boundary of 
. This allows us to apply the special case m = 3
of another nonlinear Korn inequality on open domains in Rm, established in [8, Thm. 3(b)], and to deduce that there exists a 
constant C8(�, �0) such that

‖�̃ − �‖W 1,p(
) ≤ C8(�,�0)‖∇�̃
T∇�̃ − ∇�T∇�‖q/p

Lq(
).

Combining this inequality with the estimates of its left- and right-hand sides established (under weaker assumptions on θ̃ , 
so that they are still valid here) in the proof of part (a) of the theorem yields the nonlinear Korn inequality of part (b). �
Remark 1. The first inequality of Theorem 3.1 has been established by Ciarlet, Gratie & Mardare [6, Theorem 4.1] in the 
particular case where p = 2 and q = 1. �
Remark 2. The first inequality of Theorem 3.2 with p = 2 and q = 1 implies the rigidity theorem for surfaces of Ciarlet & 
Mardare [7, Theorem 3]. �
Theorem 3.2. Let ω ⊂ R

2 be a domain, let θ : ω → R
3 be an immersion of class C1 such that a3(θ) : ω → R

3 is also of class C1 , and 
let p > 1 and q ≥ 1 be two parameters such that p/2 ≤ q ≤ p. Then the following nonlinear Korn inequalities hold:

(a) For each ε > 0, there exist two constants c4(ε, θ) and c5(ε, θ) such that

inf
r∈Isom(R3)

{
‖r ◦ θ̃ − θ‖W 1,p(ω) + ‖a3(r ◦ θ̃) − a3(θ)‖W 1,p(ω)

}

≤ c4(ε, θ)
{
‖ Ĩ − I‖Lq(ω) + ‖ĨI − II‖Lq(ω)

}q/p
,

and

‖θ̃ − θ‖W 1,p(ω) + ‖a3(θ̃) − a3(θ)‖W 1,p(ω) ≤ c5(ε, θ)
({

‖θ̃ − θ‖L p(ω) + ‖a3(θ̃) − a3(θ)‖L p(ω)

}

+
{
‖ Ĩ − I‖Lq(ω) + ‖ĨI − II‖Lq(ω)

}q/p)
,
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for all immersions θ̃ ∈ W 1,2q(ω; R3) satisfying a3(θ̃) ∈ W 1,2q(ω; R3), and

|R̃α | ≥ ε a.e. in ω, | Ĩ | ≤ 1

ε
a.e. in ω, and

∣∣ Ĩ
−1∣∣ ≤ 1

ε
a.e. in ω.

(b) For each ε > 0 and each non-empty relatively open subset γ0 ⊂ ∂ω, there exists a constant c6(ε, θ , γ0) such that

‖θ̃ − θ‖W 1,p(ω) + ‖a3(θ̃) − a3(θ)‖W 1,p(ω) ≤ c6(ε, θ , γ0)
{
‖ Ĩ − I‖Lq(ω) + ‖ĨI − II‖Lq(ω)

}q/p

for all immersions θ̃ ∈ W 1,2q(ω; R3) satisfying a3(θ̃) ∈ W 1,2q(ω; R3), θ̃ = θ on γ0 , a3(θ̃) = a3(θ) on γ0 , and

|R̃α | ≥ ε a.e. in ω, | Ĩ | ≤ 1

ε
a.e. in ω, and

∣∣ Ĩ
−1∣∣ ≤ 1

ε
a.e. in ω.

Sketch of proof. This theorem is a consequence of Theorem 3.1 combined with the following identity:

˜III − III = ĨI( Ĩ
−1

)
(
(ĨI − II) − ( Ĩ − I)I−1II

)
+ (ĨI − II)I−1II.

It then suffices to observe that the above identity implies the existence of a constant C(θ ) such that

‖ ˜III − III‖L p(ω) ≤ C(θ)
(

1 + ‖ĨI( Ĩ
−1

)‖L∞(ω)

)(
‖ Ĩ − I‖L p(ω) + ‖ĨI − II‖L p(ω)

)
,

and then to estimate the L∞(ω)-norm of the matrix field ĨI( Ĩ
−1

) by noting that

|ĨI( Ĩ
−1

)| ≤ | Ĩ |1/2
∣∣ Ĩ

−1∣∣1/2
max

{ 1

|R̃1|
,

1

|R̃2|
}

≤ 1

ε2
a.e. in ω. �
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