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r é s u m é

On obtient une borne uniforme de la conjecture effective de Bogomolov, qui ne dépend 
que du genre g de la courbe. Cette borne croît comme O (g−3) lorsque g tend vers l’infini.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Fix an algebraically closed field k of characteristic zero and a smooth proper connected curve Y /k. Define K to be the 
field of rational functions on Y . Let C be a smooth proper geometrically connected curve of genus at least 2 over the function 
field K . Denote by f : X → Y the minimal regular model of the curve C over Y , where X is a smooth projective surface 
over k. Choose a divisor D of degree 1 on C̄ = C ×K K̄ and consider the embedding of C into its Jacobian Jac(C) = Pic0(C)

given on geometric points by jD(x) = [x] − D . Define

a′(D) = lim inf
x∈C(K̄ )

ĥ( jD(x)),

where ĥ is the canonical Néron–Tate height on the Jacobian associated with the symmetric ample divisor � + [−1]∗�. As 
C(K̄ ) may not be countable, the liminf is taken to mean the limit over the directed set of all cofinite subsets of C(K̄ ) of the 
infimum of the heights of points in such a subset.

Many authors [3,4,6,9,14,15]. . . studied the following effective Bogomolov conjecture, which has been solved by Cinkir 
[3].

Conjecture 1.1. If f is non-isotrivial, then there exists a positive number r0 such that
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inf
D∈Div1

(C̄)

a′(D) ≥ r0.

This conjecture concerns the finiteness of algebraic points of small height on a smooth complete curve over a global 
field.

By the Semistable Reduction Theorem, we may pass to a finite extension field K̃ over which C K̃ = C ×K K̃ has semistable 
reduction. Let Ỹ /k be a smooth proper curve with field of rational functions K̃ . To say that C K̃ has semistable reduction 
means that there is a projective surface X̃/k and a proper flat morphism f̃ : X̃ → Ỹ so that

(1) f̃ has generic fiber isomorphic to C K̃ ,

(2) the fibers of f̃ are connected and reduced with only nodal singularities,
(3) if Z is an irreducible component of a fiber and Z ∼= P

1, then Z meets the other components of the fiber in at least 2 
points.

If we assume further that X̃ is a smooth surface (over k), then such a morphism f̃ : X̃ → Ỹ is unique up to canonical 
isomorphism, and it may be characterized as the minimal regular model of C K̃ over Ỹ .

We divide the fiber singularities of f̃ into different types as follows. Choose a point y ∈ Ỹ (k) and a node p ∈ f̃ −1(y). We 
say p is of type 0 if the normalization of f̃ −1(y) at p is connected. Otherwise, the normalization at p has two connected 
components, and we say that p is of type i, where i is the minimum of the arithmetic genera of the two components. Let 
δi( f̃ ) = δi( X̃/Ỹ ) be the total number of nodes of type i in all fibers. By the uniqueness of the minimal regular model, the 
numbers δi( f̃ ) are well-defined invariants of C K̃ .

In this note, we always assume that f̃ is not smooth. We rewrite Theorem 2.4 in [3] without semistable condition as 
follows, see also [6, Theorem 1.2].

Theorem 1.2 ([3], Theorem 2.4). Let C/K be a smooth proper geometrically connected curve of genus g ≥ 2, and d = [K̃ : K ]. If f̃ is 
not smooth, then

inf
D∈Div1

(C̄)

a′(D) ≥ 1

2(2g + 1)

( (g − 1)2

2g(7g + 5)

δ0( f̃ )

d
+

∑
i∈(0,g/2]

2i(g − i)

g

δi( f̃ )

d

)
.

Then it is natural to consider the uniformity property (see [2]). The main purpose of this note is to give a uniform lower 
bound, as good as possible, which depends only on the genus of the curve.

Theorem 1.3. Let C/K be a smooth proper geometrically connected curve of genus g ≥ 2. If f̃ is not smooth, then

inf
D∈Div1

(C̄)

a′(D) ≥ (g − 1)2

8g3(4g + 2)(7g + 5)
.

Here we get a bound which grows as O (g−3) as g tends to infinity.
Let Mg be the moduli space of smooth curves of genus g , Mg be its Deligne–Mumford compactification, and 

�0, �1, . . . , �[g/2] be the boundary divisors of Mg . Let J : Y → Mg be the induced moduli map of f [11], we call 
δi( f ) = deg( J∗�i) the modular invariant corresponding to �i for each i = 0, 1, . . . , [g/2]. Then [5]

δi( f ) = δi( f̃ )

d
, i = 0,1, . . . , [g/2]. (1.1)

We refer to [11] for modular invariants. More recently, the second author found that modular invariants are important 
to the study of holomorphic foliations and Poicaré problems, see [12]. Note that when f̃ is not smooth, there is at least one 
singular fiber and δ( f ) �= 0. Thus there is at least one 0 ≤ i ≤ g/2 with δi( f ) �= 0. In order to prove Theorem 1.3, we give 
the lower bounds of modular invariants δi( f ) as follows.

Theorem 1.4. Let C/K be a smooth proper geometrically connected curve of genus g ≥ 2, and f : X → Y be the minimal regular 
model of C . If δi( f ) �= 0, then

δi( f ) ≥
{

1
4g2 , if i = 0,

1
(4i+2)(4(g−i)+2)

, if i ≥ 1.

In order to prove the above theorems, we provide a simple formula (3.2) of δi( f ), which can be applied to the study 
of pseudo-periodic maps and degeneration of Riemann surfaces [8]. Our method of this paper is new, and can be used to 
obtain more explicit results.
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2. Preliminaries and notations

Let F be a singular fiber of f : X → Y . Let F̄ be a birational model of F such that F̄ is normal crossing and F̄red has at 
worst ordinary double points as its singularities. If F̄ has no (−1)-curves meeting other components in at most two points, 
then F̄ is called the minimal normal crossing model of F (see [7, Section 2.1]). Denote by f̄ : X̄ → Y the obtained fibration by 
blowing up the singularities of the fibers of f such that each singular fiber of f̄ is minimal normal crossing.

Let π : Ỹ → Y be a base change of degree d. The pullback fibration f̃ of f under π is the relative minimal model of the 
desingularization of X̄ ×Y Ỹ → Ỹ . We can see the following diagram for this construction.

X̃
ρ̃←−−−− X2

ρ2−−−−→ X1
ρ1−−−−→ X̄ ×Y Ỹ

�′−−−−→ X̄

f̃

⏐⏐� f2

⏐⏐� f1

⏐⏐� ⏐⏐� f̄

⏐⏐�
Ỹ Ỹ Ỹ Ỹ

π−−−−→ Y

Here ρ1 is the normalization, ρ2 is the minimal desingularization of X1, and ρ̃ : X2 → X̃ is the contraction of (−1)-curves 
in singular fibers. We call π a stabilizing base change if f̃ is semistable.

Now we consider the above construction locally. Let F be a fiber of f over p ∈ Y . Assume that π is totally ramified 
over p, i.e. π−1(p) contains only one point p̃. In this case, π is defined locally by z = wd . Denote by F̃ the fiber of f̃ over 
p̃ ∈ Ỹ . If F̃ is semistable, then F̃ is called the d-th semistable model of F .

In the following, we use C to denote an irreducible reduced component of F̄ .
Set �2 = �′ ◦ ρ1 ◦ ρ2 : X2 → X̄ , and � = �2 ◦ ρ̃−1 : X̃ ��� X̄ . Then � is a well-defined rational morphism. For any 

irreducible smooth component C̃ of F̃ , we can define the induced morphism �|C̃ : C̃ → C by the unique extension, where 
C is the image of �|C̃ . Let �−1(C) be the set of irreducible curves C̃ in F̃ with �(C̃) = C , and l(C) = |�−1(C)|. Set 
nC = deg(�|C̃ ), which is independent of the choice of the irreducible component C̃ of �−1(C). Then n(C) = l(C)nC , where 
n(C) = multC ( F̄ ) is the multiplicity of C in F̄ . It is easy to see that nC is the period of the induced cyclic automorphism 
of C̃ .

Let F be a singular fiber of f , and F̃ be its d-th semistable model. Let δi( F̃ ) be the number of nodes of type i in F̃ , then 
we define

δi(F ) := δi( F̃ )

d
, i = 0,1, . . . , [g/2]. (2.1)

The definition is independent of the choice of the semistable model of F . Let F1, . . . , Fs be all the singular fibers of f . If we 
choose a stabilizing base change totally ramified over f (F1), . . . , f (Fs), then δi( f̃ ) = δi( F̃1) + · · · + δi( F̃ s). So we have that

δi( f ) = δi(F1) + · · · + δi(Fs), i = 0,1, . . . , [g/2]. (2.2)

If D is an irreducible singular component of F̃ , then all the singularities of D are nodes for F̃ is semistable. After a base 
change of degree 2, the strict transform of D is smooth. Thus we may always assume that each irreducible component of F̃
is smooth, because δi(F ) is independent of the choice of the semistable model F̃ .

An irreducible component C of F̄ is said to be principal if either C is not smooth rational, or C meets other components 
of F̄red at no less than three points.

Definition 2.1. Let F be a singular fiber of f , and F̄ be its minimal normal crossing model. Let C be the following subgraph 
of the dual graph G( F̄ ) of F̄ ,

� � � � � � � � � � �� �

n(C1)=γ0

C1

γ1

�1

γ2

�2

γr

�r

n(C2)=γr+1

C2

where C1 and C2 are two principal components of F̄ (C1, C2 may be the same), n(C j) = multC j ( F̄ ) ( j = 1, 2), γk = mult�k ( F̄ )

(1 ≤ k ≤ r), and �k
∼= P

1 is not a principal component of F̄ . Then we call C a principal chain between C1 and C2, and we 
set C = 〈C1, C2〉 if there is no confusion. Set d(C) = gcd(γ0, γ1, . . . , γr+1), and λ j = n(C j)/d(C). Note that each C̃ j ∈ �−1(C j)

connects with at least one of the d(C) inverse images of C in F̃ , so l(C j) ≤ d(C) and λ j ≤ nC j . Let 0 ≤ σ j < λ j be integers 
satisfying

σ1 ≡ γ1

d(C)
(mod λ1), σ2 ≡ γr

d(C)
(mod λ2). (2.3)

We denote by P C( F̄ ) all the principal chains of F̄ . If all the nodes of �−1(p) are of type i for any node p of C , then we 
call C a principal chain of type i. Denote by P Ci( F̄ ) all the principal chains of F̄ of type i.
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By Zariski’s Lemma [1, III Lemma 8.2], we know that γi−1 + γi+1 ≡ 0 (mod γi) (i = 1, . . . , r). Hence if σ1 = 0, then γ0|γi
(i = 1, 2, . . . , r + 1), and λ1 = 1. Similarly, if σ2 = 0, then λ2 = 1. Let C = 〈C1, C2〉 be a principal chain in Definition 2.1, we 
define

H(C) :=
r∑

i=0

gcd(γi, γi+1)
2

γiγi+1
. (2.4)

Lemma 2.2. Let C = 〈C1, C2〉 be a principal chain of F̄ , then

H(C) = d(C)μ1

n(C1)
+ d(C)μ2

n(C2)
+ K (C) = μ1

λ1
+ μ2

λ2
+ K (C), (2.5)

where K (C) ≥ −1 is an integer, and μ1 , μ2 are integers with

0 < μ1 ≤ λ1, σ1μ1 ≡ 1 (mod λ1), 0 < μ2 ≤ λ2, σ2μ2 ≡ 1 (mod λ2).

In particular, we have that

H(C) ≥ 1

lcm(λ1, λ2)
≥ 1

λ1λ2
≥ 1

nC1nC2

. (2.6)

Proof. Without loss of generality, we may assume that d(C) = 1. Hence gcd(γi, γi+1) = 1 by Zariski’s Lemma, and (2.5) is 
Lemma 5.2 (1) in [8]. Now we only need to prove the integer K (C) ≥ −1. If μ1 = λ1 and μ2 = λ2, then λ1 = λ2 = 1 (see 
NB below Lemma 5.2 (1) in [8]). So H(C) is a positive integer for H(C) > 0, and then K (C) ≥ −1. For the remaining case, 
0 < μ1/λ1 + μ2/λ2 < 2, and thus K (C) ≥ −1. Note that (2.6) is obtained from that lcm(λ1, λ2)H(C) is an integer bigger 
than 0 by (2.5). �
3. Proof of theorems

Firstly, we give a formula of δi( f ).

Lemma 3.1. Let F be a singular fiber of f , and F̄ be its minimal normal crossing model, then

δi(F ) =
∑

C∈P Ci( F̄ )

H(C), i = 0,1, . . . , [g/2]. (3.1)

Proof. Suppose F̄ = n(C1)C1 + · · · + n(Ct)Ct . Let F̃ be a d-th semistable model of F with n(Ci)|d (i = 1, 2, . . . , t), and q be a 
node of F̃ . By definition, q is a node of F̃ of type i if and only if p = �(q) is a node of some principal chain of F̄ of type i. 
We may assume p ∈ C1 ∩ C2, then, by [10, Lemma 1.4], there are dp = gcd(n(C1), n(C2)) disjoint curves of type An , where n
satisfies

#{q ∈ F̃ : q is a node, �(q) = p}
d

= dp(n + 1)

d
= gcd(n(C1),n(C2))

2

n(C1)n(C2)
.

Then the result is directly from the definition of δi(F ). �
Theorem 3.2. Let F1, . . . , Fs be all the singular fibers of f , and P Ci( f̄ ) = P Ci( F̄1) ∪ · · · ∪ P Ci( F̄ s), for 0 ≤ i ≤ [g/2]. Then

δi( f ) =
∑

C∈P Ci( f̄ )

H(C) =
∑

C∈P Ci( f̄ )

(
d(C)μ1,C
n(C1,C)

+ d(C)μ2,C
n(C2,C)

+ K (C)

)
. (3.2)

Here we add C to each notation in order to differentiate, and the meaning of each notation is the same as that in Lemma 2.2.

Proof. It is directly from (2.2), Lemma 2.2 and Lemma 3.1. �
Now we prove two lemmas which play an important role in the proof of the main theorems.

Lemma 3.3. Let F be a singular fiber of genus g ≥ 2, C be a principal component of F̄ , and C̃ be an element of �−1(C). Then

(1) if either g(C̃) ≥ 2 or g(C̃) = 1 and �|C̃ : C̃ → C is ramified, then nC ≤ 4g(C̃) + 2;

(2) if g(C̃) = 1 and �| ˜ : C̃ → C is un-ramified, then nC ≤ 2(g − 1);
C
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(3) assume g(C̃) = 0. If C̃ is not principal, then nC = 2. If C̃ is principal, then nC ≤ min{g + 1 − pa( F̃ − C̃), g + 1}, where pa( F̃ − C̃)

is the arithmetic genus of F̃ − C̃ .

In particular, nC ≤ 4g + 2.

Proof. (1). See Lemma B in [13].
(2). We denote also by C the component corresponding to C in F , then n(C) = multC ( F̄ ) = multC (F ). Since K X/Y is 

nef, n(C)C K X/Y ≤ F K X/Y = 2g − 2. If C K X/Y = 0, then C is a (−2)-curve, which is impossible. Therefore, C K X/Y ≥ 1, and 
n(C) ≤ 2g − 2.

(3). If C̃ is not principal, then C̃( F̃ − C̃) = 2 for F̃ is semistable and nC �= 1 for C is a rational principal component of F̄ . 
Since g(C̃) = 0 and �|C̃ : C̃ → C is a cyclic covering of degree nC , we know that there are exactly two branched points 
on C . Because C meets other components of F̄red at no less than three points, there is a third point on C , which is the 
intersection of C with some other component of F̄ , say D . Then n(C)|n(D) = multD( F̄ ). Thus C̃ meets �−1(D) in at least 
nC points. Hence nC ≤ C̃ · �−1(D) ≤ C̃( F̃ − C̃) = 2.

If C̃ is principal, set C̃ ∩ ( F̃ − C̃) = {q1, . . . , qm}, then m = C̃( F̃ − C̃) ≥ 3. Since

pa( F̃ ) = pa( F̃ − C̃) + pa(C̃) + C̃( F̃ − C̃) − 1 = pa( F̃ − C̃) + m − 1,

we know that m = g + 1 − pa( F̃ − C̃). Let σ ∈ Aut(C̃) be the induced cyclic automorphism of C̃ , then σ(qi) ∈ {q1, . . . , qm}
for any 1 ≤ i ≤ m. Denote by τ the restriction action of σ on {q1, . . . , qm}, then τ is a permutation. Let τ = τ1 · τ2 · · ·τk
be the decomposition of τ into disjoint cycles, and let m0 = max{|τ1|, . . . , |τk|} where |τi | is the length of the cycle τi . 
Because these m0 points induce either m0 − 1 cycles or m0 curves Ek ’s with pa(Ek) ≥ 1 in F̃ by semi-stability of F̃ , we have 
m0 ≤ g + 1. If m0 ≤ 2, then τm0 fixes all the m points. If m0 ≥ 3, then τm0 fixes m0 ≥ 3 points. In all cases, τm0 fixes no less 
than 3 points. So σm0 is the identity map and nC = m0 ≤ min{m, g + 1}. �
Lemma 3.4. Let C = 〈C1, C2〉 ∈ P C( F̄ ), and C̃ = 〈C̃1, C̃2〉 be a principal chain of F̃ with �(C̃) = C . If g(C̃1) = 1 and C̃1 → C1 is 
un-ramified, then

H(C) ≥ 1

4g − 2
.

Proof. Since C̃1 → C1 is un-ramified, we have that n(C1)|multD( F̄ ) = n(D) for any irreducible component D of F̄ inter-
secting with C1. Moreover, n(C1) = d(C) and λ1 = 1 by Zariski’s Lemma. We know that nC2 ≤ 4(g − 1) + 2 = 4g − 2 by 
Lemma 3.3, and then by Lemma 2.2

H(C) = d(C)μ1

n(C1)
+ d(C)μ2

n(C2)
+ K (C) ≥ 1

nC2

≥ 1

4g − 2
. �

Proof of Theorem 1.4. (1) If δ0(F ) �= 0, then there is a principal chain C = 〈C1, C2〉 ∈ P C0( F̄ ). If C1 = C2, then by Lemma 2.2, 
3.1 and 3.3, we know that

δ0(F ) ≥ H(C) ≥ 1

lcm(λ1, λ2)
= 1

λ1
≥ 1

nC1

≥ 1

4g + 2
.

If g(C̃1) = g(C̃2) = 0, then nC j ≤ g + 1 ( j = 1, 2) by Lemma 3.3 (3), and δ0(F ) ≥ 1/(g + 1)2 by (2.6).

Now we may assume that C1 and C2 are distinct and g(C̃2) ≥ 1. Then g ≥ g(C̃1) + g(C̃2) + 1 by [13, Lemma A]. So the 
rest are the following three cases.

(i) If g(C̃1) = 0, let g(C̃2) = a, then 1 ≤ a ≤ g − 1 and pa( F̃ − C̃1) ≥ a. Thus nC1 ≤ g + 1 − a, nC2 ≤ 4a + 2. So

δ0(F ) ≥ H(C) ≥ 1

nC1nC2

≥ 1

(g + 1 − a)(4a + 2)
≥ 1

4g2
.

(ii) If g(C̃ j) = 1, and C̃ j → C j is un-ramified for j = 1 or j = 2. Then by Lemma 3.4, we have δ0(F ) ≥ H(C) ≥ 1/(4g − 2).
(iii) In the remaining cases, we may assume that nC1 ≤ 4α + 2 where α = g(C̃1) ≥ 1, and nC2 ≤ 4(g − α − 1) + 2. Thus

δ0(F ) ≥ H(C) ≥ 1

nC1nC2

≥ 1

(4α + 2)(4(g − α) − 2)
≥ 1

4g2
. (3.3)

(2) If i ≥ 1 and δi(F ) �= 0, then there is a principal chain C = 〈C1, C2〉 ∈ P Ci( F̄ ). Denote by C̃ = 〈C̃1, C̃2〉 a principal chain 
of F̃ with �(C̃) = C . Let p̃ be the intersection point of C̃1 with other components of C̃ , and let Blp̃( F̃ ) be the blow-up of F̃

at p̃. Let F̃1 and F̃2 be the two connected components of Blp̃( F̃ ), with C̃1 ⊆ F̃1, pa( F̃1) = i and pa( F̃2) = g − i.
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By Lemma 3.4, we may assume that if g(C j) = 1 ( j = 1, 2), then C̃ j → C j is ramified in the following. If g(C̃1) = 0, then 
nC1 ≤ g + 1 − pa( F̃2) = i + 1. If g(C̃1) ≥ 1, then nC1 ≤ 4pa( F̃1) + 2 = 4i + 2. Hence nC1 ≤ 4i + 2 always holds true. Similarly, 
nC2 ≤ 4(g − i) + 2. Thus the result is directly from (2.6). �
Proof of Theorem 1.3. For g ≥ 2, the result is from the following two cases by Theorem 1.2 and 1.4:

Case 1: δ0( f ) > 0. Then

inf
D∈Div1

(C̄)

a′(D) ≥ 1

4g + 2

(g − 1)2

2g(7g + 5)
δ0( f ) ≥ (g − 1)2

8g3(4g + 2)(7g + 5)
.

Case 2: δ0( f ) = 0. Since δ( f ) > 0, we have δi( f ) > 0 for some i > 0. Then

inf
D∈Div1

(C̄)

a′(D) ≥ 1

4g + 2

2i(g − i)

g
δi( f ) ≥ 2i(g − i)

(4g + 2)g((4i + 2)(4(g − i) + 2)

≥ (g − 1)2

8g3(4g + 2)(7g + 5)
. �
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