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By using the infinitesimal methods due to Bloch, Green, and Griffiths in [1,4], we con-
struct an infinitesimal form of the regulator map and verify that its kernel is �1

C/Q , which 
suggests that Question 1.1 seems reasonable at the infinitesimal level.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Utilisant les méthodes infinitésimales dues à Bloch, Green et Griffiths [1,4], nous construi-
sons une forme infinitésimale de l’application régulateur. Nous vérifions que son noyau est 
�1

C/Q, ce qui suggère une version infinitésimale valide de la Question 1.1 formulée dans le 
texte.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Background and question

Let X be a smooth projective curve over the complex number field C. In the 1970s, Bloch constructed the regulator map 
R: K2(X) → H1(X, C∗) in several ways. Later, Deligne found a different construction by considering H1(X, C∗) as the group 
of line bundles with connections. We recall his construction very briefly as follows.

For x a point on X , we use ix to denote the inclusion x → X . The flasque BGQ resolution of K2(O X )

0 → K2(O X ) → K2(C(X)) →
⊕

x∈X(1)

ix,∗K1(C(x)) → 0

shows that H0(K2(O X )) can be computed as Ker{K2(C(X)) → ⊕
x∈X(1)

K1(C(x))}. So we have the exact sequence of groups

0 → H0(K2(O X )) → K2(C(X)) →
⊕

x∈X(1)

K1(C(x)).

E-mail addresses: syang@math.tsinghua.edu.cn, senyangmath@gmail.com.
http://dx.doi.org/10.1016/j.crma.2017.01.006
1631-073X/© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

http://dx.doi.org/10.1016/j.crma.2017.01.006
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:syang@math.tsinghua.edu.cn
mailto:senyangmath@gmail.com
http://dx.doi.org/10.1016/j.crma.2017.01.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crma.2017.01.006&domain=pdf


212 S. Yang / C. R. Acad. Sci. Paris, Ser. I 355 (2017) 211–215
It is known that there exists the following Gysin exact sequence in topology,

0 → H1(X,C∗) → H1(C(X),C∗) →
⊕

x∈X(1)

C∗,

where H1(C(X), C∗) = lim−→H1(X − S, C∗) and S is finite points on X .

The main ingredient to construct the regulator map R: H0(K2(O X )) → H1(X, C∗) is the following commutative diagram

0 −−−−→ H0(K2(O X )) −−−−→ K2(C(X)) −−−−→ ⊕
x∈X(1)

K1(C(x))

⏐⏐� R

⏐⏐� R

⏐⏐� ∼=
⏐⏐�

0 −−−−→ H1(X,C∗) −−−−→ H1(C(X),C∗) −−−−→ ⊕
x∈X(1)

C∗.

(1.1)

That is, one constructs a map R: K2(C(X)) → H1(C(X), C∗) and uses it to deduce the regulator map R: H0(K2(O X )) →
H1(X, C∗). We refer the readers to [1] and Section 6 in [5] for more details.

This regulator map has nice motivic features and is related with a general program of Bloch–Beilinson conjecture. In this 
short note, we focus on the following question, see Section 2 in [3] for a related discussion. To fix notations, for any Abelian 
group M , MQ denotes the image of M in M ⊗Z Q in the following.

Question 1.1 (Conjecture 2.4 in [3]). Let R: H0(K2(O X )) → H1(X, C∗) be the regulator map, then Ker(R)Q = K2(C)Q .

This question is very difficult to approach, though it has a very simple form. For X = P1, this conjecture has been verified 
by Kerr [6].

2. Main results

In this section, we shall define an infinitesimal form of the regulator map R: H0(K2(O X )) → H1(X, C∗) and verify that 
its kernel is �1

C/Q
. Our approach is inspired by the following result due to Green and Griffiths.

Theorem 2.1 (Page 74 and page 125 in [4]). Let X be a smooth projective curve over C, the Cousin flasque resolution of �1
X/Q

0 → �1
X/Q → �1

C(X)/Q

ρ−→
⊕

x∈X(1)

ix,∗H1
x (�

1
X/Q) → 0,

is the tangent sequence to BGQ flasque resolution of the sheaf K2(O X )

0 → K2(O X ) → K2(C(X)) →
⊕

x∈X(1)

ix,∗K1(C(x)) → 0,

where the map ρ is known to take principal parts.

It follows that H0(�1
X/Q

) can be computed as Ker{�1
C(X)/Q

ρ−→ ⊕
x∈X(1)

H1
x (�

1
X/Q

)}. So we have the exact sequence of groups

0 → H0(�1
X/Q) → �1

C(X)/Q

ρ−→
⊕

x∈X(1)

H1
x (�

1
X/Q).

Definition 2.2 (Page 71 and page 125 in [4]). For X a smooth projective curve over C and x a point on X , there exists a residue 
map

Res : H1
x (�

1
X/Q) →C,

which is defined as follows.
Using �1

O X,x/Q
(nx) to denote the absolute 1-forms with poles of order at most n at x, we define Resx as the following 

composition:

�1 (nx) −→ �1 (nx)
Res−−→ C.
O X,x/Q O X,x/C
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If ξ is the local uniformizer centered at x, an element of H1
x (�1

X/Q
) is represented by the following diagram

⎧⎪⎨
⎪⎩

O X,x
ξk

−−−−→ O X,x −−−−→ O X,x/(ξ
k) −−−−→ 0

O X,x
ψ−−−−→ �1

O X,x/Q
.

(2.1)

For such an element, we define Resx(
ψ

ξk
) ∈ C.

It is known that the tangent space to C∗ , which is defined to be the kernel of the natural projection:

C[ε]∗ ε=0−−→ C∗,

can be identified with C and the tangent map tan: C[ε]∗ →C is given by z0 + z1ε → z1

z0
. This tangent map further induces 

a map between cohomology groups tan: H1(X, C[ε]∗) → H1(X, C). With this interpretation, one can consider H1(X, C) as 
the tangent space to H1(X, C∗) (this is used in [1]).

There exists the following Gysin exact sequence in topology:

0 → H1(X,C) → H1(C(X),C) →
⊕

x∈X(1)

C,

e.g., see pages 54–55 in [2]. The boundary map H1(C(X), C) → ⊕
x∈X(1)

C can be described via Hodge theory as follows. 

Let D = {p1, · · · , pn} be finite points on X and let U be the open complement, U = X − D . Let iD : D → X denote the 
inclusion, the residue map Res: �•

X (logD) → iD,∗�•−1
D induces Res: H1(�•

X (logD)) → H0(�•
D). This gives the map Res: 

H1(U , C) → ⊕
i=1,··· ,n

C, by using the identifications H1(�•
X (logD)) ∼= H1(U , C) and H0(�•

D) = H0(D, C) ∼= ⊕
i=1,··· ,n

C.

The following theorem is an infinitesimal form of diagram (1.1):

Theorem 2.3. There exists the following commutative diagram

0 −−−−→ H0(�1
X/Q

) −−−−→ �1
C(X)/Q

ρ−−−−→ ⊕
x∈X(1)

H1
x (�

1
X/Q

)

⏐⏐� R′
⏐⏐� R′

⏐⏐� Res

⏐⏐�
0 −−−−→ H1(X,C) −−−−→ H1(C(X),C)

Res−−−−→ ⊕
x∈X(1)

C,

(2.2)

where the map R′’s are the natural maps sending d/Q f to d/C f .

Proof. The map R′: �1
C(X)/Q

→ H1(C(X), C) can be described as follows. Let U be open affine in X , H1(U , C) can be com-

puted as �(U , �U/C)/d/C�(U , O U ). Given any element α ∈ �1
U/Q

, its image [α] in �1
U/C

defines an element in H1(U , C).
To check the commutativity of the right square, working locally in a Zariski open affine neighborhood U , we can write 

an element β ∈ �1
C(X)/Q

as

β = h d/Qg

f l1
1 . . . f lk

k

,

where f1, . . . , fk, h ∈ �(U , O U ) are relatively prime and f ′
i s are irreducible.

The following diagram is commutative:

h d/Qg

f l1
1 . . . f lk

k

ρ−−−−→ ∑
i

h d/Qg

f l1
1 . . . f̂ li

i . . . f lk
k

R′
⏐⏐� Res

⏐⏐�
h d/Cg

f l1
1 . . . f lk

k

Res−−−−→ ∑
i Resxi (

h d/Cg

f l1
1 . . . f lk

k

),

where xi = { f i = 0} and f̂ li
i means to omit the ith term.

The map R′: �1 → H1(C(X), C) induces R′: H0(�1 ) → H1(X, C). �

C(X)/Q X/Q
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Let { f0, g0} ∈ H0(K2(O X )) and let (N, �) denote the bundle with connection �, as recalled on page 4 in [1]. There exists 
the following commutative diagram:

{ f0, g0} ε=0←−−−− { f0 + ε f1, g0 + εg1} tan−−−−→ f1

f0

d/Qg0

g0
− g1

g0

d/Q f0

f0

R

⏐⏐�
⏐⏐� R′

⏐⏐�

{ f0, g0}∗(N,�) ←−−−−
ε=0

{ f0 + ε f1, g0 + εg1}∗(N,�)
tan−−−−→ f1

f0

d/Cg0

g0
− g1

g0

d/C f0

f0
.

The commutativity of left square is trivial. To check the right one, since { f0 + ε f1, g0 + εg1} = { f0, g0}{ f0, 1 + ε
g1

g0
}{1 +

ε
f1

f0
, g0}{1 + ε

f1

f0
, 1 + ε

g1

g0
}, we reduce to considering {1 + ε f1, g0}, which is obvious:

{1 + ε f1, g0} tan−−−−→ f1
d/Qg0

g0⏐⏐� R′
⏐⏐�

{1 + ε f1, g0}∗(N,�)
tan−−−−→ f1

d/Cg0

g0
,

where the up tan map is well known and the down tan map is the formula (2.12) on page 14 in [1].
In this sense, we consider the map R′: H0(�1

X/Q
) → H1(X, C) as the infinitesimal form of the regulator map 

R: H0(K2(O X )) → H1(X, C∗) and compute the kernel of R′ .
Since H1(X, C) has Hodge decomposition H1(X, C) ∼= H0(�1

X/C
) ⊕ H1(O X ) and the map R′: H0(�1

X/Q
) → H1(X, C) nat-

urally maps d/Q f to d/C f , so R′ is the composition H0(�1
X/Q

) → H0(�1
X/C

) ↪→ H1(X, C). Hence Ker(R′) = Ker{H0(�1
X/Q

) →
H0(�1

X/C
)}.

Theorem 2.4. Ker(R′) = �1
C/Q .

Proof. There is a natural short exact sequence of sheaves

0 → �1
C/Q ⊗C O X → �1

X/Q → �1
X/C → 0.

The associated long exact sequence is of the form

0 → H0(�1
C/Q ⊗C O X ) → H0(�1

X/Q) → H0(�1
X/C) → H1(�1

C/Q ⊗C O X ) → ·· · .

So the kernel of H0(�1
X/Q

) → H0(�1
X/C

) can be identified with H0(�1
C/Q

⊗C O X ) ∼= H0(O X ) ⊗ �1
C/Q

∼= C ⊗ �1
C/Q

∼=
�1

C/Q
. �

Since the tangent space to K2(C) is �1
C/Q

, this theorem suggests hat Question 1.1 seems reasonable at the infinitesimal 
level.
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