Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Algebraic geometry

On the kernel of the regulator map

Sur le noyau de l'application régulateur

Sen Yang

Yau Mathematical Sciences Center, Tsinghua University, Beijing, China

ARTICLE INFO

Article history: Received 28 June 2016 Accepted after revision 10 January 2017 Available online 16 January 2017

Presented by Claire Voisin

ABSTRACT

By using the infinitesimal methods due to Bloch, Green, and Griffiths in [1,4], we construct an infinitesimal form of the regulator map and verify that its kernel is $\Omega^1_{\mathbb{C}/\mathbb{Q}}$, which suggests that Question 1.1 seems reasonable at the infinitesimal level.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Utilisant les méthodes infinitésimales dues à Bloch, Green et Griffiths [1,4], nous construisons une forme infinitésimale de l'application régulateur. Nous vérifions que son noyau est $\Omega^1_{\mathbb{C}/\mathbb{Q}}$, ce qui suggère une version infinitésimale valide de la Question 1.1 formulée dans le texte.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Background and question

Let *X* be a smooth projective curve over the complex number field \mathbb{C} . In the 1970s, Bloch constructed the regulator map R: $K_2(X) \rightarrow H^1(X, \mathbb{C}^*)$ in several ways. Later, Deligne found a different construction by considering $H^1(X, \mathbb{C}^*)$ as the group of line bundles with connections. We recall his construction very briefly as follows.

For x a point on X, we use i_x to denote the inclusion $x \to X$. The flasque BGQ resolution of $K_2(O_X)$

$$0 \to K_2(O_X) \to K_2(\mathbb{C}(X)) \to \bigoplus_{x \in X^{(1)}} i_{x,*}K_1(\mathbb{C}(x)) \to 0$$

shows that $H^0(K_2(\mathcal{O}_X))$ can be computed as $\operatorname{Ker}\{K_2(\mathbb{C}(X)) \to \bigoplus_{x \in X^{(1)}} K_1(\mathbb{C}(x))\}$. So we have the exact sequence of groups

$$0 \to H^0(K_2(O_X)) \to K_2(\mathbb{C}(X)) \to \bigoplus_{x \in X^{(1)}} K_1(\mathbb{C}(x)).$$

http://dx.doi.org/10.1016/j.crma.2017.01.006

E-mail addresses: syang@math.tsinghua.edu.cn, senyangmath@gmail.com.

¹⁶³¹⁻⁰⁷³X/ \odot 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

It is known that there exists the following Gysin exact sequence in topology,

$$0 \to H^1(X, \mathbb{C}^*) \to H^1(\mathbb{C}(X), \mathbb{C}^*) \to \bigoplus_{x \in X^{(1)}} \mathbb{C}^*,$$

where $H^1(\mathbb{C}(X), \mathbb{C}^*) = \underset{\longrightarrow}{\lim} H^1(X - S, \mathbb{C}^*)$ and S is finite points on X.

The main ingredient to construct the regulator map R: $H^0(K_2(O_X)) \to H^1(X, \mathbb{C}^*)$ is the following commutative diagram

That is, one constructs a map R: $K_2(\mathbb{C}(X)) \to H^1(\mathbb{C}(X), \mathbb{C}^*)$ and uses it to deduce the regulator map R: $H^0(K_2(O_X)) \to H^1(X, \mathbb{C}^*)$. We refer the readers to [1] and Section 6 in [5] for more details.

This regulator map has nice motivic features and is related with a general program of Bloch–Beilinson conjecture. In this short note, we focus on the following question, see Section 2 in [3] for a related discussion. To fix notations, for any Abelian group M, $M_{\mathbb{Q}}$ denotes the image of M in $M \otimes_{\mathbb{Z}} \mathbb{Q}$ in the following.

Question 1.1 (Conjecture 2.4 in [3]). Let R: $H^0(K_2(O_X)) \to H^1(X, \mathbb{C}^*)$ be the regulator map, then $\text{Ker}(\mathbb{R})_{\mathbb{Q}} = K_2(\mathbb{C})_{\mathbb{Q}}$.

This question is very difficult to approach, though it has a very simple form. For $X = P^1$, this conjecture has been verified by Kerr [6].

2. Main results

In this section, we shall define an infinitesimal form of the regulator map R: $H^0(K_2(O_X)) \to H^1(X, \mathbb{C}^*)$ and verify that its kernel is $\Omega^1_{\mathbb{C}/\mathbb{O}}$. Our approach is inspired by the following result due to Green and Griffiths.

Theorem 2.1 (Page 74 and page 125 in [4]). Let X be a smooth projective curve over \mathbb{C} , the Cousin flasque resolution of $\Omega^1_{X/\mathbb{O}}$

$$0 \to \Omega^1_{X/\mathbb{Q}} \to \Omega^1_{\mathbb{C}(X)/\mathbb{Q}} \xrightarrow{\rho} \bigoplus_{x \in X^{(1)}} i_{x,*} H^1_x(\Omega^1_{X/\mathbb{Q}}) \to 0,$$

is the tangent sequence to BGQ flasque resolution of the sheaf $K_2(O_X)$

$$0 \to K_2(O_X) \to K_2(\mathbb{C}(X)) \to \bigoplus_{x \in X^{(1)}} i_{x,*}K_1(\mathbb{C}(x)) \to 0,$$

where the map ρ is known to take principal parts.

It follows that $H^0(\Omega^1_{X/\mathbb{Q}})$ can be computed as $\operatorname{Ker}\{\Omega^1_{\mathbb{C}(X)/\mathbb{Q}} \xrightarrow{\rho} \bigoplus_{x \in X^{(1)}} H^1_x(\Omega^1_{X/\mathbb{Q}})\}$. So we have the exact sequence of groups

$$0 \to H^0(\Omega^1_{X/\mathbb{Q}}) \to \Omega^1_{\mathbb{C}(X)/\mathbb{Q}} \xrightarrow{\rho} \bigoplus_{x \in X^{(1)}} H^1_x(\Omega^1_{X/\mathbb{Q}}).$$

Definition 2.2 (*Page 71 and page 125 in [4]*). For X a smooth projective curve over \mathbb{C} and x a point on X, there exists a residue map

Res : $H^1_{X}(\Omega^1_{X/\mathbb{O}}) \to \mathbb{C}$,

which is defined as follows.

Using $\Omega^1_{O_{X,x}/\mathbb{Q}}(nx)$ to denote the absolute 1-forms with poles of order at most *n* at *x*, we define Res_x as the following composition:

$$\Omega^1_{\mathcal{O}_{X,x}/\mathbb{Q}}(nx)\longrightarrow \Omega^1_{\mathcal{O}_{X,x}/\mathbb{C}}(nx)\xrightarrow{\operatorname{Res}}\mathbb{C}.$$

If ξ is the local uniformizer centered at x, an element of $H^1_x(\Omega^1_{X/\mathbb{O}})$ is represented by the following diagram

$$\begin{cases} O_{X,x} \xrightarrow{\xi^{k}} & O_{X,x} \longrightarrow & O_{X,x}/(\xi^{k}) \longrightarrow & 0\\ O_{X,x} \xrightarrow{\psi} & \Omega^{1}_{O_{X,x}/\mathbb{Q}}. \end{cases}$$
(2.1)

For such an element, we define $\operatorname{Res}_{x}(\frac{\psi}{\xi k}) \in \mathbb{C}$.

It is known that the tangent space to \mathbb{C}^* , which is defined to be the kernel of the natural projection:

$$\mathbb{C}[\varepsilon]^* \xrightarrow{\varepsilon=0} \mathbb{C}^*,$$

can be identified with \mathbb{C} and the tangent map tan: $\mathbb{C}[\varepsilon]^* \to \mathbb{C}$ is given by $z_0 + z_1 \varepsilon \to \frac{z_1}{z_0}$. This tangent map further induces a map between cohomology groups tan: $H^1(X, \mathbb{C}[\varepsilon]^*) \to H^1(X, \mathbb{C})$. With this interpretation, one can consider $H^1(X, \mathbb{C})$ as the tangent space to $H^1(X, \mathbb{C}^*)$ (this is used in [1]).

There exists the following Gysin exact sequence in topology:

$$0 \to H^1(X, \mathbb{C}) \to H^1(\mathbb{C}(X), \mathbb{C}) \to \bigoplus_{x \in X^{(1)}} \mathbb{C},$$

e.g., see pages 54–55 in [2]. The boundary map $H^1(\mathbb{C}(X), \mathbb{C}) \to \bigoplus_{x \in X^{(1)}} \mathbb{C}$ can be described via Hodge theory as follows. Let $D = \{p_1, \dots, p_n\}$ be finite points on X and let U be the open complement, U = X - D. Let $i_D : D \to X$ denote the inclusion, the residue map Res: $\Omega^{\bullet}_X(\log D) \to i_{D,*}\Omega^{\bullet-1}_D$ induces Res: $\mathbb{H}^1(\Omega^{\bullet}_X(\log D)) \to \mathbb{H}^0(\Omega^{\bullet}_D)$. This gives the map Res: $H^1(U, \mathbb{C}) \to \bigoplus_{i=1,\dots,n} \mathbb{C}$, by using the identifications $\mathbb{H}^1(\Omega^{\bullet}_X(\log D)) \cong H^1(U, \mathbb{C})$ and $\mathbb{H}^0(\Omega^{\bullet}_D) = H^0(D, \mathbb{C}) \cong \bigoplus_{i=1,\dots,n} \mathbb{C}$.

The following theorem is an infinitesimal form of diagram (1.1):

Theorem 2.3. There exists the following commutative diagram

where the map R's are the natural maps sending $d_{\mathbb{Q}}f$ to $d_{\mathbb{C}}f$.

Proof. The map \mathbb{R}' : $\Omega^1_{\mathbb{C}(X)/\mathbb{Q}} \to H^1(\mathbb{C}(X),\mathbb{C})$ can be described as follows. Let U be open affine in X, $H^1(U,\mathbb{C})$ can be computed as $\Gamma(U, \Omega_{U/\mathbb{C}})/d_{/\mathbb{C}}\Gamma(U, O_U)$. Given any element $\alpha \in \Omega^1_{U/\mathbb{Q}}$, its image [α] in $\Omega^1_{U/\mathbb{C}}$ defines an element in $H^1(U, \mathbb{C})$.

To check the commutativity of the right square, working locally in a Zariski open affine neighborhood U, we can write an element $\beta \in \Omega^1_{\mathbb{C}(X)/\mathbb{O}}$ as

$$\beta = \frac{h \, d_{\mathbb{Q}} g}{f_1^{l_1} \dots f_k^{l_k}},$$

where $f_1, \ldots, f_k, h \in \Gamma(U, O_U)$ are relatively prime and f'_i are irreducible. The following diagram is commutative:

$$\begin{array}{c|c} \frac{h \, d_{/\mathbb{Q}}g}{f_1^{l_1} \dots f_k^{l_k}} & \stackrel{\rho}{\longrightarrow} & \sum_i \frac{h \, d_{/\mathbb{Q}}g}{f_1^{l_1} \dots \hat{f}_i^{l_i} \dots f_k^{l_k}} \\ & \stackrel{}{\underset{K' \downarrow}{\overset{K' \downarrow}}} & \stackrel{\text{Res} \downarrow}{\underset{f_1^{l_1} \dots f_k^{l_k}}{\overset{Res}{\xrightarrow{\sum_i \operatorname{Res}_{x_i}}}} \xrightarrow{\sum_i \operatorname{Res}_{x_i}(\frac{h \, d_{/\mathbb{C}}g}{f_1^{l_1} \dots f_k^{l_k}})} \end{array}$$

where $x_i = \{f_i = 0\}$ and $\hat{f}_i^{l_i}$ means to omit the *i*th term. The map $R': \Omega^1_{\mathbb{C}(X)/\mathbb{Q}} \to H^1(\mathbb{C}(X), \mathbb{C})$ induces $R': H^0(\Omega^1_{X/\mathbb{Q}}) \to H^1(X, \mathbb{C})$. \Box

Let $\{f_0, g_0\} \in H^0(K_2(O_X))$ and let (N, ∇) denote the bundle with connection ∇ , as recalled on page 4 in [1]. There exists the following commutative diagram:

$$\begin{cases} f_0, g_0 \rbrace & \stackrel{\varepsilon = 0}{\longleftrightarrow} & \{ f_0 + \varepsilon f_1, g_0 + \varepsilon g_1 \rbrace & \stackrel{\operatorname{tan}}{\longrightarrow} & \frac{f_1}{f_0} \frac{d_{/\mathbb{Q}}g_0}{g_0} - \frac{g_1}{g_0} \frac{d_{/\mathbb{Q}}f_0}{f_0} \\ \\ R \downarrow & \downarrow & \\ \{ f_0, g_0 \rbrace^*(N, \nabla) & \stackrel{\varepsilon = 0}{\longleftrightarrow} & \{ f_0 + \varepsilon f_1, g_0 + \varepsilon g_1 \rbrace^*(N, \nabla) & \stackrel{\operatorname{tan}}{\longrightarrow} & \frac{f_1}{f_0} \frac{d_{/\mathbb{Q}}g_0}{g_0} - \frac{g_1}{g_0} \frac{d_{/\mathbb{Q}}f_0}{f_0}. \end{cases}$$

The commutativity of left square is trivial. To check the right one, since $\{f_0 + \varepsilon f_1, g_0 + \varepsilon g_1\} = \{f_0, g_0\}\{f_0, 1 + \varepsilon \frac{g_1}{g_0}\}\{1 + \varepsilon f_1, g_0 + \varepsilon g_1\} = \{f_0, g_0\}\{f_0, 1 + \varepsilon \frac{g_1}{g_0}\}\{1 + \varepsilon f_1, g_0 + \varepsilon g_1\} = \{f_0, g_0\}\{f_0, 1 + \varepsilon \frac{g_1}{g_0}\}\{1 + \varepsilon f_1, g_0 + \varepsilon g_1\} = \{f_0, g_0\}\{f_0, 1 + \varepsilon \frac{g_1}{g_0}\}\{1 + \varepsilon f_1, g_0 + \varepsilon g_1\} = \{f_0, g_0\}\{f_0, 1 + \varepsilon \frac{g_1}{g_0}\}\{1 + \varepsilon f_1, g_0 + \varepsilon g_1\} = \{g_0, g_0\}\{f_0, 1 + \varepsilon \frac{g_1}{g_0}\}\{1 + \varepsilon f_1, g_0 + \varepsilon g_1\} = \{g_0, g_0\}\{f_0, 1 + \varepsilon \frac{g_1}{g_0}\}\{1 + \varepsilon f_1, g_0 + \varepsilon g_1\} = \{g_0, g_0\}\{f_0, 1 + \varepsilon \frac{g_1}{g_0}\}\{1 + \varepsilon f_1, g_0 + \varepsilon g_1\} = \{g_0, g_0\}\{f_0, 1 + \varepsilon \frac{g_1}{g_0}\}\{1 + \varepsilon f_1, g_0 + \varepsilon g_1\} = \{g_0, g_0\}\{f_0, 1 + \varepsilon \frac{g_1}{g_0}\}\{1 + \varepsilon f_1, g_0 + \varepsilon g_1\} = \{g_0, g_0\}\{f_0, 1 + \varepsilon \frac{g_1}{g_0}\}\{1 + \varepsilon f_1, g_0 + \varepsilon g_1\} = \{g_0, g_0\}\{f_0, 1 + \varepsilon \frac{g_1}{g_0}\}\{1 + \varepsilon f_1, g_0 + \varepsilon g_1\} = \{g_0, g_0\}\{f_0, 1 + \varepsilon \frac{g_1}{g_0}\}\{1 + \varepsilon f_1, g_0 + \varepsilon g_1\} = \{g_0, g_0\}\{f_0, 1 + \varepsilon \frac{g_1}{g_0}\}\{1 + \varepsilon f_1, g_0 + \varepsilon g_1\} = \{g_0, g_0\}\{f_0, 1 + \varepsilon f_1\}\}$ $\varepsilon \frac{f_1}{f_0}, g_0 \{ 1 + \varepsilon \frac{f_1}{f_0}, 1 + \varepsilon \frac{g_1}{g_0} \}$, we reduce to considering $\{ 1 + \varepsilon f_1, g_0 \}$, which is obvious:

$$\begin{array}{ccc} \{1 + \varepsilon f_1, g_0\} & \xrightarrow{\operatorname{tan}} & f_1 \frac{d_{/\mathbb{Q}} g_0}{g_0} \\ & & & \\ & & & \\ & & & \\ & & & \\ 1 + \varepsilon f_1, g_0\}^*(N, \bigtriangledown) & \xrightarrow{\operatorname{tan}} & f_1 \frac{d_{/\mathbb{C}} g_0}{g_0}, \end{array}$$

where the up tan map is well known and the down tan map is the formula (2.12) on page 14 in [1].

In this sense, we consider the map \mathbb{R}' : $H^0(\Omega^1_{X/\mathbb{O}}) \to H^1(X,\mathbb{C})$ as the infinitesimal form of the regulator map

R: $H^0(K_2(O_X)) \to H^1(X, \mathbb{C}^*)$ and compute the kernel of R'. Since $H^1(X, \mathbb{C})$ has Hodge decomposition $H^1(X, \mathbb{C}) \cong H^0(\Omega^1_{X/\mathbb{C}}) \oplus H^1(O_X)$ and the map R': $H^0(\Omega^1_{X/\mathbb{Q}}) \to H^1(X, \mathbb{C})$ naturally maps $d_{\mathbb{C}}f$ to $d_{\mathbb{C}}f$, so \mathbb{R}' is the composition $H^0(\Omega^1_{X/\mathbb{C}}) \to H^0(\Omega^1_{X/\mathbb{C}}) \hookrightarrow H^1(X,\mathbb{C})$. Hence $\operatorname{Ker}(\mathbb{R}') = \operatorname{Ker}\{H^0(\Omega^1_{X/\mathbb{C}}) \to H^0(\Omega^1_{X/\mathbb{C}}) \to H^0(\Omega^1_{X/\mathbb{C}}) \to H^0(\Omega^1_{X/\mathbb{C}}) \to H^0(\Omega^1_{X/\mathbb{C}}) \to H^0(\Omega^1_{X/\mathbb{C}}) \to H^0(\Omega^1_{X/\mathbb{C}})$. $H^0(\Omega^1_{X/\mathbb{C}})\}.$

Theorem 2.4. Ker(R') = $\Omega^1_{\mathbb{C}/\mathbb{O}}$.

{

Proof. There is a natural short exact sequence of sheaves

$$0 \to \Omega^1_{\mathbb{C}/\mathbb{Q}} \otimes_{\mathbb{C}} 0_X \to \Omega^1_{X/\mathbb{Q}} \to \Omega^1_{X/\mathbb{C}} \to 0.$$

The associated long exact sequence is of the form

$$0 \to H^0(\Omega^1_{\mathbb{C}/\mathbb{Q}} \otimes_{\mathbb{C}} 0_X) \to H^0(\Omega^1_{X/\mathbb{Q}}) \to H^0(\Omega^1_{X/\mathbb{C}}) \to H^1(\Omega^1_{\mathbb{C}/\mathbb{Q}} \otimes_{\mathbb{C}} 0_X) \to \cdots.$$

So the kernel of $H^0(\Omega^1_{X/\mathbb{O}}) \to H^0(\Omega^1_{X/\mathbb{C}})$ can be identified with $H^0(\Omega^1_{\mathbb{C}/\mathbb{O}} \otimes_{\mathbb{C}} O_X) \cong H^0(O_X) \otimes \Omega^1_{\mathbb{C}/\mathbb{O}} \cong \mathbb{C} \otimes \mathbb{C} \otimes$ $\Omega^1_{\mathbb{C}/\mathbb{O}}$. \Box

Since the tangent space to $K_2(\mathbb{C})$ is $\Omega^1_{\mathbb{C}/\mathbb{O}}$, this theorem suggests hat Question 1.1 seems reasonable at the infinitesimal level.

Acknowledgements

The author is very grateful to Phillip Griffiths, James Lewis, and Kefeng Liu for discussions, and to Spencer Bloch and Matt Kerr for comments on a previous version. He also thanks his colleagues Eduard Looijenga and Thomas Farrell for explaining questions in [1].

Many thanks are addressed to the anonymous referee(s) for careful reading and professional suggestions that improved this note a lot.

References

- [2] M. Green, Infinitesimal methods in Hodge theory, in: Algebraic Cycles and Hodge Theory, Torino, 1993, in: Lect. Notes Math., vol. 1594, Springer, Berlin, 1994, pp. 1-92.
- [3] M. Green, P. Griffiths, The regulator map for a general curve, in: Symposium in Honor of C.H. Clemens, Salt Lake City, UT, 2000, in: Contemp. Math., vol. 312, Amer. Math. Soc., Providence, RI, 2002, pp. 117-127.

^[1] S. Bloch, The dilogarithm and extensions of Lie algebras, in: Algebraic K-theory, Evanston 1980, Proc. Conf., Northwestern Univ., Evanston, Ill., 1980, in: Lect. Notes Math., vol. 854, Springer, Berlin-New York, 1981, pp. 1-23.

- [4] M. Green, P. Griffiths, On the Tangent Space to the Space of Algebraic Cycles on a Smooth Algebraic Variety, Ann. Math. Stud., vol. 157, Princeton University Press, Princeton, NJ, USA, 2005, vi+200 pp. (ISBN: 0-681-12044-7).
- [5] R. Hain, Classical polylogarithms, in: Motives, Part 2, Seattle, WA, USA, 1991, in: Proc. Symp. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, USA, 1994, pp. 3–42.
- [6] M. Kerr, An elementary proof of Suslin reciprocity, Can. Math. Bull. 48 (2) (2005) 221–236.