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We give a sufficient condition, namely “Buzzard irregularity”, for there to exist a cuspidal 
eigenform which does not have integral p-adic slope.
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r é s u m é

On donne une condition suffisante, à savoir « irrégularité au sens de Buzzard », pour qu’il 
existe une forme parabolique propre de pente p-adique non entière.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Statement of result

Let p be a prime number. If k and M are integers then we write Sk(�0(M)) for the space of weight k cusp forms of level 
�0(M). The p-th Hecke operator acting on Sk(�0(M)) is written T p if p � M and U p otherwise.

For T = T p or U p , we define the slopes of T to be the slopes of p-adic Newton polygon of the inverse characteristic 
polynomial det(1 − T X). This is the same as the list of the p-adic valuations of the non-zero eigenvalues of T , counted with 
algebraic multiplicity.

To state our theorem we need a definition due to Buzzard [4].

Definition 1.1. Let N ≥ 1 be an integer with p � N .

(a) An odd prime p is �0(N)-regular if the slopes of T p acting on Sk(�0(N)) are all zero for 2 ≤ k ≤ p+3
2 .

(b) The prime p = 2 is �0(N)-regular if the slopes of T2 acting on S2(�0(N)) are all zero and the slopes of T2 acting on 
S4(�0(N)) are all either zero or one.

This definition first appeared in [4] where Buzzard gives an elementary algorithm, depending on p and N , which on 
input k will output a list of integers. He conjectures that if p is �0(N)-regular then this list is exactly the list of slopes of 
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T p acting on Sk(�0(N)). The authors of the present work also have made a separate conjecture ([3]) which predicts the 
U p-slopes of all p-adic modular forms of tame level �0(N) still assuming that p is �0(N)-regular. The two conjectures are 
consistent with each other experimentally, but have not yet been shown to be consistent in general.

Buzzard’s conjecture clearly implies that every slope is an integer. (This implication is not at all clear from the conjectures 
in [3].) It is worth asking if the integrality of slopes is characteristic of �0(N)-regularity. We show that it is. The proof 
occupies the second section.

Theorem 1.2. If p is not �0(N)-regular then there exists an even integer k such that U p acting on Sk(�0(Np)) has a slope strictly 
between zero and one.

Coleman theory (which is used below) shows that no harm comes from assuming the witnessing weight in Theorem 1.2
is arbitrarily large. One could try to determine the minimum weight k which confirms Theorem 1.2. An effective bound 
should follow from [10], but it is likely suboptimal. Numerical data suggest that the optimal k, for p odd, is either k = j or 
k = j + (p − 1) where 2 ≤ j ≤ p+3

2 is a low weight with a non-zero T p -slope.

The theorem is also true for if we replace U p and Sk(�0(Np)) by T p and Sk(�0(N)). Indeed, if ap is an eigenvalue for T p

acting on Sk(�0(N)) then the polynomial X2 −ap X + pk−1 divides the characteristic polynomial of U p acting on Sk(�0(Np)); 
the eigenvalues λ for U p which are not roots of such polynomials are known to satisfy λ2 = pk−2. So, if k > 2 (which is 
sufficient by the previous paragraph) the slopes of U p between zero and one are the same as the slopes of T p between zero 
and one.

For p odd, the converse to Theorem 1.2 is also true. Namely, if there exists an even integer k such that Sk(�0(N)) has 
a slope strictly between zero and one then p is not �0(N)-regular. See [5, Theorem 1.6]. Its proof uses the p-adic local 
Langlands correspondence for GL2(Qp) and is thus significantly deeper than the present work. Combining the two results, 
the following two conditions are equivalent for an odd prime p:

(a) The prime p is not �0(N)-regular.
(b) There exists an even integer k such that T p acting on Sk(�0(N)) has a slope strictly between zero and one.

There is a natural third condition, implied by (b):

(c) There exists an even integer k such that T p acting on Sk(�0(N)) has a non-integral slope.

It is conjectured (see [6]) that all three conditions are equivalent, but this seems difficult.

2. The proof

We fix algebraic closures Q ⊂ Qp and write v p(−) for the induced p-adic valuation on Q normalized so that v p(p) = 1. 
We also fix an embedding Q ⊂ C. We assume now that N ≥ 1 is an integer co-prime to p.

If η is a Dirichlet character of modulus p we write Sk(�1(Np), η) for the subspace of forms in Sk(�1(Np)) with character 
given by η (η promoted to a character of modulus Np). An eigenform f in particular means a normalized eigenform for the 
standard Hecke operators and the diamond operators. For such an f , its p-th Hecke eigenvalue is written ap( f ).

Corresponding to the choice of embeddings, each eigenform has an associated two-dimensional p-adic Galois representa-
tion ρ f : Gal(Q/Q) → GL2(Qp). Write ρ̄ f for its reduction modulo p and ρ̄ f ,p (resp. ρ f ,p) for the restriction of ρ̄ f (resp. ρ f ) 
to the decomposition group Gal(Qp/Qp) ⊂ Gal(Q/Q) induced from the embedding Q ⊂ Qp . Note that the construction of 
ρ̄ f requires the choice of a Galois-stable lattice, but that the semi-simplification of ρ̄ f is independent of this choice. In 
particular, whether or not ρ̄ f ,p is irreducible is also independent of the choice of a stable lattice.

Lemma 2.1. Let η be a Dirichlet character of conductor p and f an eigenform in S2(�1(Np), η). If v p(ap( f )) equals 0 or 1, then ρ f ,p
is reducible.

Proof. If v p(ap( f )) = 0 then it is well known that ρ f ,p is reducible. For example, see [11, Lemma 2.1.5] and the references 
therein. (This is also commonly attributed to a letter from Deligne to Serre in the 1970s which has never been made public.)

Now suppose that v p(ap( f )) = 1. Then, there is an eigenform f ′ in S2(�1(Np), η−1) with v p(ap( f ′)) = 0 and ρ f iso-
morphic to ρ f ′ up to a twist. (The form f ′ is sometimes called the Atkin–Lehner involute of f ; see [2, Proposition 3.8].) 
Since the first argument applies to f ′ , we deduce that ρ f ′,p and its twist ρ f ,p are both reducible. �
Proposition 2.2. If p is odd and not �0(N)-regular then there exists an even Dirichlet character η of modulus p such that U p acting 
on S2(�1(Np), η) has a slope strictly between zero and one.

Proof. Choose an integer 2 ≤ k ≤ p+3
2 and an eigenform f ∈ Sk(�0(N)) with v p(ap( f )) > 0. By [9, Theorem 2.6], ρ̄ f ,p is 

irreducible.
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Suppose first that f has weight 2. Then, the polynomial X2 − ap( f )X + p divides the characteristic polynomial of U p

acting on Sk(�0(Np)) (as in the remarks after Theorem 1.2). The theory of the Newton polygon implies that the roots of this 
polynomial have valuation strictly between zero and one, so we can choose η to be the trivial character and we are done 
in this case.

Now assume that f has weight at least 4 and thus also p ≥ 5. By [1, Theorem 3.5(a)], which assumes p ≥ 5, there exists 
an even Dirichlet character η necessarily of conductor p (because f has weight at most p+3

2 < p + 1) and an eigenform 
g ∈ S2(�1(Np), η) such that ρ̄g and ρ̄ f have isomorphic semi-simplifications. Since ρ̄ f ,p is irreducible, ρ̄g,p is as well. Thus, 
ρg,p is irreducible, and Lemma 2.1 implies that v p(ap(g)) is strictly between zero and one. �

Proposition 2.2 is an analog of Theorem 1.2 for weight two forms with character, and its proof confirms our theorem 
when there is a weight 2 form of level �0(N) with positive T p -slope. To prove Theorem 1.2 in general, we use the theory 
of p-adic modular forms. We refer to [8] for the facts in the next two paragraphs.

If κ : Z×
p → Q×

p is a continuous character (a “p-adic weight”) then we write S†
κ (N) for the space of overconvergent 

p-adic cusp forms of weight κ and tame level �0(N) equipped with its U p-operator. If k is an integer and κ(z) = zk then 
we write this space as S†

k(N); it contains Sk(�0(Np)) as a U p-compatible subspace. Likewise, if κ(z) = zkη(z) where η is a 
non-trivial finite order character of Z×

p then S†
zkη

(N) contains Sk(�1(Np fη ), η) as a U p -compatible subspace (where p fη is 
the conductor of η).

By Coleman theory we mean the following: suppose that κ is a p-adic weight and h is the p-adic valuation of a non-zero 
eigenvalue for U p appearing in S†

κ (N). Then, for any sequence of p-adic weights (κn)n≥0 such that κn and κ agree on the 
torsion subgroup of Z×

p , and κn(1 + 2p) → κ(1 + 2p) as n → ∞, we have that h is also a U p -slope in S†
κn (N) for n 	 0.

We can now give the proof of the theorem.

Proof of Theorem 1.2. Assume first that p is odd. By Proposition 2.2 there exists an even Dirichlet character η of modulus 
p and rational number 0 < h < 1 which appears as a U p -slope in S2(�1(Np), η). Thus, the slope h appears as a U p -slope 
in S†

z2η
(N). Choose j ≥ 0 even so that η|F×

p
is of the form z 
→ z j . Then, for n 	 0 and kn = 2 + j + (p − 1)pn , the slope h

is a U p -slope in S†
kn

(N) by Coleman theory described above. For such k we have h < 1 < k − 1 and so h is a U p-slope in 
Sk(�0(Np)) by [7, Theorem 6.1].

The proof for p = 2 is similar to the argument in Proposition 2.2 when k = 2. If either S2(�0(N)) or S4(�0(N)) has a 
non-integral slope we are done. If not, then either S2(�0(N)) contains a slope one form, or S4(�0(N)) contains a form of 
slope two or three. In either case, the corresponding 2-adic refinements will have fractional slope. �
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