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Let M be the Hardy–Littlewood maximal function and b be a locally integrable function. 
Denote by Mb and [b, M] the maximal commutator and the (nonlinear) commutator of M
with b. In this paper, the author considers the boundedness of Mb and [b, M] on Lebesgue 
spaces and Morrey spaces when b belongs to the Lipschitz space, by which some new 
characterizations of the Lipschitz spaces are given.
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r é s u m é

Soit M l’opérateur maximal de Hardy–Littlewood et b une fonction localement intégrable. 
Notons Mb et [b, M] le commutateur maximal et le commutateur (non linéaire) de M et b. 
Dans cette Note, l’auteur étudie la finitude de Mb et [b, M] sur les espaces de Lebesgue 
et les espaces de Morrey lorsque b appartient à l’espace de Lipschitz. Cela conduit à de 
nouvelles caractérisations de l’espace de Lipschitz.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and results

Let T be the classical singular integral operator, the commutator [b, T ] generated by T and a suitable function b is given 
by

[b, T ] f = bT ( f ) − T (bf ). (1.1)

A well-known result due to Coifman, Rochberg and Weiss [6] (see also [13]) states that b ∈ BM O (Rn) if and only if the 
commutator [b, T ] is bounded on Lp(Rn) for 1 < p < ∞. In 1978, Janson [13] gave some characterizations of the Lipschitz 
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space �̇β(Rn) (see Definition 1.1 below) via commutator [b, T ] and proved that b ∈ �̇β(Rn)(0 < β < 1) if and only if [b, T ]
is bounded from Lp(Rn) to Lq(Rn) where 1 < p < n/β and 1/p − 1/q = β/n (see also Paluszyński [18]).

For a locally integrable function f , the Hardy–Littlewood maximal function M is given by

M( f )(x) = sup
Q �x

1

|Q |
∫
Q

| f (y)|dy,

the maximal commutator of M with a locally integrable function b is defined by

Mb( f )(x) = sup
Q �x

1

|Q |
∫
Q

|b(x) − b(y)|| f (y)|dy,

where the supremum is taken over all cubes Q ⊂ R
n containing x.

The mapping properties of the maximal commutator Mb have been studied intensively by many authors. See [3,9,11,12,
20,21] and [25] for instance. The following result is proved by García-Cuerva et al. [9]. See also [20] and [21].

Theorem A ([9]). Let b be a locally integrable function and 1 < p < ∞. Then the maximal commutator Mb is bounded from Lp(Rn)

to Lp(Rn) if and only if b ∈ BM O (Rn).

The first part of this paper is to study the boundedness of Mb when the symbol b belongs to a Lipschitz space. Some 
characterizations of the Lipschitz space via such commutator are given.

Definition 1.1. Let 0 < β < 1, we say a function b belongs to the Lipschitz space �̇β(Rn) if there exists a constant C such 
that for all x, y ∈ R

n ,

|b(x) − b(y)| ≤ C |x − y|β.

The smallest such constant C is called the �̇β norm of b and is denoted by ‖b‖�̇β
.

Our first result can be stated as follows.

Theorem 1.1. Let b be a locally integrable function and 0 < β < 1, then the following statements are equivalent:
(1) b ∈ �̇β(Rn);
(2) Mb is bounded from Lp(Rn) to Lq(Rn) for all p, q with 1 < p < n/β and 1/q = 1/p − β/n;
(3) Mb is bounded from Lp(Rn) to Lq(Rn) for some p, q with 1 < p < n/β and 1/q = 1/p − β/n;
(4) Mb satisfies the weak-type (1, n/(n − β)) estimates, namely, there exists a positive constant C such that for all λ > 0,

∣∣{x ∈R
n : Mb( f )(x) > λ}∣∣ ≤ C

(
λ−1‖ f ‖L1(Rn)

)n/(n−β); (1.2)

(5) Mb is bounded from Ln/β(Rn) to L∞(Rn).

Morrey spaces were originally introduced by Morrey in [17] to study the local behavior of solutions to second-order 
elliptic partial differential equations. Many classical operators of harmonic analysis were studied in Morrey-type spaces 
during the last decades. We refer the readers to Adams [2] and references therein.

Definition 1.2. Let 1 ≤ p < ∞ and 0 ≤ λ ≤ n. The classical Morrey space is defined by

Lp,λ(Rn) = {
f ∈ Lp

loc(R
n) : ‖ f ‖L p,λ < ∞}

,

where

‖ f ‖L p,λ := sup
Q

(
1

|Q |λ/n

∫
Q

| f (x)|pdx

)1/p

.

It is well known that if 1 ≤ p < ∞ then Lp,0(Rn) = Lp(Rn) and Lp,n(Rn) = L∞(Rn).

Theorem 1.2. Let b be a locally integrable function and 0 < β < 1. Suppose that 1 < p < n/β , 0 < λ < n − βp and 1/q = 1/p −
β/(n − λ). Then b ∈ �̇β(Rn) if and only if Mb is bounded from Lp,λ(Rn) to Lq,λ(Rn).

Theorem 1.3. Let b be a locally integrable function and 0 < β < 1. Suppose that 1 < p < n/β , 0 < λ < n −βp, 1/q = 1/p −β/n and 
λ/p = μ/q. Then b ∈ �̇β(Rn) if and only if Mb is bounded from Lp,λ(Rn) to Lq,μ(Rn).
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On the other hand, similar to (1.1), we can define the (nonlinear) commutator of the Hardy–Littlewood maximal function 
M with a locally integrable function b by

[b, M]( f )(x) = b(x)M( f )(x) − M(bf )(x).

Using real interpolation techniques, Milman and Schonbek [16] established a commutator result. As an application, they 
obtained the Lp -boundedness of [b, M] when b ∈ BM O (Rn) and b ≥ 0. This operator can be used in studying the product of 
a function in H1 and a function in BM O (see [5] for instance). In 2000, Bastero, Milman and Ruiz [4] studied the necessary 
and sufficient conditions for the boundedness of [b, M] on Lp spaces when 1 < p < ∞. Zhang and Wu obtained similar 
results for the fractional maximal function in [24] and extended the mentioned results to variable exponent Lebesgue 
spaces in [25] and [26]. Recently, Agcayazi et al. [3] gave the end-point estimates for the commutator [b, M]. Zhang [23]
extended these results to the multilinear setting.

We would like to remark that operators Mb and [b, M] essentially differ from each other. For example, Mb is positive 
and sublinear, but [b, M] is neither positive nor sublinear.

The second part of this paper aims to study the mapping properties of the (nonlinear) commutator [b, M] when b
belongs to some Lipschitz space. To state our results, we recall the definition of the maximal operator with respect to a 
cube. For a fixed cube Q 0, the Hardy–Littlewood maximal function with respect to Q 0 of a function f is given by

M Q 0( f )(x) = sup
Q 0⊇Q �x

1

|Q |
∫
Q

| f (y)|dy,

where the supremum is taken over all the cubes Q with Q ⊆ Q 0 and Q � x.

Theorem 1.4. Let b be a locally integrable function and 0 < β < 1. Suppose that 1 < p < n/β and 1/q = 1/p − β/n. Then the 
following statements are equivalent:

(1) b ∈ �̇β(Rn) and b ≥ 0;
(2) [b, M] is bounded from Lp(Rn) to Lq(Rn);
(3) there exists a constant C > 0 such that

sup
Q

1

|Q |β/n

(
1

|Q |
∫
Q

|b(x) − M Q (b)(x)|qdx

)1/q

≤ C . (1.3)

Theorem 1.5. Let b ≥ 0 be a locally integrable function, 0 < β < 1 and b ∈ �̇β(Rn). Then there is a positive constant C such that, for 
all λ > 0,

∣∣{x ∈R
n : |[b, M]( f )(x)| > λ}∣∣ ≤ C

(
λ−1‖ f ‖L1(Rn)

)n/(n−β)
.

Theorem 1.6. Let b be a locally integrable function and 0 < β < 1. Suppose that 1 < p < n/β , 0 < λ < n − βp and 1/q = 1/p −
β/(n − λ). Then the following statements are equivalent:

(1) b ∈ �̇β(Rn) and b ≥ 0.
(2) [b, M] is bounded from Lp,λ(Rn) to Lq,λ(Rn).

Theorem 1.7. Let b be a locally integrable function and 0 < β < 1. Suppose that 1 < p < n/β , 0 < λ < n − βp, 1/q = 1/p − β/n and 
λ/p = μ/q. Then the following statements are equivalent:

(1) b ∈ �̇β(Rn) and b ≥ 0,
(2) [b, M] is bounded from Lp,λ(Rn) to Lq,μ(Rn).

This paper is organized as follows. In the next section, we recall some basic definitions and known results. In Section 3, 
we will prove Theorems 1.1–1.3. Section 4 is devoted to proving Theorems 1.4–1.7.

2. Preliminaries and lemmas

For a measurable set E , we denote by |E| the Lebesgue measure and by χE the characteristic function of E . For p ∈
[1, ∞], we denote by p′ the conjugate index of p, namely, p′ = p/(p − 1). For a locally integrable function f and a cube Q , 
we denote by f Q = ( f )Q = 1

|Q |
∫

Q f (x) dx.

To prove the theorems, we need some known results. It is known that the Lipschitz space �̇β (Rn) coincides with some 
Morrey–Companato space (see [14] for example) and can be characterized by mean oscillation as the following lemma, 
which is due to DeVore and Sharpley [7] and Janson, Taibleson and Weiss [14] (see also Paluszyński [18]).
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Lemma 2.1. Let 0 < β < 1 and 1 ≤ q < ∞. Define

�̇β,q(R
n) :=

{
f ∈ L1

loc(R
n) : ‖ f ‖�̇β,q

= sup
Q

1

|Q |β/n

(
1

|Q |
∫
Q

| f (x) − f Q |qdx

)1/q

< ∞
}
.

Then, for all 0 < β < 1 and 1 ≤ q < ∞, �̇β(Rn) = �̇β,q(R
n) with equivalent norms.

Let 0 < α < n and f be a locally integrable function, the fractional maximal function of f is given by

Mα( f )(x) = sup
Q

1

|Q |1−α/n

∫
Q

| f (y)|dy

where the supremum is taken over all cubes Q ⊂ R
n containing x.

The following strong and weak-type boundednesses of Mα are well known, see [10] and [8].

Lemma 2.2. Let 0 < α < n, 1 ≤ p ≤ n/α and 1/q = 1/p − α/n.
(1) If 1 < p < n/α then there exists a positive constant C(n, α, p) such that

‖Mα( f )‖Lq(Rn) ≤ C(n,α, p)‖ f ‖L p(Rn).

(2) If p = n/α then there exists a positive constant C(n, α) such that

‖Mα( f )‖L∞(Rn) ≤ C(n,α)‖ f ‖Ln/α(Rn).

(3) If p = 1 then there exists a positive constant C(n, α) such that for all λ > 0

∣∣{x ∈R
n :Mα( f )(x) > λ

}∣∣ ≤ C(n,α)
(
λ−1‖ f ‖L1(Rn)

)n/(n−α)
.

Spanne (see [19]) and Adams [1] studied the boundedness of the fractional integral Iα in classical Morrey spaces. We 
note that the fractional maximal function enjoys the same boundedness as that of the fractional integral since the pointwise 
inequality Mα( f )(x) ≤ Iα(| f |)(x). These results can be summarized as follows (see also [22]).

Lemma 2.3. Let 0 < α < n, 1 < p < n/α and 0 < λ < n − αp.
(1) If 1/q = 1/p − α/(n − λ), then there is a constant C > 0 such that

‖Mα( f )‖Lq,λ(Rn) ≤ C‖ f ‖L p,λ(Rn) for every f ∈ Lp,λ(Rn).

(2) If 1/q = 1/p − α/n and λ/p = μ/q. Then there is a constant C > 0 such that

‖Mα( f )‖Lq,μ(Rn) ≤ C‖ f ‖L p,λ(Rn) for every f ∈ Lp,λ(Rn).

Lemma 2.4 ([15]). Let 1 ≤ p < ∞ and 0 < λ < n, then there is a constant C > 0 that depends only on n such that

‖χQ ‖L p,λ(Rn) ≤ C |Q | n−λ
np .

3. Proof of Theorems 1.1–1.3

Proof of Theorem 1.1. If b ∈ �̇β(Rn), then

Mb( f )(x) = sup
Q �x

1

|Q |
∫
Q

|b(x) − b(y)|| f (y)|dy

≤ C‖b‖�̇β
sup
Q �x

1

|Q |1−β/n

∫
Q

| f (y)|dy

= C‖b‖�̇β
Mβ( f )(x).

(3.1)

Obviously, (2), (3), (4) and (5) follow from Lemma 2.2, Lemma 2.3 and (3.1).
(3) =⇒ (1): Assume Mb is bounded from Lp(Rn) to Lq(Rn) for some p, q with 1 < p < n/β and 1/q = 1/p − β/n. For 

any cube Q ⊂ R
n , by Hölder’s inequality and noting that 1/p + 1/q′ = 1 + β/n, one gets
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1

|Q |1+β/n

∫
Q

|b(x) − bQ |dx ≤ 1

|Q |1+β/n

∫
Q

(
1

|Q |
∫
Q

|b(x) − b(y)|dy

)
dx

= 1

|Q |1+β/n

∫
Q

(
1

|Q |
∫
Q

|b(x) − b(y)|χQ (y)dy

)
dx

≤ 1

|Q |1+β/n

∫
Q

Mb(χQ )(x)dx

≤ 1

|Q |1+β/n

(∫
Q

[Mb(χQ )(x)]qdx

)1/q(∫
Q

χQ (x)dx

)1/q′

≤ C

|Q |1+β/n
‖Mb‖L p→Lq ‖χQ ‖L p(Rn)‖χQ ‖Lq′

(Rn)

≤ C‖Mb‖L p→Lq .

This together with Lemma 2.1 gives b ∈ �̇β(Rn).
(4) =⇒ (1): We assume (1.2) is true and will verify b ∈ �̇β(Rn). For any fixed cube Q 0 ⊂ R

n , since for any x ∈ Q 0,

|b(x) − bQ 0 | ≤
1

|Q 0|
∫
Q 0

|b(x) − b(y)|dy,

then, for all x ∈ Q 0,

Mb(χQ 0)(x) = sup
Q �x

1

|Q |
∫
Q

|b(x) − b(y)|χQ 0(y)dy

≥ 1

|Q 0|
∫
Q 0

|b(x) − b(y)|χQ 0(y)dy

= 1

|Q 0|
∫
Q 0

|b(x) − b(y)|dy

≥ |b(x) − bQ 0 |.
This together with (1.2) gives

∣∣{x ∈ Q 0 : |b(x) − bQ 0 | > λ
}∣∣ ≤ ∣∣{x ∈ Q 0 : Mb(χQ 0)(x) > λ

}∣∣
≤ C

(
λ−1‖χQ 0‖L1(Rn)

)n/(n−β)

= C
(
λ−1|Q 0|

)n/(n−β)
.

Let t > 0 be a constant to be determined later, then

∫
Q 0

|b(x) − bQ 0 |dx =
∞∫

0

∣∣{x ∈ Q 0 : |b(x) − bQ 0 | > λ
}∣∣dλ

=
t∫

0

∣∣{x ∈ Q 0 : |b(x) − bQ 0 | > λ
}∣∣dλ

+
∞∫

t

∣∣{x ∈ Q 0 : |b(x) − bQ 0 | > λ
}∣∣dλ

≤ t|Q 0| + C

∞∫ (
λ−1|Q 0|

)n/(n−β)
dλ
t
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≤ t|Q 0| + C |Q 0|n/(n−β)

∞∫
t

λ−n/(n−β)dλ

≤ C(n, β)
(
t|Q 0| + |Q 0|n/(n−β)t1−n/(n−β)

)
.

Set t = |Q 0|β/n in the above estimate, we have

∫
Q 0

|b(x) − bQ 0 |dx ≤ C |Q 0|1+β/n.

It follows from Lemma 2.1 that b ∈ �̇β(Rn) since Q 0 is an arbitrary cube in Rn .
(5) =⇒ (1): If Mb is bounded from Ln/β(Rn) to L∞(Rn), then for any cube Q ⊂ R

n ,

1

|Q |1+β/n

∫
Q

|b(x) − bQ |dx ≤ 1

|Q |1+β/n

∫
Q

(
1

|Q |
∫
Q

|b(x) − b(y)|χQ (y)dy

)
dx

≤ 1

|Q |1+β/n

∫
Q

Mb(χQ )(x)dx

≤ 1

|Q |β/n
‖Mb(χQ )‖L∞(Rn)

≤ C

|Q |β/n
‖Mb‖Ln/β→L∞‖χQ ‖Ln/β (Rn)

≤ C‖Mb‖Ln/β→L∞ .

This together with Lemma 2.1 gives b ∈ �̇β(Rn).
The proof of Theorem 1.1 is completed since (2) =⇒ (1) follows from (3) =⇒ (1). �

Proof of Theorem 1.2. Assume b ∈ �̇β(Rn). By (3.1) and Lemma 2.3 (1), we have

‖Mb( f )‖Lq,λ ≤ ‖b‖�̇β
‖Mβ( f )‖Lq,λ ≤ C‖b‖�̇β

‖ f ‖L p,λ .

Conversely, if Mb is bounded from Lp,λ(Rn) to Lq,λ(Rn), then for any cube Q ⊂R
n ,

1

|Q |β/n

(
1

|Q |
∫
Q

|b(x) − bQ |qdx

)1/q

≤ 1

|Q |β/n

(
1

|Q |
∫
Q

[
1

|Q |
∫
Q

|b(x) − b(y)|χQ (y)dy

]q

dx

)1/q

≤ 1

|Q |β/n

(
1

|Q |
∫
Q

[Mb(χQ )(x)]qdx

)1/q

= 1

|Q |β/n

( |Q |λ/n

|Q |
)1/q( 1

|Q |λ/n

∫
Q

[Mb(χQ )(x)]qdx

)1/q

≤ |Q |−β/n−1/q+λ/(nq)‖Mb(χQ )‖Lq,λ(Rn)

≤ C |Q |−β/n−1/q+λ/(nq)‖Mb‖L p,λ→Lq,λ‖χQ ‖L p,λ(Rn)

≤ C‖Mb‖L p,λ→Lq,λ ,

where in the last step we have used 1/q = 1/p − β/(n − λ) and Lemma 2.4.
It follows from Lemma 2.1 that b ∈ �̇β(Rn). This completes the proof. �

Proof of Theorem 1.3. By a similar proof to the one of Theorem 1.2, we can obtain Theorem 1.3. �
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4. Proof of Theorems 1.4–1.7

Proof of Theorem 1.4. (1) =⇒ (2): For any fixed x ∈ R
n such that M( f )(x) < ∞, since b ≥ 0 then

|[b, M]( f )(x)| = |b(x)M( f )(x) − M(bf )(x)|
=

∣∣∣∣ sup
Q �x

1

|Q |
∫
Q

b(x)| f (y)|dy − sup
Q �x

1

|Q |
∫
Q

b(y)| f (y)|dy

∣∣∣∣

≤ sup
Q �x

1

|Q |
∫
Q

|b(x) − b(y)|| f (y)|dy

= Mb( f )(x).

(4.1)

It follows from Theorem 1.1 that [b, M] is bounded from Lp(Rn) to Lq(Rn) since b ∈ �̇β(Rn).
(2) =⇒ (3): For any fixed cube Q ⊂ R

n and all x ∈ Q , we have (see the proof of Proposition 4.1 in [4], see also (2.4) in 
[24])

M(χQ )(x) = χQ (x) and M(bχQ )(x) = M Q (b)(x).

Then,

1

|Q |β/n

(
1

|Q |
∫
Q

∣∣b(x) − M Q (b)(x)
∣∣q

dx

)1/q

= 1

|Q |β/n

(
1

|Q |
∫
Q

∣∣b(x)M(χQ )(x) − M Q (bχQ )(x)
∣∣q

dx

)1/q

= 1

|Q |β/n

(
1

|Q |
∫
Q

∣∣[b, M](χQ )(x)
∣∣q

dx

)1/q

≤ 1

|Q |β/n+1/q

∥∥[b, M](χQ )
∥∥

Lq(Rn)

≤ C

|Q |β/n+1/q

∥∥χQ
∥∥

L p(Rn)

≤ C,

(4.2)

which implies (3) since the cube Q ⊂ R
n is arbitrary.

(3) =⇒ (1): To prove b ∈ �̇β(Rn), by Lemma 2.1, it suffices to verify that there is a constant C > 0 such that for all 
cubes Q ,

1

|Q |1+β/n

∫
Q

|b(x) − bQ |dx ≤ C . (4.3)

For any fixed cube Q , let E = {x ∈ Q : b(x) ≤ bQ } and F = {x ∈ Q : b(x) > bQ }. The following equality is trivially true (see 
[4] page 3331):

∫
E

|b(x) − bQ |dx =
∫
F

|b(x) − bQ |dx.

Since for any x ∈ E we have b(x) ≤ bQ ≤ M Q (b)(x), then for any x ∈ E ,

|b(x) − bQ | ≤ |b(x) − M Q (b)(x)|.
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Thus,

1

|Q |1+β/n

∫
Q

|b(x) − bQ |dx = 1

|Q |1+β/n

∫
E∪F

|b(x) − bQ |dx

= 2

|Q |1+β/n

∫
E

|b(x) − bQ |dx

≤ 2

|Q |1+β/n

∫
E

|b(x) − M Q (b)(x)|dx

≤ 2

|Q |1+β/n

∫
Q

|b(x) − M Q (b)(x)|dx.

(4.4)

On the other hand, it follows from Hölder’s inequality and (1.3) that

1

|Q |1+β/n

∫
Q

∣∣b(x) − M Q (b)(x)
∣∣dx ≤ 1

|Q |1+β/n

(∫
Q

∣∣b(x) − M Q (b)(x)
∣∣q

dx

)1/q

|Q |1/q′

≤ 1

|Q |β/n

(
1

|Q |
∫
Q

∣∣b(x) − M Q (b)(x)
∣∣q

dx

)1/q

≤ C .

This together with (4.4) gives (4.3), and so we achieve b ∈ �̇β(Rn).
In order to prove b ≥ 0, it suffices to show b− = 0, where b− = − min{b, 0}. Let b+ = |b| − b− , then b = b+ − b− . For any 

fixed cube Q , observe that

0 ≤ b+(x) ≤ |b(x)| ≤ M Q (b)(x)

for x ∈ Q and therefore we have that, for x ∈ Q ,

0 ≤ b−(x) ≤ M Q (b)(x) − b+(x) + b−(x) = M Q (b)(x) − b(x).

Then, it follows from (1.3) that, for any cube Q ,

1

|Q |
∫
Q

b−(x)dx ≤ 1

|Q |
∫
Q

|M Q (b)(x) − b(x)|

≤
(

1

|Q |
∫
Q

|b(x) − M Q (b)(x)|qdx

)1/q

= |Q |β/n
{

1

|Q |β/n

(
1

|Q |
∫
Q

|b(x) − M Q (b)(x)|qdx

)1/q}

≤ C |Q |β/n.

Thus, b− = 0 follows from Lebesgue’s differentiation theorem.
The proof of Theorem 1.4 is completed. �

Proof of Theorem 1.5. Obviously, Theorem 1.5 follows from (4.1) and Theorem 1.1. �
Proof of Theorem 1.6. (1) =⇒ (2): Assume b ≥ 0 and b ∈ �̇β(Rn), then by (4.1) and Theorem 1.2 we see that [b, M] is 
bounded from Lp,λ(Rn) to Lq,λ(Rn).

(2) =⇒ (1): Assume that [b, M] is bounded from Lp,λ(Rn) to Lq,λ(Rn). Similarly to (4.2), we have, for any cube Q ⊂R
n ,

1

|Q |β/n

(
1

|Q |
∫
Q

∣∣b(x) − M Q (b)(x)
∣∣q

dx

)1/q

= 1

|Q |β/n

(
1

|Q |
∫ ∣∣[b, M](χQ )(x)

∣∣q
dx

)1/q
Q



344 P. Zhang / C. R. Acad. Sci. Paris, Ser. I 355 (2017) 336–344
≤ |Q |λ/(nq)

|Q |β/n+1/q

∥∥[b, M](χQ )
∥∥

Lq,λ(Rn)

≤ C |Q |λ/(nq)

|Q |β/n+1/q

∥∥χQ
∥∥

L p,λ(Rn)

≤ C,

where in the last step we have used 1/q = 1/p − β/(n − λ) and Lemma 2.4.
This shows by Theorem 1.4 that b ∈ �̇β(Rn) and b ≥ 0. �

Proof of Theorem 1.7. By the same way of the proof of Theorem 1.6, Theorem 1.7 can be proven. We omit the details. �
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