

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Complex analysis/Partial differential equations

The complex Monge–Ampère equation on weakly pseudoconvex domains $\stackrel{\circ}{\approx}$

L'équation de Monge–Ampère complexe sur les domaines faiblement pseudo-convexes

Luca Baracco^a, Tran Vu Khanh^b, Stefano Pinton^a

^a Dipartimento di Matematica, Università di Padova, via Trieste 63, 35121 Padova, Italy
 ^b School of Mathematics and Applied Statistics, University of Wollongong, NSW, 2522, Australia

ARTICLE INFO

Article history: Received 29 July 2016 Accepted after revision 22 February 2017 Available online 11 March 2017

Presented by Jean-Pierre Demailly

ABSTRACT

We show here a "weak" Hölder regularity up to the boundary of the solution to the Dirichlet problem for the complex Monge–Ampère equation with data in the L^p space and Ω satisfying an *f*-property. The *f*-property is a potential-theoretical condition that holds for all pseudoconvex domains of finite type and many examples of infinite-type ones.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Nous montrons ici une régularité de Hölder «faible» jusqu'au bord d'une solution du problème de Dirichlet pour l'équation de Monge–Ampère complexe, de donnée dans l'espace L^p , sur un domaine satisfaisant une *f*-propriété. Cette *f*-propriété est une condition de théorie du potentiel qui est satisfaite par tous les domaines pseudo-convexes de type fini et de nombreux exemples de type infini.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

For a C^2 , bounded, pseudoconvex domain $\Omega \subset \mathbb{C}^n$, the Dirichlet problem for the Monge–Ampère equation consists of

 $\begin{cases} u \in PSH(\Omega) \cap L^{\infty}_{loc}(\Omega), \\ (dd^{c}u)^{n} = \psi \, dV & \text{in } \Omega, \\ u = \varphi & \text{on } b\Omega. \end{cases}$

(1.1)

 * The research of T.V. Khanh was supported by the Australian Research Council DE160100173.

E-mail addresses: baracco@math.unipd.it (L. Baracco), tkhanh@uow.edu.au (T.V. Khanh), pinton@math.unipd.it (S. Pinton).

http://dx.doi.org/10.1016/j.crma.2017.02.004

¹⁶³¹⁻⁰⁷³X/© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

A great deal of work has been done for the case where Ω is strongly pseudoconvex. Within this domain, we can divide the literature into three kinds of data ψ .

- The Hölder data: Bedford-Taylor prove in [2] that $u \in C^{\frac{\alpha}{2}}(\overline{\Omega})$ if $\varphi \in C^{\alpha}(b\Omega)$, $\psi^{\frac{1}{n}} \in C^{\frac{\alpha}{2}}(\overline{\Omega})$ for $0 < \alpha \leq 2$.
- The smooth data: Caffarelli, Kohn and Nirenberg prove in [4] that $u \in C^{\infty}(\bar{\Omega})$, for $\varphi \in C^{\infty}(b\Omega)$ and $\bar{\psi} \in C^{\infty}(\bar{\Omega})$, in case $\psi > 0$ in $\overline{\Omega}$ and $b\Omega$ is smooth.
- <u>The L^p data</u>: Guedi, Kolodziej and Zeriahi prove in [6] that if $\psi \in L^p(\Omega)$ with p > 1 and $\varphi \in C^{1,1}(b\Omega)$ then $u \in C^{\gamma}(\overline{\Omega})$ for any $\gamma < \gamma_p := \frac{2}{qn+1}$ where $\frac{1}{q} + \frac{1}{p} = 1$.

When Ω is no longer strongly pseudoconvex but has a certain "finite type", there are some known results for this problem due to Blocki [3], Coman [5], and Li [11]. Recently, Ha and the second author gave a general related result to a Hölder data under the hypothesis that Ω satisfies an f-property (see Definition 2.1 below). The f-property is a consequence of the geometric "type" of the boundary. All pseudoconvex domains of finite type satisfy the f-property as well as many classes of domains of infinite type (see [9,7,8] for discussion on the *f*-property). Using the *f*-property, a "weak" Hölder regularity for the solution to the Dirichlet problem of the complex Monge-Ampère equation is obtained in [9]. Coming back to the case of Ω of finite type, in a recent paper with Zampieri [1], we prove the Hölder regularity for $\psi \in L^p$, with p > 1. The purpose of the present paper is to generalize the result in [1] to a pseudoconvex domain satisfying an f-property. For this purpose, we recall the definition of a weak Hölder space in [9,7]. Let f be an increasing function such that $\lim_{t \to +\infty} f(t) = +\infty$, $f(t) \leq t$.

For a subset A of \mathbb{C}^n , define the *f*-Hölder space on A by

$$\Lambda^{f}(A) = \{ u : \|u\|_{L^{\infty}(A)} + \sup_{z, w \in A, z \neq w} f(|z - w|^{-1}) \cdot |u(z) - u(w)| < \infty \}$$

and set

$$\|u\|_{\Lambda^{f}(A)} = \|u\|_{L^{\infty}(A)} + \sup_{z, w \in A, z \neq w} f(|z - w|^{-1}) \cdot |u(z) - u(w)|$$

Note that the notion of the *f*-Hölder space includes the standard Hölder space Λ_{α} by taking $f(t) = t^{\alpha}$ (so that $f(|h|^{-1}) =$ $|h|^{-\alpha}$) with $0 < \alpha \le 1$. Here is our result

Theorem 1.1. Let $\Omega \subset \mathbb{C}^n$ be a bounded, pseudoconvex domain admitting the *f*-property. Suppose that $\int_{-\infty}^{\infty} \frac{da}{af(a)} < \infty$ and denote by

$$g(t) := \left(\int_{t}^{\infty} \frac{\mathrm{d}a}{af(a)}\right)^{-1} \text{ for } t \ge 1. \text{ If } 0 < \alpha \le 2, \varphi \in \Lambda^{t^{\alpha}}(b\Omega), \text{ and } \psi \ge 0 \text{ on } \Omega \text{ with } \psi \in L^{p} \text{ with } p > 1, \text{ then the Dirichlet problem}$$

for the complex Monge–Ampère equation (1.1) has a unique plurisubharmonic solution $u \in \Lambda^{g^{\beta}}(\overline{\Omega})$. Here $\beta = \min(\alpha, \gamma)$, for any $\gamma < \gamma_p = \frac{2}{nq+1}$ where $\frac{1}{p} + \frac{1}{q} = 1$.

The proof follows immediately from Theorem 2.2 and 2.5 below. Throughout the paper we use \lesssim and \gtrsim to denote an estimate up to a positive constant, and \approx when both of them hold simultaneously. Finally, the indices *p*, α , β , γ and γ_p only take ranges as in Theorem 1.1.

2. Hölder regularity of the solution

We start this section by defining the f-property as in [7,8].

Definition 2.1. For a smooth, monotonic, increasing function $f:[1, +\infty) \rightarrow [1, +\infty)$ with $f(t)t^{-1/2}$ decreasing, we say that Ω has the *f*-property if there exist a neighborhood U of $b\Omega$ and a family of functions $\{\varphi_{\delta}\}$ such that

(i) the functions φ_{δ} are plurisubharmonic, C^2 on U, and satisfy $-1 \le \varphi_{\delta} \le 0$, (ii) $i\partial \bar{\partial}\varphi_{\delta} \gtrsim f(\delta^{-1})^2 Id$ and $|D\varphi_{\delta}| \lesssim \delta^{-1}$ for any $z \in U \cap \{z \in \Omega : -\delta < r(z) < 0\}$, where r is a C^2 -defining function of Ω .

In [7], using the f-property, the second author constructed a family of plurisubharmonic peak functions with good estimates. This family of plurisubharmonic peak functions yields the existence of a defining function ρ which is uniformly strictly plurisubharmonic and weakly Hölder (see [9]).

Theorem 2.2 (Khanh [7] and Ha–Khanh [9]). Assume that Ω is a bounded, pseudoconvex domain admitting the f-property as in Theorem 1.1. Then there exists a uniformly strictly-plurisubharmonic defining function of Ω that belongs to the g^2 -Hölder space of $\overline{\Omega}$, which means that

$$\rho \in \Lambda^{g^2}(\bar{\Omega}), \quad \Omega = \{\rho < 0\} \quad and \quad i\partial\bar{\partial}\rho \ge ld.$$
 (2.1)

The existence and uniqueness of the solution $u \in L^{\infty}(\Omega)$ to the equation (1.1) need a weaker condition, in particular, one only need $\rho \in C^0(\overline{\Omega})$, as shown by [10].

Theorem 2.3 (Kolodziej [10]). Let Ω be a bounded domain in \mathbb{C}^n . Assume that there exists a function ρ such that

 $\rho\in C^0(\bar\Omega),\quad \Omega=\{\rho<0\}\quad and\quad i\partial\bar\partial\rho\geq ld.$

Then, for any $\varphi \in C^0(b\Omega)$, $\psi \in L^p(\Omega)$, there is a unique plurisubharmonic solution $u(\Omega, \varphi, \psi) \in C^0(\overline{\Omega})$.

To improve the smoothness of u, we increase the smoothness of ρ and ψ .

Theorem 2.4 (Ha–Khanh [9]). Let ρ satisfy (2.1). If $\varphi \in \Lambda^{t^{\alpha}}(b\Omega)$ and $\psi^{\frac{1}{n}} \in \Lambda^{g^{\alpha}}(\overline{\Omega})$, then the Dirichlet problem for the complex Monge–Ampère equation (1.1) has a unique plurisubharmonic solution $u(\Omega, \varphi, \psi) \in \Lambda^{g^{\alpha}}(\overline{\Omega})$.

Now we focus on lowering the smoothness of ψ and prove the following theorem.

Theorem 2.5. Let ρ satisfy (2.1). If $\varphi \in \Lambda^{t^{\alpha}}(b\Omega)$ and $\psi \in L^{p}(\Omega)$, then the Dirichlet problem for the complex Monge–Ampère equation (1.1) has a unique plurisubharmonic solution $u(\Omega, \varphi, \psi) \in \Lambda^{g^{\beta}}(\overline{\Omega})$.

In order to prove this theorem, we need to construct a subsolution with L^p data. Here, v is a subsolution to (1.1) in the sense that v is plurisubharmonic, $v|_{b\Omega} = \varphi$ and $(dd^c v)^n \ge \psi \, dV$ in Ω .

Proposition 2.6. Let ρ satisfy (2.1). Then there is a subsolution $v \in \Lambda^{g^{\beta}}(\overline{\Omega})$ to (1.1) for $\varphi \in C^{\alpha}(b\Omega)$ and $\psi \in L^{p}(\Omega)$.

Proof. For a large ball \mathbb{B} containing Ω , we set $\tilde{\psi}(z) := \begin{cases} \psi(z) & \text{if } z \in \Omega, \\ 0 & \text{if } z \in \mathbb{B} \setminus \Omega. \end{cases}$ First, we apply Theorem 1 in [6] on \mathbb{B} with $\tilde{\psi} \in L^p(\mathbb{B})$ and zero-valued boundary condition; it follows $u_1 = u(\mathbb{B}, 0, \tilde{\psi}) \in \Lambda^{t^{\gamma}}(\bar{\mathbb{B}})$. Second, we apply Theorem 2.4 on Ω twice: first for $u_2 := u(\Omega, -u_1|_{b\Omega}, 0) \in \Lambda^{g^{\gamma}}$, since $u_1|_{b\Omega} \in \Lambda^{t^{\gamma}}$, and second for $u_3 := u(\Omega, \varphi, 0) \in \Lambda^{g^{\alpha}}$ by the hypothesis $\varphi \in \Lambda^{t^{\alpha}}$. Finally, taking the summation $v = u_1 + u_2 + u_3$, we have the conclusion. \Box

Proof of Theorem 2.5. Keeping the notation of Theorem 2.3, let $u(\Omega, \varphi, \psi) \in C^0(\overline{\Omega})$ be the solution to (1.1). What follows is dedicated to showing that this C^0 plurisubharmonic solution $u(\Omega, \varphi, \psi)$ is in fact in $\Lambda^{g^{\beta}}(\overline{\Omega})$. By Theorem 2.4 we have that $w := u(\Omega, \varphi, 0)$ is in $\Lambda^{g^{\alpha}}(\overline{\Omega})$. Let v be as in Proposition 2.6 then the comparison principle yields at once

$$v \le u(\Omega, \varphi, \psi) \le w. \tag{2.2}$$

By (2.2) and the g^{β} -Hölder regularity of v and w, we get

$$|u(z)-u(\zeta)| \lesssim [g(|z-\zeta|^{-1})]^{-\beta} \quad z \in \overline{\Omega}, \ \zeta \in b\Omega,$$

and therefore for δ suitably small

$$|u(z) - u(z')| \lesssim [g(\delta^{-1})]^{-\beta}, \quad z, z' \in \Omega \setminus \Omega_{\delta} \text{ and } |z - z'| < \delta$$
(2.3)

where $\Omega_{\delta} := \{z \in \mathbb{C}^n : r(z) < -\delta\}$ and r is the C^2 defining function for Ω with $|\nabla r| = 1$ on $b\Omega$. We have to prove that (2.3) also holds for $z, z' \in \Omega_{\delta}$. For $z \in \overline{\Omega}_{\delta}$, we use the notation

$$u_{\frac{\delta}{2}}(z) := \sup_{|\zeta| < \frac{\delta}{2}} u(z+\zeta), \qquad \tilde{u}_{\frac{\delta}{2}}(z) := \frac{1}{\sigma_{2n-1} \left(\frac{\delta}{2}\right)^{2n-1}} \int_{b\mathbb{B}(z,\frac{\delta}{2})} u(\zeta) \, \mathrm{d}S(\zeta),$$

and

$$\hat{u}_{\frac{\delta}{2}}(z) := \frac{1}{\sigma_{2n}(\frac{\delta}{2})^{2n}} \int_{\mathbb{B}(z,\frac{\delta}{2})} u(\zeta) \, \mathrm{d}V(\zeta),$$

where $\sigma_{2n-1}\left(\frac{\delta}{2}\right)^{2n-1} = \operatorname{Vol}(b\mathbb{B}(z, \frac{\delta}{2}))$ and $\sigma_{2n}\left(\frac{\delta}{2}\right)^{2n} = \operatorname{Vol}(\mathbb{B}(z, \frac{\delta}{2}))$. It is obvious that

$$\hat{u}_{\frac{\delta}{2}} \leq \tilde{u}_{\frac{\delta}{2}} \leq u_{\frac{\delta}{2}} \quad \text{in} \quad \Omega_{\delta}.$$

$$(2.4)$$

Furthermore, we have an L^1 estimate of the difference between u and $\tilde{u}_{\frac{\delta}{2}}$ and of the stability estimate in the following theorems (2.7 and 2.8).

Theorem 2.7 (Baracco–Khanh–Pinton–Zampieri [1]). For any $0 < \epsilon < 1$, we have

$$\|\tilde{u}_{\frac{\delta}{2}} - u\|_{L^1(\Omega_{\delta})} \lesssim \delta^{1-\epsilon}.$$
(2.5)

Theorem 2.8 (*Guedj–Kolodziej–Zeriahi* [6]). Fix $0 \le f \in L^p(\Omega)$, p > 1. Let U, W be two bounded plurisubharmonic functions in Ω such that $(dd^c U)^n = f \, dV$ in Ω and let $U \ge W$ on $\partial\Omega$. Fix $s \ge 1$ and $0 \le \eta < \frac{s}{nq+s}$, $\frac{1}{p} + \frac{1}{q} = 1$. Then there exists a uniform constant $C = C(\eta, \|f\|_{L^p(\Omega)}) > 0$ such that

$$\sup_{\Omega} (W-U) \le C \| (W-U)_+ \|_{L^s(\Omega)}^{\eta},$$

where $(W - U)_+ := \max(W - U, 0)$.

By (2.3), we have

 $\tilde{u}_{\frac{\delta}{2}} \leq u_{\frac{\delta}{2}} \leq u + c[g(\delta^{-1})]^{-\beta}, \text{ on } b\Omega_{\delta} \text{ for suitable constant } c.$

Thus, we can apply Theorem 2.8 for Ω_{δ} with $U := u + c[g(\delta^{-1})]^{-\beta}$, $W := \tilde{u}_{\frac{\delta}{2}}$ and s := 1; thus we get

$$\sup_{\Omega_{\delta}} \left(\tilde{u}_{\frac{\delta}{2}} - (u + c[g(\delta^{-1})]^{-\beta}) \right) \underset{\text{Theorem 2.8}}{\lesssim} \| \left(\tilde{u}_{\frac{\delta}{2}} - (u + c[g(\delta^{-1})]^{-\beta}) \right)_{+} \|_{L^{1}(\Omega_{\delta})}^{\eta} \\ \lesssim \| \tilde{u}_{\frac{\delta}{2}} - u \|_{L^{1}(\Omega_{\delta})}^{\eta} \underset{\text{Theorem 2.7}}{\lesssim} \delta^{(1-\epsilon)\eta},$$

$$(2.6)$$

for any $\eta < \frac{1}{2}\gamma_p = \frac{1}{nq+1}$ where $\frac{1}{q} + \frac{1}{p} = 1$. Taking $\gamma < \gamma_p$, $\beta = \min(\alpha, \gamma)$, $\epsilon = \frac{\gamma_p - \gamma}{\gamma_p + \gamma} > 0$ and $\eta = \frac{1}{4}(\gamma_p + \gamma) < \frac{1}{2}\gamma_p$ so that $(1 - \varepsilon)\eta = \frac{\gamma}{2}$, it follows

$$\sup_{\Omega_{\delta}} \left(\tilde{u}_{\frac{\delta}{2}} - u \right) \lesssim \delta^{(1-\epsilon)\eta} + [g(\delta^{-1})]^{-\beta} \lesssim \delta^{\frac{\gamma}{2}} + [g(\delta^{-1})]^{-\beta} \lesssim [g(\delta^{-1})]^{-\beta},$$
(2.7)

where the last inequality of (2.7) follows by $g(\delta^{-1}) \leq \delta^{-\frac{1}{2}}$ (by the conditions on *f* in the *f*-property).

Similarly to [6, Lemma 4.2] by using the fact that $g(c\delta^{-1}) \approx g(\delta^{-1})$ for any constant c > 0, one can state the equivalence between

$$\sup_{\Omega_{\delta}} (u_{\delta} - u) \lesssim [g(\delta^{-1})]^{-\beta} \quad \text{and} \quad \sup_{\Omega_{\delta}} (\hat{u}_{\delta} - u) \lesssim [g(\delta^{-1})]^{-\beta}.$$

Using this equivalence together with the inequalities in (2.4), it follows that (2.7) is equivalent to

$$\sup_{\Omega_{\delta}} (u_{\frac{\delta}{2}} - u) \lesssim [g(\delta^{-1})]^{-\beta}.$$
(2.8)

From (2.3) and (2.8), it is easy to prove that

$$|u(z) - u(z')| \lesssim [g(|z - z'|^{-1})]^{-\beta}$$
 for any $z, z' \in \overline{\Omega}$.

References

- [1] L. Baracco, Tran Vu Khanh, S. Pinton, G. Zampieri, Hölder regularity of the solution to the complex Monge–Ampère equation with L^p density, Calc. Var. Partial Differ. Equ. 55 (2016) 74.
- [2] E. Bedford, B.A. Taylor, The Dirichlet problem for a complex Monge–Ampère equation, Invent. Math. 37 (1) (1976) 1–44.
- [3] Z. Blocki, The complex Monge–Ampère operator in hyperconvex domains, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4) 23 (4) (1997) 721–747, 1996.
- [4] L. Caffarelli, J.J. Kohn, L. Nirenberg, J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge–Ampère, and uniformly elliptic, equations, Commun. Pure Appl. Math. 38 (2) (1985) 209–252.
- [5] D. Coman, Domains of finite type and Hölder continuity of the Perron-Bremermann function, Proc. Amer. Math. Soc. 125 (12) (1997) 3569-3574.
- [6] V. Guedj, S. Kolodziej, A. Zeriahi, Hölder continuous solutions to Monge-Ampère equations, Bull. Lond. Math. Soc. 40 (6) (2008) 1070-1080.
- [7] Tran Vu Khanh, Lower bounds on the Kobayashi metric near a point of infinite type, J. Geom. Anal. 26 (1) (2016) 616-629.
- [8] Tran Vu Khanh, G. Zampieri, Regularity of the $\bar{\partial}$ -Neumann problem at point of infinite type, J. Funct. Anal. 259 (11) (2010) 2760–2775.
- [9] L. Kim Ha, Tran Vu Khanh, Boundary regularity of the solution to the complex Monge–Ampère equation on pseudoconvex domains of infinite type, Math. Res. Lett. 22 (2) (2015) 467–484.
- [10] S. Kolodziej, The complex Monge-Ampère equation, Acta Math. 180 (1) (1998) 69-117.
- [11] S.-Y. Li, On the existence and regularity of Dirichlet problem for complex Monge–Ampère equations on weakly pseudoconvex domains, Calc. Var. Partial Differ. Equ. 20 (2) (2004) 119–132.