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A new optimization-based numerical method is proposed for the solution to diffusion 
problems with sign-changing conductivity coefficients. In contrast to existing approaches, 
our method does not rely on the discretization of a stabilized equation, and the 
convergence of the scheme can be proved without any symmetry assumption on the mesh 
near the interface where the conductivity sign changes.
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r é s u m é

Nous proposons une nouvelle méthode, basée sur la résolution d’un problème de 
minimisation, pour l’approximation de problèmes de diffusion avec changement de signe. 
Cette approche, qui tire profit d’une reformulation du modèle initial sous la forme d’un 
problème de transmission, ne repose pas sur la discrétisation d’une équation stabilisée, et 
la convergence de la méthode est obtenue sans hypothèse de symétrie du maillage dans 
un voisinage de l’interface où la conductivité change de signe.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Dans cette note, nous introduisons une méthode d’optimisation pour l’approximation numérique de problèmes de diffu-
sion dont la conductivité change de signe dans le domaine. La résolution numérique efficace de ce genre de problèmes est 
importante pour de nombreuses applications (e.g., super-lentilles, invisibilité), mais les méthodes existantes ne sont pour 
l’instant pas satisfaisantes. Dans [6], les deux approches envisagées reposent (i) sur la discrétisation d’une équation stabili-
sée, pour laquelle les taux de convergence obtenus sont sous-optimaux, ou (ii) sur des hypothèses de symétrie du maillage 
autour de l’interface où la conductivité change de signe, exigences pouvant s’avérer très contraignantes pour des interfaces 
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générales (voir [3]) ou en 3D. La méthode numérique introduite ici, qui utilise une reformulation du modèle initial en un 
problème de transmission, ne repose pas sur l’ajout de dissipation à l’équation, et nous montrons sa convergence pour des 
problèmes elliptiques présentant un changement de signe sans aucune hypothèse de symétrie sur le maillage. Nous notons 
que cette méthode numérique a pour la première fois été introduite par Gunzburger et al. [9] (voir aussi [8]), dans un 
contexte de décomposition de domaine pour des équations elliptiques classiques, sans preuve de convergence. L’applica-
tion de cet algorithme à des problèmes elliptiques présentant un changement de signe est introduite dans cette note, et la 
convergence de la méthode est démontrée.

1. Introduction

Partial differential equations with sign-changing coefficients play an increasingly important role in the modeling of meta-
materials, with applications ranging from superlensing to cloaking. In this paper, we consider, in an open, bounded and 
connected polytopal domain � ⊂ R

d , d ∈ {2, 3} such that � = �e ∪ �i , with �e, �i disjoint open connected polytopal sub-
sets of � with nonzero measure, the following sign-changing diffusion problem

−div(sK∇ũ) = f in �, ũ = 0 on ∂�, (1)

where K is a symmetric, uniformly elliptic and bounded matrix-valued field, and s : � → R is a sign function such that 
se := s|�e = 1 and si := s|�i = −1. The subscripts ‘e’ and ‘i’ respectively stand for the exterior (for which we assume that 
∂�e ∩ ∂� has nonzero measure) and the interior subdomains, and we denote their interface � = ∂�e ∩ ∂�i . We assume 
that f ∈ L2(�) and study the following weak formulation of Problem (1): find ũ ∈ H1

0(�) such that

a(ũ,ϕ) := (
sK∇ũ,∇ϕ

)
�

= ( f ,ϕ)� ∀ϕ ∈ H1
0(�). (2)

Several approaches have been developed to study the well-posedness of Problem (2). We first mention the T-coercivity the-
ory of Bonnet-Ben Dhia et al. [4]. In this context, the well-posedness (in the classical Hadamard sense or in the Fredholm 
sense) of Problem (2) is equivalent to finding a linear, bounded and bijective operator T : H1

0(�) → H1
0(�) such that the bi-

linear form a(·, T·) is coercive (for classical well-posedness) or weakly coercive (for the Fredholm case). The operator T plays 
the role of an explicit inf − sup operator. However, proving T-coercivity can be difficult for complex geometries, especially 
in 3D. More recently, another viewpoint has come out that consists in studying the “limit” as δ → 0+ of the well-posed 
stabilized problem: find ũδ ∈ H1

0(�) such that

aδ(ũδ,ϕ) := a(ũδ,ϕ) − iδ
(
K∇ũδ,∇ϕ

)
�i

= ( f ,ϕ)� ∀ϕ ∈ H1
0(�), (3)

where H1
0(�) is complex-valued. This approach has been developed in the context of Helmholtz equations by Nguyen [10,

11], and makes use of transport operators called reflections.
Different strategies have been studied by Chesnel and Ciarlet Jr. in [6] for the numerical approximation of Problem (2)

(assuming that it is well posed in the classical Hadamard sense). The first approach is based on a simplicial discretization 
Th of � that respects the interface � and the construction of a conforming finite element space V 0(Th) that is stable by 
the operator T. Well-posedness and optimal convergence rates can be shown for this approach. In practice, T-stability is 
achieved by means of symmetric meshes near the interface, whose construction is a nontrivial task for complicated inter-
faces (see [3]) or 3D problems. On general meshes, two main approaches have been investigated by Chesnel and Ciarlet Jr. 
The first one consists in building a (mesh-dependent) operator Th , such that the bilinear form a is Th-coercive on V 0(Th)

(see, e.g., [13]). This kind of approach is limited by the fact that, in general, well-posedness cannot be proved for the whole 
range of admissible coefficients. The second idea consists in discretizing the stabilized equation (3), and in scaling the 
dissipation δ as a function of h. However, and as studied in [6], this approach leads to suboptimal convergence rates.

In this note, we aim at proposing a new discretization approach, which is based on a reformulation of Problem (1) as a 
transmission problem, whose solution is obtained numerically from an optimization procedure. The approach we propose 
is proved to converge, and does not rely on any symmetry assumption on the mesh. As opposed to T-coercivity theory, 
we do not need to assume the well-posedness of Problem (2) in the Hadamard sense (i.e. for any f ∈ H−1(�)) to prove 
the convergence of our numerical method. We only need to assume that, for the given f ∈ L2(�) we consider, the solution 
to Problem (2) exists and is unique. This allows us to treat cases that cannot be analyzed using the T-coercivity theory 
(cf. Remark 3). The numerical method we consider here has been introduced by Gunzburger et al. [9] (see also [8]), in the 
context of domain decomposition for classical elliptic equations. However, up to now, the convergence of this method has 
never been proved. We provide the first proof of convergence of such a numerical method, with application to sign-changing 
elliptic equations, for which this approach seems particularly promising.

2. Transmission problem and numerical method

We provide in this section, under suitable regularity assumptions, an alternative characterization of the solution to Prob-
lem (2), which will be our starting point for the design of the numerical method.
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2.1. Transmission problem

Recall that f ∈ L2(�). Hence, s K∇ũ ∈ H(div; �). Denoting, for α ∈ {e, i}, by nα the unit normal vector to � pointing out 
of �α , and introducing g̃ such that

g̃ :=
[(
K∇ũ

)
|�e

·ne

]
|�, (4)

we have that g̃ ∈ H−1/2(�). Here, H−1/2(�) denotes the dual of H 1/2(∂�i) when � = ∂�i or of H
1/2

00 (�) otherwise. For 
α ∈ {e, i}, and for any g ∈ H−1/2(�), we consider in the subdomain �α the problem

sα(K∇uα(g),∇ϕα)�α
= ( f ,ϕα)�α

+ sα〈g,ϕα〉� ∀ϕα ∈ H1
0\�(�α), (5)

where H1
0\�(�α) is the space of functions in H1(�α) that vanish on ∂�α \ �. In �e, Problem (5) always admits a unique 

solution ue(g) ∈ H1
0\�(�e), as the measure of ∂�e ∩ ∂� is nonzero. In �i , Problem (5) also admits a unique solution 

ui(g) ∈ H1
0\�(�i) if the measure of ∂�i ∩ ∂� is nonzero. Otherwise, the problem in �i is purely Neumann and we assume 

that the flux g ∈ H−1/2(�) satisfies ( f ,1)�i
− 〈g,1〉� = 0 to ensure that Problem (5) admits a solution, which is unique up 

to an additive constant. We fix the constant by imposing (ui(g),1)� = (ue(g),1)� . Finally, for g ∈ H−1/2(�), we denote by 
u(g) the function such that u(g)|�α

:= uα(g), α ∈ {e, i}.

Proposition 2.1 (Characterization of the solution to Problem (2)). We assume that (2) admits a unique solution ũ ∈ H1
0(�), and that 

there exists s̃ > 1
2 such that ũ|�α ∈ H1+s̃(�α) for α ∈ {e, i}. Then,

• the flux g̃ defined in (4) belongs to L2(�), and satisfies g̃ = −
[(−K∇ũ

)
|�i

·ni

]
|� ;

• u(g̃) = ũ ∈ H1
0(�);

• almost everywhere on the interface �, ue(g̃) = ui(g̃);
• the problem inf

g∈L2(�)
‖ue(g) − ui(g)‖2

0,� admits g̃ as its unique solution.

Remark 1 (Assumptions on ũ). The existence (and uniqueness) of a solution ũ ∈ H1
0(�) to Problem (2) is satisfied in practice 

in a large variety of situations (cf., e.g., [11]). The assumption ũ|�α ∈ H1+s̃(�α) for α ∈ {e, i}, s̃ > 1
2 , made in Proposition 2.1

is convenient for the analysis, as it enables to work in L2(�) instead of working in H−1/2(�). This theoretical assumption is 
quite strict, but not mandatory in practice for the method to be applicable. In a forthcoming work [1], we will consider a 
test-case for which this regularity assumption is violated, and show that numerical convergence can still be observed.

2.2. Minimization problem and numerical method

We consider a family of simplicial conformal discretizations {Th}h of �, which respects the interface � and is shape-
regular in the sense of Ciarlet [7]. The subscript h stands for the meshsize, i.e. the maximum diameter of all the simplices 
in Th . We denote by �h the set of faces of the mesh Th belonging to �. For k ∈ N

� and α ∈ {e, i}, denoting Th,α the 
restriction of Th to �α , we introduce the space V k(Th,α) := {

v ∈ H1(�α) | v |T ∈ P
k
d(T ), ∀T ∈ Th,α

}
, where Pk

d(T ) is the 
space of d-variate polynomial functions of total degree less or equal to k in T ∈ Th . We also introduce the subspace 
V k

0\�(Th,α) := V k(Th,α) ∩ H1
0\�(�α).

For α ∈ {e, i}, and for any g ∈ H−1/2(�), we consider, in the subdomain �α , the following conforming approximation of 
Problem (5):

sα
(
K∇uh,α(g),∇ϕh,α

)
�α

= (
f ,ϕh,α

)
�α

+ sα〈g,ϕh,α〉� ∀ϕh,α ∈ V k
0\�(Th,α). (6)

As in the continuous case, Problem (6) always admits a unique solution uh,e(g) ∈ V k
0\�(Th,e) in �e, and uh,i(g) ∈ V k

0\�(Th,i)

in �i when the measure of ∂�i ∩ ∂� is nonzero. For the case of a pure Neumann problem in �i , we assume that 
( f ,1)�i

− 〈g,1〉� = 0, ensuring the existence of a solution and uniqueness up to an additive constant, that we fix imposing (
uh,i(g),1

)
�

= (
uh,e(g),1

)
�

. For g ∈ H−1/2(�), we introduce uh(g) such that uh(g)|�α
:= uh,α(g), α ∈ {e, i}.

To define the minimization problem, we introduce F k(�h) :=
{

q ∈ L2(�) | q|F ∈ P
k
d−1(F ), ∀F ∈ �h

}
when the measure of 

∂�i ∩ ∂� is nonzero, and we add the constraint (q,1)� = ( f ,1)�i
otherwise. We then define the functional Jh : F k(�h) →

R+ such that Jh(gh) := ∥∥uh,e(gh) − uh,i(gh)
∥∥2

0,�
+ λ(h)‖gh‖2

0,� , where λ : R�+ → R
�+ is a function such that lim

h→0
λ(h) = 0, 

and we consider the minimization problem

inf
k

Jh(gh). (7)

gh∈F (�h)
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The continuous function Jh is coercive on F k(�h), and hence admits at least one minimizer: there exists g̃h ∈ F k(�h) such 
that

Jh(g̃h) � Jh(gh) for any gh ∈ F k(�h). (8)

The approximation of ũ we then consider is uh(g̃h). The following result is a direct consequence of (8) and of the properties 
of the L2-orthogonal projector from L2(�) onto F k(�h).

Lemma 2.2 (Estimate on Jh(g̃h)). Assume that g̃ defined in (4) is in L2(�). Then, the following holds:

Jh(g̃h) �
∥∥uh,e(g̃) − uh,i(g̃)

∥∥2
0,�

+ λ(h)
∥∥g̃

∥∥2
0,�

. (9)

3. Convergence

From now on, we write A � B when there exists a constant c > 0, possibly depending on K, k, and on the geometry, but 
independent of h, and of ũ, g̃ , such that A � cB .

Lemma 3.1 (Approximation properties). Suppose that the assumptions of Proposition 2.1 are fulfilled. Then, letting p = min(k, ̃s), there 
exists δ ∈

(
0, 1

2

]
such that

∥∥∇h(uh(g̃) − ũ)
∥∥

0,�
� hp

(∣∣ũ∣∣
1+p,�e

+ ∣∣ũ∣∣
1+p,�i

)
,

∥∥uh,e(g̃) − uh,i(g̃)
∥∥

0,�
�

∑
α ∈{e, i}

∥∥uh,α(g̃) − ũ
∥∥

0,�
� hp+δ

(∣∣ũ∣∣
1+p,�e

+ ∣∣ũ∣∣
1+p,�i

)
.

Proof. We first assume that we have, both in �e and �i , mixed Dirichlet–Neumann boundary conditions. Then, classical 
arguments (particularly, Aubin–Nitsche duality argument, and a multiplicative continuous trace inequality) yield

∥∥uh,α(g̃) − ũ
∥∥

0,�α
+ h

δm
α
2

∥∥uh,α(g̃) − ũ
∥∥

0,�
+ hδm

α
∥∥∇(uh,α(g̃) − ũ)

∥∥
0,�α

� hp+δm
α
∣∣ũ∣∣

1+p,�α
, (10)

for α ∈ {e, i} and with δm
α ∈ (0,1] only depending on the geometry of �α . By setting δ = min

(
δm

e
2 ,

δm
i
2

)
, we obtain the 

stated result. We next treat the case of a pure Neumann problem in �i . Due to the choice 
(
uh,i(g̃),1

)
�

= (
uh,e(g̃),1

)
�

to 
fix the constant, a straightforward Aubin–Nitsche duality argument fails. We therefore consider an auxiliary function uh,i(g̃), 
defined as the unique discrete solution to the same Neumann problem in �i , but for which we fix the constant as in the 
continuous problem, namely 

(
uh,i(g̃),1

)
�i

= (
ũ,1

)
�i

. Then, there exists δn
i ∈ (0,1], only depending on the geometry of �i , 

such that

∥∥uh,i(g̃) − ũ
∥∥

0,�i
+ h

δn
i
2

∥∥uh,i(g̃) − ũ
∥∥

0,�
+ hδn

i
∥∥∇(uh,i(g̃) − ũ)

∥∥
0,�i

� hp+δn
i
∣∣ũ∣∣

1+p,�i
. (11)

Note that, a priori, δn
i �= δm

i since regularity results for pure Neumann or mixed problems are different in general. Next, we 
observe that uh,i(g̃) − uh,i(g̃) = ch , for a constant ch ∈ R. We then write

|�| ch = (
uh,i(g̃) − uh,i(g̃),1

)
�

= (
uh,e(g̃) − uh,i(g̃),1

)
�

= (
uh,e(g̃) − ũ,1

)
�

+ (
ũ − uh,i(g̃),1

)
�
,

which yields, using (10) and (11),

|ch| � |�|−1/2
(∥∥uh,e(g̃) − ũ

∥∥
0,�

+ ∥∥uh,i(g̃) − ũ
∥∥

0,�

)
� hp+ δm

e
2

∣∣ũ∣∣
1+p,�e

+ hp+ δn
i
2

∣∣ũ∣∣
1+p,�i

. (12)

We finally obtain from (12)

∥∥uh,i(g̃) − ũ
∥∥

0,�
�

∥∥uh,e(g̃) − ũ
∥∥

0,�
+ 2

∥∥uh,i(g̃) − ũ
∥∥

0,�
� hp+ δm

e
2

∣∣ũ∣∣
1+p,�e

+ hp+ δn
i
2

∣∣ũ∣∣
1+p,�i

,

which enables to conclude the proof, setting in that case δ = min
(

δm
e
2 ,

δn
i
2

)
. �

We note that, as a consequence of Lemma 3.1, it is always possible to choose λ(h) in (7) such that 
∥∥uh,e(g̃) − uh,i(g̃)

∥∥2
0,�

=
O  (λ(h)) or 

∥∥uh,e(g̃) − uh,i(g̃)
∥∥2 = o (λ(h)). We then have the
0,�
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Theorem 3.2 (Convergence of the method). Suppose that the assumptions of Proposition 2.1 are fulfilled. Denote uh(g̃h) by ũh . Then, 
up to a choice of λ(h) in (7) such that 

∥∥uh,e(g̃) − uh,i(g̃)
∥∥2

0,�
= O  (λ(h)), there holds as h → 0:

g̃h ⇀ g̃ in L2(�), ∇hũh ⇀ ∇ũ in L2(�)d, ũh → ũ in L2(�). (13)

If we further choose λ(h) such that 
∥∥uh,e(g̃) − uh,i(g̃)

∥∥2
0,�

= o (λ(h)), then we have

g̃h → g̃ in L2(�), ∇hũh → ∇ũ in L2(�)d, ũh → ũ in L2(�). (14)

Proof. We begin by remarking that, for α ∈ {e, i},

uh,α(g̃h) = uh,α(g̃) + vh,α, (15)

where vh,α ∈ V k
0\�(Th,α) satisfies

(
K∇vh,α,∇ϕh,α

)
�α

= ((
g̃h − g̃

)
,ϕh,α

)
�

∀ϕh,α ∈ V k
0\�(Th,α). (16)

From (16), we readily infer
∥∥∇vh,α

∥∥2
0,�α

�
∥∥g̃h − g̃

∥∥
0,�

∥∥vh,α

∥∥
0,�

. (17)

Besides, the following estimate can be obtained from (9):

∥∥g̃h
∥∥2

0,�
�

∥∥uh,e(g̃) − uh,i(g̃)
∥∥2

0,�

λ(h)
+ ∥∥g̃

∥∥2
0,�

. (18)

As soon as 
∥∥uh,e(g̃) − uh,i(g̃)

∥∥2
0,�

/λ(h) � c, the combination of (18), (17), and of a continuous trace inequality (as well as 
of an appropriate Poincaré inequality [5, Equation (1.1)] when the measure of ∂�i ∩ ∂� is zero) enables to infer that there 
exist g̃0 ∈ L2(�), and vα ∈ H1

0\�(�α), α ∈ {e, i}, so that the following convergences hold as h → 0, up to a subsequence 
(retaining the same notation):

g̃h ⇀ g̃0 in L2(�), ∇vh,α ⇀ ∇vα in L2(�α)d,

vh,α → vα in L2(�α), vh,α ⇀ vα in L2(�).
(19)

Now, from (9) we infer

∥∥uh,e(g̃h) − uh,i(g̃h)
∥∥2

0,�
�

∥∥uh,e(g̃) − uh,i(g̃)
∥∥2

0,�
+ λ(h)

∥∥g̃
∥∥2

0,�
�

(
c + ∥∥g̃

∥∥2
0,�

)
λ(h). (20)

Owing to the fact that λ(h) tends to zero as h vanishes, we deduce from (20) that 
∥∥uh,e(g̃h) − uh,i(g̃h)

∥∥
0,�

→ 0 as h → 0. 
Combining this last result with (15) and Lemma 3.1, we get that 

∥∥vh,e − vh,i
∥∥

0,�
→ 0 as h → 0 and hence, owing to (19), 

that ve = v i almost everywhere on �. Passing to the limit in (16) using (19) and a strongly converging interpolant for test 
functions, it can be shown that v ∈ H1

0(�) such that v |�α := vα for α ∈ {e, i} satisfies (sK∇v,∇ϕ)� = 0 for all ϕ ∈ H1
0(�), 

which implies, from the well-posedness of Problem (2), that v ≡ 0 and g̃0 ≡ g̃ (this last result is inferred considering 
the limit equation in a subdomain, and using a density argument along with the fact that g̃0, ̃g ∈ L2(�)). The uniqueness 
of the limits implies that the whole sequences converge in (19). Collecting these last results, (15), and Lemma 3.1, we 
prove (13). If we further choose λ(h) such that 

∥∥uh,e(g̃) − uh,i(g̃)
∥∥2

0,�
/λ(h) → 0 as h → 0, we get from (18) and from the 

weak convergence of g̃h towards g̃ that∥∥g̃
∥∥

0,�
� lim

h→0
inf

∥∥g̃h
∥∥

0,�
= lim

h→0
sup

∥∥g̃h
∥∥

0,�
�

∥∥g̃
∥∥

0,�
, (21)

which states the strong convergence of g̃h towards g̃ in L2(�). Testing (16) with vh,α , and using (21) combined with the 
weak convergence result for vh,α in L2(�) of (19), we finally get the strong convergence of ∇vh,α towards 0 in L2(�α)d for 
α ∈ {e, i}, proving (14) and concluding the proof. �
4. Numerical validation

We consider the 2D symmetric cavity test-case of [6], for which � := (−1, 1) × (0, 1) and �e := (−1, 0) × (0, 1) (it 
follows that �i = (0, 1) × (0, 1) and � = {0} × [0, 1]). For this test-case, both the exterior and the interior problems feature 
mixed Dirichlet–Neumann boundary conditions. For the particular geometry considered here, elliptic regularity holds in both 
subdomains (see, e.g., [2, Remark I.3.6]), so that δ = 1

2 in Lemma 3.1. The tensor K is taken isotropic, with constant value in 
each subdomain (k|�e = ke > 0 and k|� = ki > 0). For this particular setting, it is known [6] that Problem (2) is well posed 
i
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Fig. 1. Relative errors on � vs. meshsize for the symmetric cavity test-case with ν = −1.001.

in the classical Hadamard sense if and only if the contrast ν := − ki
ke

is different from −1. The exact solution ũ ∈ H1
0(�) we 

consider is

ũ(x, y) :=

⎧⎪⎪⎨
⎪⎪⎩

(
(x + 1)2 − 2ke − ki

ke − ki
(x + 1)

)
sin(πy) in �e,

ke

ke − ki
(x − 1) sin(πy) in �i,

and is associated with the right-hand side f = −div(s k∇ũ) ∈ L2(�). It can be easily seen that, for α ∈ {e, i}, ũ|�α ∈ H1+l(�α)

for any l > 0, meaning that p = k in Lemma 3.1.
As in [6], we choose ke = 1 and ki = 1.001, so that ν = −1.001. We run the computations on a sequence of non-

symmetric (with respect to the interface �), unstructured meshes. Results are depicted in Fig. 1 for linear (k = 1) and 
second-order (k = 2) FEM, for our approach (solid blue), and for classical FEM (dashed black) applied to (2). For our ap-
proach, the parameter λ(h) is chosen as O (hβ) with β � (2k + 1), as required by Theorem 3.2 and Lemma 3.1. Here we 
choose λ(h) = 0.002 h3 for k = 1 and λ(h) = 0.002 h4.2 for k = 2. We first observe that all convergence plots for our ap-
proach are strictly monotone, as opposed to classical FEM. In the L2-norm, for h sufficiently small, we observe a slightly 
super-convergent behavior for our approach for both k = 1 and k = 2. In the H1-norm, for both orders, our method seems 
to reach the expected convergence rates for h sufficiently small, and clearly outperforms classical FEM. The choice of a small 
multiplicative coefficient 0.002 in the function λ is guided by the fact that the norm of g̃ is big for such a contrast. Hence, 
for coarse meshes for which convergence is far from being reached, one has to give less weight to the second term of the 
functional Jh in the minimization process, to have a chance to recover a correct approximation of g̃. This weight is useless 
when h is sufficiently small.

Remark 2 (Stabilization parameter). For coarse meshes, one has to tune the parameter λ(h) in a nontrivial, contrast-depending 
way. This has to do with the regularization we use. If the L2-orthogonal projection k

h g̃ of g̃ onto F k(�h) was known, then 
we would stabilize the functional Jh with μ(h)

∥∥gh − k
h g̃

∥∥2
0,�

instead of λ(h)‖gh‖2
0,� , yielding, in view of (18), an optimal 

estimate on 
∥∥g̃h − k

h g̃
∥∥

0,�
.

Remark 3. It has to be noted that the symmetric cavity test-case can be analyzed by means of T-coercivity. However, it 
cannot be on general meshes, which is the main outcome of our approach. Furthermore, there are also many cases (even in 
2D) that cannot be analyzed, at the continuous level, using the T-coercivity approach. This is for example the case of the 
cloaking device studied in [12, Section 4]. In that case, the operator associated with the problem, viewed as an operator 
from H1

0(�) to H−1(�) is not Fredholm, as its range is not closed. T-coercivity is hence inapplicable. However, it is known 
that, for compatible right-hand sides f ∈ L2(�), the solution exists and is unique in H1

0(�) [12]. The convergence of our 
numerical method for compatible loadings as well as numerical experiments for such problems will be investigated in a 
forthcoming work [1].
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