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r é s u m é

Dans cette note, nous montrons des estimations d’erreur pour l’approximation d’éléments 
finis des données sur le bord d’un problème de Cauchy elliptique. Ces résultats complètent 
l’analyse d’erreur de la méthode d’éléments finis proposée dans E. Burman, Error estimates 
for stabilized finite element methods applied to ill-posed problems, C. R. Acad. Sci. Paris, Ser. I 352 
(7–8) (2014) 655–659.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider the numerical approximation of the following linear elliptic Cauchy problem. Let � be a convex polygonal 
(polyhedral) domain in Rd , d = 2, 3, and consider the equation{

−�u = f in �,

u = gand ∂nu = ψ on �,
(1)

where � ⊂ ∂� denotes a simply connected part of the boundary and f ∈ L2(�), ψ ∈ H
1
2 (�) and g ∈ H

3
2 (�). Introducing 

the spaces V = H1(�), V g := {v ∈ H1(�) : v|� = g} and W := {v ∈ H1(�) : v|�′ = 0}, where �′ := ∂� \ � and the forms 
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a(u, w) := ∫
�

∇u · ∇w dx, and l(w) := ∫
�

f w dx + ∫
�

ψ w ds equation (1) may be cast in the abstract weak formulation, 
find u ∈ V g such that

a(u, w) = l(w) ∀w ∈ W , (2)

where a : V × W �→ R and l : W �→ R.
It is well known that the Cauchy problem (1) is not well posed in the sense of Hadamard. If l(w) is such that a sufficiently 

smooth, exact solution exists, conditional stability estimates can nevertheless be obtained [1].
In a series of papers [4,5,7,6], we have developed a method, regularised using techniques from stabilised finite element 

methods, that can be analysed using such conditional stability estimates. The stability estimate referred to was a simplified 
form of a detailed estimate derived in [1], that we recall here.

Assume that the linear form l(w) is such that the problem (2) admits a unique solution u ∈ V g . Define the following 
dual norm on l, ‖l‖W ′ := sup w∈W‖w‖W =1

|l(w)|. Consider the functional j : V �→R. Let � :R+ �→ R
+ be a continuous, monotone 

increasing function with limx→0+ �(x) = 0. Let ε > 0.

Assume that there holds ‖l‖W ′ ≤ ε in (2) then, for ε sufficiently small, | j(u)| ≤ �(ε). (3)

For the example of the Cauchy problem (1), it is known [1, Theorems 1.7 and 1.9] that if (1) admits a unique solution 
u ∈ H1(�), a conditional stability of the form (3) (here neglecting geometric factors) with 0 < ε < 1, holds for

j(u) := ‖u‖L2(ω), ω ⊂ � : dist(ω, ∂�) =: dω,∂� > 0 with �(x) := Cuς xς , Cuς > 0, ς := ς(dω,∂�) ∈ (0,1) (4)

and for

j(u) := ‖u‖L2(�) with �(x) := Cu(| log(x)| + C)−ς with Cu, C > 0, ς ∈ (0,1). (5)

Note that to derive these results l(·) is first associated with its Riesz representant in W (c.f. [1, equation (1.31)] and discus-
sion.) The constant Cuς in (4) grows monotonically in ‖u‖L2(�) and Cu in (5) grows monotonically in ‖u‖H1(�) .

The above discussion, however, is incomplete, since it makes no mention of control of the solution on the boundary. 
Indeed in [1, Equation (1.25)] the following bound is required

‖g‖
H

1
2 (�)

+ ‖ψ‖
H− 1

2 (�)
≤ η (6)

for some η > 0, that should be added in the last equation in (3) in the form

| j(u)| ≤ �(ε + η). (7)

This omission may seem innocent, since the solution in [5,7,6] was assumed to be zero on the Cauchy boundary, and control 
of the boundary flux is built into the method. Indeed it follows from the analysis that

‖h
1
2 (∂nuh − ψ)‖L2(�) ≤ Ch|u|H2(�) (8)

if we assume that there are no perturbations in data. The bound needed to satisfy (6) would be

‖∂nuh − ψ‖
H− 1

2 (�)
≤ Ch|u|H2(�). (9)

This does not follow from (8) and standard techniques to prove that the continuous H−1/2-norm is bounded by the discrete 
counterpart, typically leading to

‖∂nuh − ψ‖
H− 1

2 (�)
≤ C‖h

1
2 (∂nuh − ψ)‖L2(�) + C‖u − uh‖H1(�),

fail due to the ill-posed character of the problem, since the last term of the right-hand side does not necessarily converge. 
Naively bounding the H− 1

2 (�)-norm by the L2(�)-norm on the other hand leads to an estimate that is suboptimal by 
O(h

1
2 ). The aim of the present note is to present an approach to prove the optimal bound applicable in all the methods 

[5,7,6] and also include the case of non-zero Dirichlet data. In the following, we assume that (1) admits a unique solution 
u ∈ V g ∩ H2(�).

2. Finite element discretisation

Let Kh be a shape regular, conforming, subdivision of � into non-overlapping, quasi-uniform triangles κ . The family of 
meshes {Kh}h is indexed by the mesh parameter h := max(diam(κ)) < 1. Let FI be the set of interior faces {F } in Kh and 
F� , F�′ the set of element faces of Kh whose interior intersects � and �′ , respectively. Each interior face has a fixed but 
arbitrary normal nF and the normal associated with faces on the boundary is defined as the outward pointing normal. We 
assume that the mesh matches the boundary of � so that F� ∩F�′ = ∅. Let X1 denote the standard finite element space of 
h
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continuous, affine functions. Define Vh = Wh := X1
h . Let ih : H2(�) �→ Vh denote the standard nodal interpolant, for which 

the following interpolation estimate holds

‖u − ihu‖� + h‖∇(u − ihu)‖� ≤ Ch2|u|H2(�).

We may then write the finite element method: find (uh, zh) ∈ Vh × Wh such that,

ah(uh, wh) − s∗(zh, wh) = lh(wh)

ah(vh, zh) + s(uh, vh) = s(u, vh)

}
for all (vh, wh) ∈ Vh × Wh, (10)

where lh(wh) := l(wh) − ∫
�

g∂n wh ds,

ah(vh, wh) := a(vh, wh) −
∫
�

vh∂n wh ds −
∫
�′

wh∂n vh ds.

In order to include the Dirichlet data in a straightforward manner, we here use the Nitsche-type imposition of the boundary 
conditions introduced in [7,6], which is the reason for the appearance of the boundary terms in the forms ah and lh .

A possible choice of stabilisation operators for the problem (1) are

s(uh, vh) :=
∑

F∈FI ∪F�

∫
F

hF [∂nuh][∂n vh] ds +
∑

F∈F�

∫
F

h−1
F uh vh ds, with hF := diam(F ) (11)

and

s∗(zh, wh) := a(zh, wh) +
∫
�′

h−1zh wh ds or s∗(zh, wh) :=
∑

F∈FI ∪F�′

∫
F

hF [∂nzh][∂n wh] ds +
∫
�′

h−1zh wh ds, (12)

where [∂nuh] denotes the jump of ∇uh · nF for F ∈FI and when F ∈F� ∪F�′ define [∂nuh]|F := ∇uh · n∂� . Observe that by 
definition the right-hand side of the second equation of (10) is

s(u, vh) =
∑

F∈F�

∫
F

h−1
F gvh + hF ψ∂n vh ds.

Using a Poincaré inequality on discrete spaces [2], the following bound holds for some cp > 0

cph‖uh‖H1(�) ≤ s(uh, uh)
1
2 (13)

and therefore the triple norm defined by ‖ |uh, zh‖ |2 := s(uh, uh) + s∗(zh, zh) is a norm on Vh × Wh . The following error 
estimate was shown in [6, Lemma 1], independent of the stability of the problem (1).

Lemma 2.1. Let u ∈ V ∩ H2(�) be the solution to (1) and (uh, zh) ∈ Vh × Wh the solution to (10), then there holds

‖|(u − uh, zh)‖| ≤ Ch|u|H2(�)

and ‖u − uh‖H1(�) ≤ C‖u‖H2(�) .

Proof. The first inequality follows from [6, Lemma 1], with a minor modification to account for the Dirichlet data g . For the 
second one, observe that, by the Cauchy–Schwarz inequality and the discrete Poincaré inequality (13), one has:

‖u − uh‖H1(�) ≤ ‖u − ihu‖H1(�) + ‖uh − ihu‖H1(�) ≤ Ch|u|H2(�) + c−1
p h−1s(uh − ihu, uh − ihu)

1
2 .

After an additional triangle inequality

s(uh − ihu, uh − ihu)
1
2 ≤ ‖|(u − ihuh,0)‖| + ‖|(u − uh,0)‖|

the claim now follows from the approximation estimate ‖ |(u − ihuh,0)‖ | ≤ Ch|u|H2(�) and the a priori error estimate on 
‖ |(u − uh, zh)‖ |. �

Consider now the error equation, for all w ∈ W ,

a(u − uh, w) = 〈r(uh), w〉(W ′,W ), (14)

where

〈r(uh), w〉(W ′,W ) = ( f , w)� + 〈ψ, w〉� − a(uh, w).
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It was shown in [6, Theorem 1] that for g = 0,

‖r‖W ′ ≤ Ch‖ f ‖L2(�) + ‖|(u − uh, zh)‖| ≤ Ch(‖ f ‖L2(�) + |u|H2(�)). (15)

With Lemma 2.1 and equation (15), conditional error estimates were derived in [6, Theorem 1] using the conditional stability 
(3), but omitting the condition (6).

The objective in the next section is to show how the bound

‖h− 1
2 (uh − g)‖L2(�) + ‖h

1
2 (∂nuh − ψ)‖L2(�) ≤ Ch|u|H2(�) (16)

implied by Lemma 2.1, leads to (9), for a related perturbed approximation ũh that is sufficiently close to uh , or, more 
precisely, when including the Dirichlet data,

‖ũh − g‖
H

1
2 (�)

+ ‖∂nũh − ψ‖
H− 1

2 (�)
≤ Ch|u|H2(�).

This is then used in the analysis to show that the approximation error satisfies the bound (6).

3. Boundary error estimates in natural norms

As was pointed out already in [7,6] the error equation (14) can be written using any perturbation, ũh of uh , which is 
sufficiently close to uh to be controlled using the triple norm. For instance, when a nonconforming approximation is used 
[7], so that Vh �⊂ V ũh is some discrete interpolant of uh in V ∩ Vh . Herein we will use this idea to create a ũh that has 
a suitable oscillating property of the flux error. Indeed drawing on ideas from [3, Lemma 4.1 and Remark 1], we divide �
into N� shape regular triangular subdomains Fi , i = 1, . . . , N� , each one containing an agglomeration of element faces. The 
boundary of Fi does not need to coincide with the boundary element edges, but the diameter of Fi is proportional to h, 
diam(Fi) = CFh, for some fixed CF > 0 that we may choose. For each Fi we assemble all elements with one face entirely 
contained in Fi and their nearest neighbours among the interior elements into patches Pi ⊂ � such that Pi ∩ � ⊂ Fi . By 
construction, the patches also have diameter O(h). On each subdomain Fi we define the following local projection onto a 
piecewise constant π0 w|Fi = measd−1(Fi)

−1
∫
Fi

w ds. Then, following [3, Lemma 4.1], provided each Fi contains a sufficient 
number of surface elements, i.e. the constant CF is taken large enough, we may construct a function ϕi , whose support is 
contained in Pi such that, given υi ∈R,

π0∂nϕi|Fi = υi, ‖∇ϕi‖Pi ≤ C‖h
1
2 υi‖Fi . (17)

The constant C and the size of CF only depends on the shape regularity of the mesh. Then we construct our ũh as

ũh := uh + v� with v� :=
N�∑
i=1

ϕi, (18)

where the coefficients υi in the definition of ϕi are fixed by the relation,∫
Fi

(ψ − ∂nũh) ds = 0, implying that υi := π0(ψ − ∂nuh)|Fi . (19)

The following bounds hold for the perturbation error introduced.

Lemma 3.1. Let uh ∈ Vh and let ũh be constructed using (18)-(19) then there holds

‖h− 1
2 (ũh − uh)‖� + ‖h

1
2 ∂n(ũh − uh)‖� ≤ C‖h

1
2 π0(ψ − ∂nuh)‖�

and h−1‖ũh − uh‖� + ‖∇(ũh − uh)‖� ≤ C‖h
1
2 π0(ψ − ∂nuh)‖� .

Proof. By the definition of ũh and using elementwise trace inequalities ‖uh‖∂ K ≤ Ch− 1
2 ‖uh‖K , we have

‖h− 1
2 (ũh − uh)‖� + ‖h

1
2 ∂n(ũh − uh)‖� + ‖∇(ũh − uh)‖� = ‖h− 1

2 v�‖� + ‖h
1
2 ∂n v�‖� + ‖∇v�‖�

≤ C(‖h−1 v�‖� + ‖∇v�‖�) ≤ ‖∇v�‖�.

The last inequality was obtained by applying a Poincaré inequality locally on every patch ‖v�‖Pi ≤ C‖h∇v�‖Pi . Using the 
second inequality of (17) and the definition of υi (19), we conclude

‖∇v�‖2
� ≤ C

N�∑
‖h

1
2 υi‖2

Fi
= C

N�∑
‖h

1
2 π0(ψ − ∂nuh)‖2

Fi
= C‖h

1
2 π0(ψ − ∂nuh)‖2

�. �

i=1 i=1
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To estimate the H−1/2-norm of the perturbed flux error, ψ − ∂nũh we observe that by the construction of ũh there holds, 
for all w ∈ H

1
2 (�),

(ψ − ∂nũh, w)� =
N�∑
i=1

(ψ − ∂nũh, w − π0 w)Fi ≤ C‖h
1
2 (ψ − ∂nũh)‖�‖w‖

H
1
2 (�)

, (20)

where we used the approximability properties of the piecewise constant functions on the shape regular triangular surface 
subdomains Fi (see for instance [8, Theorem 10.2].) Hence, taking the supremum over (non-zero) w ∈ H

1
2 (�) in (20), we 

obtain

‖ψ − ∂nũh‖
H− 1

2 (�)
≤ C‖h

1
2 (ψ − ∂nũh)‖� ≤ C‖h

1
2 (ψ − ∂nuh)‖� + C‖h

1
2 (∂nuh − ∂nũh)‖�.

It follows by Lemma 3.1 that

‖ψ − ∂nũh‖
H− 1

2 (�)
≤ C‖h

1
2 (ψ − ∂nuh)‖�. (21)

Considering now the Dirichlet condition, we have, since u = g for the exact solution, and by applying the inverse inequality 
‖vh‖

H
1
2 (�)

≤ C‖h− 1
2 vh‖� and a global trace inequality:

‖ũh − g‖
H

1
2 (�)

≤ ‖ũh − ihu‖
H

1
2 (�)

+ ‖u − ihu‖
H

1
2 (�)

≤ ‖h− 1
2 (ũh − ihu)‖� + C‖u − ihu‖H1(�). (22)

For the first term in the right-hand side, we observe that

‖h− 1
2 (ũh − ihu)‖� ≤ ‖h− 1

2 (ũh − uh)‖� + ‖h− 1
2 (uh − ihu)‖� ≤ C‖h

1
2 π0(ψ − ∂nuh)‖� + Ch|u|H2(�), (23)

where we used Lemma 3.1 and Lemma 2.1 in the last estimate. We conclude that

‖ũh − g‖
H

1
2 (�)

≤ C‖h
1
2 π0(ψ − ∂nuh)‖� + Ch|u|H2(�). (24)

We summarise the above results in a Lemma

Lemma 3.2. Let uh be the solution to (10) and let ũh be the perturbed solution to equation (18), then there holds

‖ũh − g‖
H

1
2 (�)

+ ‖ψ − ∂nũh‖
H− 1

2 (�)
≤ Ch|u|H2(�)

and

‖r(ũh)‖W ′ ≤ Ch(‖ f ‖� + |u|H2(�)).

Proof. The proof of the first inequality is a consequence of the inequalities (21) and (24) and (16). The second inequality, 
which implies that the perturbed error u − ũh satisfies the equivalent of (15), is straightforward to show since in this case

〈r(ũh), w〉(W ′,W ) = ( f , w)� + 〈ψ, w〉� − a(ũh, w) = ( f , w)� + 〈ψ, w〉� − a(uh, w)︸ ︷︷ ︸
I

+a(uh − ũh, w)︸ ︷︷ ︸
I I

.

Term I is bounded similarly as in [6, Theorem 1], with some minor modifications due to the non-zero boundary data g . 
Indeed Galerkin orthogonality yields in this case, for some H1-stable approximation wh ∈ Wh of w ,

I = ( f , w − wh) + 〈ψ, w − wh〉� − a(uh, w − wh) −
∫
�′

wh∂nuh ds − s∗(zh, wh) −
∫
�

(uh − g)∂n wh ds.

The last term on the right-hand side is the contribution due to the non-homogeneous Dirichlet conditions and we bound it 
using a Cauchy–Schwarz inequality, a trace inequality, the stability of wh , and equation (16)∫

�

(uh − g)∂n wh ds ≤ ‖h− 1
2 (uh − g)‖�‖w‖H1(�) ≤ Ch|u|H2(�)‖w‖H1(�).

For term I I , we proceed by the Cauchy–Schwarz inequality, Lemma 3.1 and (16)

a(uh − ũh, w) ≤ ‖∇(uh − ũh)‖�‖w‖H1(�) ≤ C‖h
1
2 π0(ψ − ∂nuh)‖�‖w‖H1(�) ≤ Ch|u|H2(�)‖w‖H1(�),

which completes the proof. �
We finally give a proof of the conditional error estimate using the conditional stability (3)–(5), (7) and the data condi-

tion (6).
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Theorem 3.3. Let u be the solution to (2) having the conditional stability defined by the left equation of (3) and (4)–(7). Let uh be the 
solution to (10). Then there holds, with ς ∈ (0, 1)

‖u − uh‖L2(ω) ≤ Chς and ‖u − uh‖L2(�) ≤ Cu(| log(Ch)| + C)−ς .

Proof. Let ũh be defined by (18). Observe that by Lemma 3.1 and Lemma 2.1 ‖uh − ũh‖L2(�) ≤ Ch2|u|H2(�) . It follows by the 
triangle inequality that it is enough to prove the bound for ẽ = u − ũh . We see that ẽ is a solution to (2) with the Dirichlet 
data, ẽ|� , the Neumann data ∂nẽ|� and the right-hand side, 〈r(ũh), w〉(W ′,W ) := ( f , w)� + 〈ψ, w〉� − a(ũh, w). By the first 
inequality of Lemma 3.2, we see that (6) holds with η = Ch. By the second inequality of Lemma 3.2, we see that (3) holds 
with ε = Ch. To conclude, we observe that using the second inequality of Lemma 2.1 and equation (16),

‖ẽ‖H1(�) ≤ ‖u − uh‖H1(�) + ‖ũh − uh‖H1(�) ≤ C‖u‖H2(�) + C‖h
1
2 π0(ψ − ∂nuh)‖� ≤ C(1 + h)‖u‖H2(�)

showing that ‖ẽ‖H1(�) is bounded by a constant independent of h. It follows, by the conditional stability estimate, using the 
above bounds on ε and η in equation (7), that ẽ satisfies the required error bounds and the proof is complete. �
3.1. Application to other methods

The above argument may be applied also to the higher polynomial order case of [6] and the nonconforming method of 
[7]. Observe that the arguments in the latter already rely on the construction of an H1-conforming approximation Ic f uh , 
where Ic f is the interpolation operator using local averaging in each node of the discontinuous finite element solution. The 
perturbation error is estimated in the triple norm in a similar way as above. Then the above argument can be applied, 
constructing ũh in (18) with Ic f uh in the place of uh . The estimate (20) is then obtained for ũh . We once again need to 
estimate the perturbation error ũh − uh . This is made in two steps using the intermediate function Ic f uh . The difference 
ũh − Ic f uh is estimated as above. Then in a second step uh is added and subtracted to create residuals in uh and all other 
terms on the form Ic f uh − uh , which is bounded as in [7] using the penalty term on the solution jumps that is part of the 
triple norm in this case.
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