Differential geometry

Three-manifolds of constant vector curvature one

CrossMark

Variétés de dimension trois à courbure vectorielle constante un

Benjamin Schmidt ${ }^{1}$, Jon Wolfson
Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA

A R T I C L E IN F O

Article history:

Received 20 December 2016
Accepted after revision 2 March 2017
Available online 21 March 2017
Presented by the Editorial Board

Abstract

A Riemannian manifold has $\operatorname{CVC}(\epsilon)$ if its sectional curvatures satisfy $\sec \leq \varepsilon$ or $\sec \geq \varepsilon$ pointwise, and if every tangent vector lies in a tangent plane of curvature ε. We present a construction of an infinite-dimensional family of compact CVC(1) three-manifolds.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Ré S U M É

Une variété riemannienne est dite $\operatorname{CVC}(\epsilon)$ si sa courbure sectionnelle satisfait ponctuellement $\sec \leq \varepsilon$ ou $\sec \geq \varepsilon$ et si chaque vecteur tangent appartient à un plan tangent de courbure ε. Nous construisons une famille de dimension infinie de variétés compactes de dimension 3, qui sont CVC(1).
© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

A Riemannian manifold has constant vector curvature ε if every tangent vector lies in a 2-plane of curvature ε and has pointwise extremal curvature ε if the sectional curvatures satisfy $\sec \geq \varepsilon$ or $\sec \leq \varepsilon$ pointwise. A manifold has $\operatorname{CVC}(\varepsilon)$ when it has both constant vector curvature ε and pointwise extremal curvature ε.

The study of $\operatorname{CVC}(\varepsilon)$ manifolds began with [12], motivated by rank-rigidity theorems as in [1-6,8,11,15-17]. Classification results in [12] demonstrate the rigid nature of finite volume $\operatorname{CVC}(\varepsilon)$ three-manifolds with $\varepsilon \leq 0$. When $\varepsilon=-1$, they are all locally homogeneous. When $\varepsilon=0$, components of non-isotropic points admit Riemannian product decompositions. These rigidity results fail without the finite volume assumption by $[9,13,14]$.

Here, we illustrate the relative flexibility of this curvature condition when $\varepsilon>0$. We construct an infinite-dimensional family of compact $\mathrm{CVC}(1)$ three-manifolds. These manifolds also satisfy the following spherical rank condition: Each geodesic $\gamma(t)$ admits a Jacobi field $J(t)$ with $\sec (\dot{\gamma}, J)(t) \equiv 1$. Contrastingly, in dimension three, only the spherical space forms satisfy the (a posteriori more stringent) spherical rank condition obtained by replacing Jacobi fields with parallel fields [8].

Our construction "deforms" compact locally homogeneous three-manifolds admitting a Riemannian submersion to a constant curvature surface. For $c \in \mathbb{R}$, let G denote $\operatorname{SU}(2)$, the Heisenberg group, or $\widetilde{\mathrm{SL}_{2}(\mathbb{R})}$ when $c<1, c=1$, or $c>1$,

[^0]respectively. Let Γ be a cocompact lattice in G. The parameter c and lattice Γ determine the deformed Riemannian submersion:

The group G admits a left-invariant framing $\left\{e_{1}, e_{2}, e_{3}\right\}$ with

$$
\left[e_{1}, e_{2}\right]=-2 e_{3}, \quad\left[e_{1}, e_{3}\right]=(1-c) e_{2}, \quad\left[e_{2}, e_{3}\right]=-(1-c) e_{1}
$$

This framing is orthonormal for a metric satisfying
(1) every tangent plane containing the vector e_{3} has curvature 1 ,
(2) the tangent plane spanned by e_{1} and e_{2} has curvature $\lambda=-(2 c+1)$,
(3) all sectional curvatures lie between 1 and λ, and
(4) the vector field e_{3} is Killing.

By (1) and (3), the metric Lie group G has CVC(1). By (4), the e_{3}-orbit space Σ admits a metric making the orbit map $G \rightarrow \Sigma$ a Riemannian submersion; this metric has constant Gaussian curvature $K=\lambda+3=2(1-c)$ by [10].

The lattice Γ acts by isometric left-translations on G with compact locally homogeneous quotient (M_{c}, g_{0}). The invariant framing $\left\{e_{1}, e_{2}, e_{3}\right\}$ induces an orthonormal framing $\left\{\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}\right\}$ of (M_{c}, g_{0}) satisfying (1)-(4) above. Up to a finite cover of M_{c}, \bar{e}_{3} generates a free circle action, inducing a Riemannian submersion $\pi:\left(M_{c}, g_{0}\right) \rightarrow\left(S_{c}, s_{0}\right)$ with target a compact surface of constant curvature $2(1-c)$.

We regard (M_{c}, g_{0}) as a "model" CVC(1) three-manifold. The CVC Transform presented below deforms g_{0} into a family of locally inhomogeneous CVC(1) metrics on M_{c} parameterized by a function space on S_{c}. While this construction shows that locally inhomogeneous CVC(1) metrics abound, preliminary analysis suggests that the following uniformization conjecture holds:

Conjecture. If (M, g) is a closed CVC(1) three-manifold, then the underlying smooth manifold M is a locally homogeneous space and admits a locally homogeneous CVC(1) metric as described above.

2. Frame certification of $\operatorname{CVC}(1)$

Let $\left\{w_{i}\right\}_{i=1}^{3}$ be an orthonormal framing of $\left(X^{3}, g\right)$ satisfying:

$$
\begin{equation*}
\left[w_{1}, w_{2}\right]=\alpha w_{1}+\beta w_{2}-2 w_{3}, \quad\left[w_{1}, w_{3}\right]=k w_{2}, \quad\left[w_{2}, w_{3}\right]=-k w_{1} \tag{2.1}
\end{equation*}
$$

with α, β smooth functions on X and $k \in \mathbb{R}$. By Koszul's formula,

\[

\]

By (2.2), the Laplacian $\Delta=\Sigma_{i} w_{i} w_{i}-\nabla_{w_{i}} w_{i}$ and curvature components $R_{i j k l}=g\left(\nabla_{w_{i}} \nabla_{w_{j}} w_{k}-\nabla_{w_{j}} \nabla_{w_{i}} w_{k}-\nabla_{\left[w_{i}, w_{j}\right]} w_{k}, w_{l}\right)$ simplify as

$$
\begin{align*}
& \Delta=w_{1} w_{1}+w_{2} w_{2}+w_{3} w_{3}-\beta w_{1}+\alpha w_{2} \tag{2.3}\\
& R_{1221}=(2 k-3)-\left(w_{2}(\alpha)-w_{1}(\beta)+\alpha^{2}+\beta^{2}\right) \tag{2.4}\\
& R_{1331}=R_{2332}=1 \tag{2.5}\\
& R_{1213}=R_{1223}=R_{1323}=0 \tag{2.6}
\end{align*}
$$

The symmetries $R_{i j k l}=R_{k l i j}=-R_{j i k l}$ determine the remaining components.
Lemma 2.1. A 2-plane with unit-normal vector $n=\Sigma_{i=1}^{3} c_{i} w_{i}$ has sectional curvature $\sec =c_{1}^{2}+c_{2}^{2}+c_{3}^{2} R_{1221}$.
Proof. By (2.6), $\left\{w_{i}\right\}$ diagonalizes Ricci. Now substitute (2.5) into [12, Lemma 2.2].
Proposition 2.2. If $\left(X^{3}, g\right)$ admits an orthonormal framing as in (2.1), then
(1) (X, g) is $\operatorname{CVC}(1)$.
(2) w_{3} is Killing.
(3) Each geodesic $\gamma(t)$ in X admits a Jacobi field $J(t)$ with $\sec (\dot{\gamma}, J)(t) \equiv 1$.

Proof. By Lemma 2.1, the sectional curvatures lie between 1 and R_{1221} pointwise, and every tangent 2-plane containing the vector w_{3} has curvature one. Proposition-(1) follows. By (2.2), $v \mapsto \nabla_{v} w_{3}$ is skew-symmetric, implying Proposition-(2). As Killing fields restrict to Jacobi fields, Proposition-(3) is immediate for geodesics that are not tangent to w_{3}.

For a geodesic $\gamma(t)$ tangent to w_{3}, first use the fact that if $\left\{x, y, w_{3}\right\}$ is an orthonormal frame at a point, then the function

$$
R\left(\cos (t) x+\sin (t) y, w_{3}, w_{3}, \cos (t) x+\sin (t) y\right)
$$

is identically one from which it follows that $R\left(x, w_{3}\right) w_{3}=x$. Now if $V(t)$ is a unit-orthogonal and parallel field along $\gamma(t)$, then $J(t)=(\cos (t)+\sin (t)) V(t)$ is a Jacobi field with the desired property.

3. The CVC transform

Let $\pi:\left(M_{c}, g_{0}\right) \rightarrow\left(S_{c}, s_{0}\right)$ and $\left\{\bar{e}_{i}\right\}_{i=1}^{3}$ be as in the introduction. Then

$$
\begin{equation*}
\left[\bar{e}_{1}, \bar{e}_{2}\right]=-2 \bar{e}_{3}, \quad\left[\bar{e}_{1}, \bar{e}_{3}\right]=(1-c) \bar{e}_{2}, \quad\left[\bar{e}_{2}, \bar{e}_{3}\right]=-(1-c) \bar{e}_{1} \tag{3.1}
\end{equation*}
$$

This framing satisfies (2.1) with $\alpha=\beta=0$ and $k=(1-c)$. For $h \in C^{\infty}\left(S_{c}\right)$, let $s_{h}=\mathrm{e}^{-2 h} s_{0}$. The Gaussian curvature of s_{h} is

$$
K_{h}=\mathrm{e}^{2 h}\left(\Delta_{s_{0}} h+2(1-c)\right)
$$

where $\Delta_{s_{0}}$ is the Laplacian for $\left(S_{c}, s_{0}\right)$. By (2.3), the Laplacian of (M_{c}, g_{0}) is given by

$$
\begin{equation*}
\Delta g_{0}=\bar{e}_{1} \bar{e}_{1}+\bar{e}_{2} \bar{e}_{2}+\bar{e}_{3} \bar{e}_{3} \tag{3.2}
\end{equation*}
$$

For each $\phi \in C^{\infty}\left(S_{c}\right)$,

$$
\begin{equation*}
\Delta_{g_{0}} \pi^{*}(\phi)=\pi^{*}\left(\Delta_{s_{0}} \phi\right) \tag{3.3}
\end{equation*}
$$

Let $d s_{0}$ denote the Riemannian area form for s_{0} and define

$$
\mathcal{F}=\left\{h \in C^{\infty}\left(S_{c}\right) \mid \int_{S_{c}}\left(1-\mathrm{e}^{-2 h}\right) \mathrm{d} s_{0}=0\right\}
$$

For $h \in \mathcal{F}$ there exists $f \in C^{\infty}\left(S_{c}\right)$ such that

$$
\begin{equation*}
\Delta_{s_{0}} f=2\left(1-\mathrm{e}^{-2 h}\right) \tag{3.4}
\end{equation*}
$$

The derivation e_{3} annihilates $H=\pi^{*}(h), F=\pi^{*}(f)$, and $G=H+(1-c) F$.
Definition 3.1. The CVC-transform of g_{0} determined by $h \in \mathcal{F}$ is the orthonormalizing metric for the framing

$$
\begin{equation*}
e_{1}=\mathrm{e}^{H}\left(\bar{e}_{1}-\bar{e}_{2}(F) \bar{e}_{3}\right), e_{2}=\mathrm{e}^{H}\left(\bar{e}_{2}+\bar{e}_{1}(F) \bar{e}_{3}\right), e_{3}=\bar{e}_{3} \tag{3.5}
\end{equation*}
$$

Given $h \in \mathcal{F}$, let g_{h} denote the CVC-transform of g_{0} determined by h.
Proposition 3.1. Let $\pi:\left(M_{c}, g_{0}\right) \rightarrow\left(S_{c}, s_{0}\right)$ be a locally homogeneous Riemannian submersion as described above. For each $h \in \mathcal{F}$, the CVC-transform g_{h} of g_{0} satisfies
(1) The map π is a Riemannian submersion between $\left(M_{c}, g_{h}\right)$ and $\left(S_{c}, s_{h}\right)$.
(2) The three-manifold (M_{c}, g_{h}) has CVC(1) with scalar curvature function $S_{h}=2 \lambda_{h}+4$ where $\lambda_{h}=\pi^{*}\left(K_{h}\right)-3$.
(3) Each complete geodesic $\gamma(t)$ in $\left(M_{c}, g_{h}\right)$ admits a Jacobi field $J(t)$ with $\sec (\dot{\gamma}, J)(t) \equiv 1$.

Proof. Let $\left\{e_{i}\right\}_{i=1}^{3}$ be the orthonormal framing for g_{h} defined in (3.5). Part (1) of the Proposition is immediate from the fact that $e_{3}=\bar{e}_{3}$ and (3.5).

As a preliminary step in proving part (2) of the Proposition, use (3.2)-(3.4) to deduce

$$
\begin{equation*}
\bar{e}_{1}\left(\bar{e}_{1}(F)\right)+\bar{e}_{2}\left(\bar{e}_{2}(F)\right)=2\left(1-\mathrm{e}^{-2 H}\right) \tag{3.6}
\end{equation*}
$$

Routine, but tedious, calculations using (3.1), (3.5), and (3.6) imply

$$
\left[e_{1}, e_{2}\right]=-e_{2}(G) e_{1}+e_{1}(G) e_{2}-2 e_{3}, \quad\left[e_{1}, e_{3}\right]=(1-c) e_{2}, \quad\left[e_{2}, e_{3}\right]=-(1-c) e_{1}
$$

These bracket relations and Proposition 2.2-(1) show that (M_{c}, g_{h}) has $\operatorname{CVC}(1)$. To evaluate its scalar curvature, first set $\lambda_{h}=\sec \left(e_{1}, e_{2}\right)$. By (2.4)-(2.5), it suffices to prove that $\lambda_{h}=\pi^{*}\left(K_{h}\right)-3$, where $K_{h}=\mathrm{e}^{2 h}\left(\Delta_{\bar{s}} h+2(1-c)\right)$ is the Gaussian curvature of $\left(S_{c}, s_{h}\right)$. By [10], $\pi^{*}\left(K_{h}\right)=\lambda_{h}+\frac{3}{4}\left\|\left[e_{1}, e_{2}\right]^{v}\right\|^{2}=\lambda_{h}+3$, concluding the proof of part (2) of the Proposition.

Part (3) of the Proposition is immediate from Proposition 2.2-(3), concluding the proof.

Remark 3.1. The function space \mathcal{F} corresponds with the quotient of $C^{\infty}\left(S_{c}\right)$ by the constant functions. For $f \in C^{\infty}\left(S_{c}\right)$, let $A_{f}=\operatorname{Area}\left(S_{c}, s_{f}\right)$. The map $C^{\infty}\left(S_{c}\right) \rightarrow \mathcal{F}$ defined by $g \mapsto g-\frac{\ln \left(A_{0}\right)-\ln \left(A_{f}\right)}{2}$ is the natural bijection.

Remark 3.2. If $h_{0}, h_{1} \in \mathcal{F}$ and $s \in[0,1]$, then $h_{s}=-\frac{1}{2} \ln \left((1+s) \mathrm{e}^{-2 h_{0}}+s \mathrm{e}^{-2 h_{1}}\right) \in \mathcal{F}$. It follows that the space of transformed metrics $\left\{g_{h} \mid h \in \mathcal{F}\right\}$ is path-connected.

Remark 3.3. The authors of [7] prescribe K_{h} in the conformal class of s_{0}, up to a diffeomorphism of S_{c} and the GaussBonnet obstruction. As such, there is considerable freedom in prescribing the scalar curvatures of compact CVC(1) threemanifolds.

References

[1] W. Ballmann, Nonpositively curved manifolds of higher rank, Ann. of Math. (2) 122 (3) (1985) 597-609.
[2] R. Bettiol, B. Schmidt, Three-manifolds with many flat planes, Trans. Amer. Math. Soc. (2017), in press, https://doi.org/10.1090/tran/6961.
[3] K. Burns, R. Spatzier, Manifolds of nonpositive curvature and their buildings, Publ. Math. IHÉS 65 (1987) 35-59.
[4] C. Connell, A characterization of hyperbolic rank one negatively curved homogeneous spaces, Geom. Dedic. 128 (2002) 221-246.
[5] D. Constantine, 2-frame flow dynamics and hyperbolic rank-rigidity in nonpositive curvature, J. Mod. Dyn. 2 (4) (2008) 719-740.
[6] U. Hamenstädt, A geometric characterization of negatively curved locally symmetric spaces, J. Differ. Geom. 34 (1) (1991) $193-221$.
[7] J. Kazdan, F. Warner, Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures, Ann. of Math. (2) 101 (1975) 317-331.
[8] S. Lin, Curvature free rigidity for higher rank three-manifolds, arXiv preprint.
[9] S. Lin, B. Schmidt, Manifolds with many hyperbolic planes, arXiv preprint.
[10] B. O'Neill, The fundamental equations of a submersion, Mich. Math. J. 13 (4) (1966) 459-469.
[11] B. Schmidt, R. Shankar, R. Spatzier, Positively curved manifolds with large spherical rank, Comment. Math. Helv. 85 (2016) $259-271$.
[12] B. Schmidt, J. Wolfson, Three manifolds of constant vector curvature, Indiana Univ. Math. J. 63 (2014) 1757-1783.
[13] B. Schmidt, J. Wolfson, Complete curvature homogeneous metrics on $S L_{2}(\mathbb{R})$, Pac. J. Math. 273 (2015) 499-509.
[14] K. Sekigawa, On the Riemannian manifolds of the form $B \times_{f} F$, Kodai Math. Semin. Rep. 26 (1975) 343-347.
[15] K. Shankar, R. Spatzier, B. Wilking, Spherical rank rigidity and Blaschke manifolds, Duke Math. J. 128 (2005) 65-81.
[16] R. Spatzier, M. Strake, Some examples of higher rank manifolds of nonnegative curvature, Comment. Math. Helv. 65 (1990) $299-317$.
[17] W. Watkins, The higher rank rigidity theorem for manifolds with no focal points, Geom. Dedic. 164 (2013) 319-349.

[^0]: E-mail address: schmidt@math.msu.edu (B. Schmidt).
 1 The first author was partially supported by NSF grant DMS-1207655.

