Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Differential geometry

Three-manifolds of constant vector curvature one

Variétés de dimension trois à courbure vectorielle constante un

Benjamin Schmidt¹, Jon Wolfson

Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA

ARTICLE INFO

Article history: Received 20 December 2016 Accepted after revision 2 March 2017 Available online 21 March 2017

Presented by the Editorial Board

ABSTRACT

A Riemannian manifold has $CVC(\epsilon)$ if its sectional curvatures satisfy $\sec \le \epsilon$ or $\sec \ge \epsilon$ pointwise, and if every tangent vector lies in a tangent plane of curvature ϵ . We present a construction of an infinite-dimensional family of compact CVC(1) three-manifolds.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Une variété riemannienne est dite $CVC(\epsilon)$ si sa courbure sectionnelle satisfait ponctuellement sec $\leq \epsilon$ ou sec $\geq \epsilon$ et si chaque vecteur tangent appartient à un plan tangent de courbure ϵ . Nous construisons une famille de dimension infinie de variétés compactes de dimension 3, qui sont CVC(1).

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

A Riemannian manifold has *constant vector curvature* ε if every tangent vector lies in a 2-plane of curvature ε and has *pointwise extremal curvature* ε if the sectional curvatures satisfy sec $\geq \varepsilon$ or sec $\leq \varepsilon$ pointwise. A manifold has $CVC(\varepsilon)$ when it has both constant vector curvature ε and pointwise extremal curvature ε .

The study of $CVC(\varepsilon)$ manifolds began with [12], motivated by rank-rigidity theorems as in [1–6,8,11,15–17]. Classification results in [12] demonstrate the rigid nature of *finite volume* $CVC(\varepsilon)$ three-manifolds with $\varepsilon \leq 0$. When $\varepsilon = -1$, they are all locally homogeneous. When $\varepsilon = 0$, components of non-isotropic points admit Riemannian product decompositions. These rigidity results fail without the finite volume assumption by [9,13,14].

Here, we illustrate the relative flexibility of this curvature condition when $\varepsilon > 0$. We construct an infinite-dimensional family of *compact* CVC(1) three-manifolds. These manifolds also satisfy the following spherical rank condition: Each geodesic $\gamma(t)$ admits a Jacobi field J(t) with $\sec(\dot{\gamma}, J)(t) \equiv 1$. Contrastingly, in dimension three, only the spherical space forms satisfy the (a posteriori more stringent) spherical rank condition obtained by replacing Jacobi fields with parallel fields [8].

Our construction "deforms" compact locally homogeneous three-manifolds admitting a Riemannian submersion to a constant curvature surface. For $c \in \mathbb{R}$, let *G* denote SU(2), the Heisenberg group, or $SL_2(\mathbb{R})$ when c < 1, c = 1, or c > 1,

http://dx.doi.org/10.1016/j.crma.2017.03.001

E-mail address: schmidt@math.msu.edu (B. Schmidt).

¹ The first author was partially supported by NSF grant DMS-1207655.

¹⁶³¹⁻⁰⁷³X/© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

respectively. Let Γ be a cocompact lattice in *G*. The parameter *c* and lattice Γ determine the deformed Riemannian submersion:

The group G admits a left-invariant framing $\{e_1, e_2, e_3\}$ with

$$[e_1, e_2] = -2e_3, \quad [e_1, e_3] = (1 - c)e_2, \quad [e_2, e_3] = -(1 - c)e_1.$$

This framing is orthonormal for a metric satisfying

(1) every tangent plane containing the vector e_3 has curvature 1,

- (2) the tangent plane spanned by e_1 and e_2 has curvature $\lambda = -(2c + 1)$,
- (3) all sectional curvatures lie between 1 and $\boldsymbol{\lambda},$ and
- (4) the vector field e_3 is Killing.

By (1) and (3), the metric Lie group *G* has CVC(1). By (4), the e_3 -orbit space Σ admits a metric making the orbit map $G \to \Sigma$ a Riemannian submersion; this metric has constant Gaussian curvature $K = \lambda + 3 = 2(1 - c)$ by [10].

The lattice Γ acts by isometric left-translations on G with compact locally homogeneous quotient (M_c, g_0) . The invariant framing $\{e_1, e_2, e_3\}$ induces an orthonormal framing $\{\bar{e}_1, \bar{e}_2, \bar{e}_3\}$ of (M_c, g_0) satisfying (1)–(4) above. Up to a finite cover of M_c , \bar{e}_3 generates a free circle action, inducing a Riemannian submersion $\pi : (M_c, g_0) \rightarrow (S_c, s_0)$ with target a compact surface of constant curvature 2(1 - c).

We regard (M_c, g_0) as a "model" CVC(1) three-manifold. The CVC *Transform* presented below deforms g_0 into a family of locally inhomogeneous CVC(1) metrics on M_c parameterized by a function space on S_c . While this construction shows that locally inhomogeneous CVC(1) metrics abound, preliminary analysis suggests that the following uniformization conjecture holds:

Conjecture. If (M, g) is a closed CVC(1) three-manifold, then the underlying smooth manifold M is a locally homogeneous space and admits a locally homogeneous CVC(1) metric as described above.

2. Frame certification of CVC(1)

Let $\{w_i\}_{i=1}^3$ be an orthonormal framing of (X^3, g) satisfying:

$$[w_1, w_2] = \alpha w_1 + \beta w_2 - 2w_3, \quad [w_1, w_3] = kw_2, \quad [w_2, w_3] = -kw_1, \tag{2.1}$$

with α , β smooth functions on X and $k \in \mathbb{R}$. By Koszul's formula,

$\nabla_{w_1} w_3 = w_2$	$\nabla_{w_2} w_3 = -w_1$	
$\nabla_{w_3} w_1 = (1-k)w_2$	$\nabla_{w_3} w_2 = -(1-k)w_1$	
$\nabla_{w_2} w_1 = -\beta w_2 + w_3$	$\nabla_{w_2} w_2 = \beta w_1$	(2.2)
$\nabla_{w_1}w_2 = \alpha w_1 - w_3$	$\nabla_{w_1} w_1 = -\alpha w_2$	
7	$\nabla_{w_3} w_3 = 0.$	

By (2.2), the Laplacian $\Delta = \sum_i w_i w_i - \nabla_{w_i} w_i$ and curvature components $R_{ijkl} = g(\nabla_{w_i} \nabla_{w_j} w_k - \nabla_{w_j} \nabla_{w_i} w_k - \nabla_{[w_i,w_j]} w_k, w_l)$ simplify as

$$\Delta = w_1 w_1 + w_2 w_2 + w_3 w_3 - \beta w_1 + \alpha w_2, \tag{2.3}$$

$$R_{1221} = (2k-3) - (w_2(\alpha) - w_1(\beta) + \alpha^2 + \beta^2),$$
(2.4)

$$R_{1331} = R_{2332} = 1, (2.5)$$

$$R_{1213} = R_{1223} = R_{1323} = 0. (2.6)$$

The symmetries $R_{ijkl} = R_{klij} = -R_{jikl}$ determine the remaining components.

Lemma 2.1. A 2-plane with unit-normal vector $n = \sum_{i=1}^{3} c_i w_i$ has sectional curvature sec $= c_1^2 + c_2^2 + c_3^2 R_{1221}$.

Proof. By (2.6), $\{w_i\}$ diagonalizes Ricci. Now substitute (2.5) into [12, Lemma 2.2].

Proposition 2.2. If (X^3, g) admits an orthonormal framing as in (2.1), then

(1) (X, g) is CVC(1).

(2) w_3 is Killing.

(3) Each geodesic $\gamma(t)$ in X admits a Jacobi field J(t) with $\sec(\dot{\gamma}, J)(t) \equiv 1$.

Proof. By Lemma 2.1, the sectional curvatures lie between 1 and R_{1221} pointwise, and every tangent 2-plane containing the vector w_3 has curvature one. Proposition-(1) follows. By (2.2), $v \mapsto \nabla_v w_3$ is skew-symmetric, implying Proposition-(2). As Killing fields restrict to Jacobi fields, Proposition-(3) is immediate for geodesics that are *not* tangent to w_3 .

For a geodesic $\gamma(t)$ tangent to w_3 , first use the fact that if $\{x, y, w_3\}$ is an orthonormal frame at a point, then the function

$$R(\cos(t)x + \sin(t)y, w_3, w_3, \cos(t)x + \sin(t)y)$$

is identically one from which it follows that $R(x, w_3)w_3 = x$. Now if V(t) is a unit-orthogonal and parallel field along $\gamma(t)$, then $J(t) = (\cos(t) + \sin(t))V(t)$ is a Jacobi field with the desired property. \Box

3. The CVC transform

Let $\pi: (M_c, g_0) \to (S_c, s_0)$ and $\{\bar{e}_i\}_{i=1}^3$ be as in the introduction. Then

$$[\bar{e}_1, \bar{e}_2] = -2\bar{e}_3, \quad [\bar{e}_1, \bar{e}_3] = (1-c)\bar{e}_2, \quad [\bar{e}_2, \bar{e}_3] = -(1-c)\bar{e}_1. \tag{3.1}$$

This framing satisfies (2.1) with $\alpha = \beta = 0$ and k = (1 - c). For $h \in C^{\infty}(S_c)$, let $s_h = e^{-2h}s_0$. The Gaussian curvature of s_h is

$$K_h = e^{2h} (\Delta_{s_0} h + 2(1-c)),$$

where Δ_{s_0} is the Laplacian for (S_c, s_0) . By (2.3), the Laplacian of (M_c, g_0) is given by

$$\Delta_{g_0} = \bar{e}_1 \bar{e}_1 + \bar{e}_2 \bar{e}_2 + \bar{e}_3 \bar{e}_3. \tag{3.2}$$

For each $\phi \in C^{\infty}(S_c)$,

$$\Delta_{g_0} \pi^*(\phi) = \pi^*(\Delta_{s_0}\phi). \tag{3.3}$$

Let ds_0 denote the Riemannian area form for s_0 and define

$$\mathcal{F} = \{h \in C^{\infty}(S_c) \mid \int_{S_c} (1 - e^{-2h}) \, \mathrm{d}s_0 = 0\}.$$

For $h \in \mathcal{F}$ there exists $f \in C^{\infty}(S_c)$ such that

$$\Delta_{s_0} f = 2(1 - e^{-2h}). \tag{3.4}$$

The derivation e_3 annihilates $H = \pi^*(h)$, $F = \pi^*(f)$, and G = H + (1 - c)F.

Definition 3.1. The CVC-transform of g_0 determined by $h \in \mathcal{F}$ is the orthonormalizing metric for the framing

$$e_1 = e^H(\bar{e}_1 - \bar{e}_2(F)\bar{e}_3), \ e_2 = e^H(\bar{e}_2 + \bar{e}_1(F)\bar{e}_3), \ e_3 = \bar{e}_3.$$
 (3.5)

Given $h \in \mathcal{F}$, let g_h denote the CVC-transform of g_0 determined by h.

Proposition 3.1. Let $\pi : (M_c, g_0) \to (S_c, s_0)$ be a locally homogeneous Riemannian submersion as described above. For each $h \in \mathcal{F}$, the CVC-transform g_h of g_0 satisfies

- (1) The map π is a Riemannian submersion between (M_c, g_h) and (S_c, s_h) .
- (2) The three-manifold (M_c, g_h) has CVC(1) with scalar curvature function $S_h = 2\lambda_h + 4$ where $\lambda_h = \pi^*(K_h) 3$.
- (3) Each complete geodesic $\gamma(t)$ in (M_c, g_h) admits a Jacobi field J(t) with $\sec(\dot{\gamma}, J)(t) \equiv 1$.

Proof. Let $\{e_i\}_{i=1}^3$ be the orthonormal framing for g_h defined in (3.5). Part (1) of the Proposition is immediate from the fact that $e_3 = \bar{e}_3$ and (3.5).

As a preliminary step in proving part (2) of the Proposition, use (3.2)-(3.4) to deduce

$$\bar{e}_1(\bar{e}_1(F)) + \bar{e}_2(\bar{e}_2(F)) = 2(1 - e^{-2H}).$$
(3.6)

Routine, but tedious, calculations using (3.1), (3.5), and (3.6) imply

$$[e_1, e_2] = -e_2(G)e_1 + e_1(G)e_2 - 2e_3, \ [e_1, e_3] = (1 - c)e_2, \ [e_2, e_3] = -(1 - c)e_1.$$

These bracket relations and Proposition 2.2-(1) show that (M_c, g_h) has CVC(1). To evaluate its scalar curvature, first set $\lambda_h = \sec(e_1, e_2)$. By (2.4)–(2.5), it suffices to prove that $\lambda_h = \pi^*(K_h) - 3$, where $K_h = e^{2h}(\Delta_{\bar{s}}h + 2(1 - c))$ is the Gaussian curvature of (S_c, s_h) . By [10], $\pi^*(K_h) = \lambda_h + \frac{3}{4} \| [e_1, e_2]^{\vee} \|^2 = \lambda_h + 3$, concluding the proof of part (2) of the Proposition.

Part (3) of the Proposition is immediate from Proposition 2.2-(3), concluding the proof. \Box

Remark 3.1. The function space \mathcal{F} corresponds with the quotient of $C^{\infty}(S_c)$ by the constant functions. For $f \in C^{\infty}(S_c)$, let $A_f = \operatorname{Area}(S_c, s_f)$. The map $C^{\infty}(S_c) \to \mathcal{F}$ defined by $g \mapsto g - \frac{\ln(A_0) - \ln(A_f)}{2}$ is the natural bijection.

Remark 3.2. If $h_0, h_1 \in \mathcal{F}$ and $s \in [0, 1]$, then $h_s = -\frac{1}{2} \ln((1+s)e^{-2h_0} + se^{-2h_1}) \in \mathcal{F}$. It follows that the space of transformed metrics $\{g_h \mid h \in \mathcal{F}\}$ is path-connected.

Remark 3.3. The authors of [7] prescribe K_h in the conformal class of s_0 , up to a diffeomorphism of S_c and the Gauss–Bonnet obstruction. As such, there is considerable freedom in prescribing the scalar curvatures of compact CVC(1) three-manifolds.

References

- [1] W. Ballmann, Nonpositively curved manifolds of higher rank, Ann. of Math. (2) 122 (3) (1985) 597-609.
- [2] R. Bettiol, B. Schmidt, Three-manifolds with many flat planes, Trans. Amer. Math. Soc. (2017), in press, https://doi.org/10.1090/tran/6961.
- [3] K. Burns, R. Spatzier, Manifolds of nonpositive curvature and their buildings, Publ. Math. IHÉS 65 (1987) 35-59.
- [4] C. Connell, A characterization of hyperbolic rank one negatively curved homogeneous spaces, Geom. Dedic, 128 (2002) 221–246.
- [5] D. Constantine, 2-frame flow dynamics and hyperbolic rank-rigidity in nonpositive curvature, J. Mod. Dyn. 2 (4) (2008) 719-740.
- [6] U. Hamenstädt, A geometric characterization of negatively curved locally symmetric spaces, J. Differ. Geom. 34 (1) (1991) 193-221.
- [7] J. Kazdan, F. Warner, Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures, Ann. of Math. (2) 101 (1975) 317–331.
- [8] S. Lin, Curvature free rigidity for higher rank three-manifolds, arXiv preprint.
- [9] S. Lin, B. Schmidt, Manifolds with many hyperbolic planes, arXiv preprint.
- [10] B. O'Neill, The fundamental equations of a submersion, Mich. Math. J. 13 (4) (1966) 459-469.
- [11] B. Schmidt, R. Shankar, R. Spatzier, Positively curved manifolds with large spherical rank, Comment. Math. Helv. 85 (2016) 259–271.
- [12] B. Schmidt, J. Wolfson, Three manifolds of constant vector curvature, Indiana Univ. Math. J. 63 (2014) 1757–1783.
- [13] B. Schmidt, J. Wolfson, Complete curvature homogeneous metrics on $SL_2(\mathbb{R})$, Pac. J. Math. 273 (2015) 499–509.
- [14] K. Sekigawa, On the Riemannian manifolds of the form $B \times_f F$, Kodai Math. Semin. Rep. 26 (1975) 343–347.
- [15] K. Shankar, R. Spatzier, B. Wilking, Spherical rank rigidity and Blaschke manifolds, Duke Math. J. 128 (2005) 65-81.
- [16] R. Spatzier, M. Strake, Some examples of higher rank manifolds of nonnegative curvature, Comment. Math. Helv. 65 (1990) 299–317.
- [17] W. Watkins, The higher rank rigidity theorem for manifolds with no focal points, Geom. Dedic. 164 (2013) 319–349.