Ordinary differential equations/Partial differential equations

Blow-up solutions for a general class of the second-order differential equations on the half line

Solutions non bornées d'une classe générale d'équations différentielles du second ordre sur la demi-droite

Angelo R.F. de Holanda
Universidade Federal de Campina Grande, Unidade Acadêmica de Matemática, CEP:58109-970, Campina Grande - PB, Brazil

A R T I CLE IN F O

Article history:

Received 12 July 2016
Accepted after revision 6 March 2017
Available online 11 March 2017
Presented by the Editorial Board

Abstract

In this paper, we study the existence of positive blow-up solutions for a general class of the second-order differential equations and systems, which are positive radially symmetric solutions to many elliptic problems in \mathbb{R}^{N}. We explore fixed point arguments applied to suitable integral equations to get solutions.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉS U M É

Nous étudions dans ce texte l'existence de solutions positives, non bornées, pour une classe générale d'équations et systèmes différentiels du second ordre. Il s'agit de solutions à symétrie radiale, positives, de maints problèmes elliptiques dans \mathbb{R}^{N}. Pour obtenir ces solutions, nous passons par des arguments de point fixe pour des opérateurs intégraux adéquats.
© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this short paper, we investigate the existence of positive blow-up solutions for the following class of second-order differential equations

$$
\begin{equation*}
\left(r^{\alpha}\left|u^{\prime}(r)\right|^{\beta} u^{\prime}(r)\right)^{\prime}=\lambda r^{\gamma} f\left(r, u(r),\left|u^{\prime}(r)\right|\right), \quad r>0 \tag{P}
\end{equation*}
$$

and for the system

$$
\left\{\begin{array}{l}
\left(r^{\alpha_{1}}\left|u^{\prime}(r)\right|^{\beta_{1}} u^{\prime}(r)\right)^{\prime}=\lambda r^{\gamma_{1}} f_{1}\left(r, u(r), v(r),\left|u^{\prime}(r)\right|,\left|v^{\prime}(r)\right|\right), \quad r>0 \tag{S}\\
\left(r^{\alpha_{2}}\left|v^{\prime}(r)\right|^{\beta_{2}} v^{\prime}(r)\right)^{\prime}=\mu r^{\gamma_{2}} f_{2}\left(r, u(r), v(r),\left|u^{\prime}(r)\right|,\left|v^{\prime}(r)\right|\right), \quad r>0,
\end{array}\right.
$$

[^0]where λ and μ are real parameters, $\alpha, \alpha_{i}, \beta, \beta_{i}, \gamma$ and $\gamma_{i}(i=1,2)$ are real constants. The functions $f: \overline{\mathbb{R}}_{+} \times \mathbb{R}_{+} \times \overline{\mathbb{R}}_{+} \longrightarrow$ $\overline{\mathbb{R}}_{+}, f_{i}: \overline{\mathbb{R}}_{+} \times \mathbb{R}_{+} \times \mathbb{R}_{+} \times \overline{\mathbb{R}}_{+} \times \overline{\mathbb{R}}_{+} \longrightarrow \overline{\mathbb{R}}_{+},(i=1,2)$ are positive continuous and $\mathbb{R}_{+}=(0, \infty), \overline{\mathbb{R}}_{+}=[0, \infty)$.

A function $u: \overline{\mathbb{R}_{+}} \longrightarrow \mathbb{R}_{+}$is said to be a solution to problem (P) if

$$
r^{\alpha}\left|u^{\prime}(r)\right|^{\beta} u^{\prime}(r) \in C^{1}\left(\overline{\mathbb{R}}_{+}\right), \lim _{r \rightarrow 0} r^{\alpha}\left|u^{\prime}(r)\right|^{\beta} u^{\prime}(r)=0 \text { if } \alpha<0
$$

and u satisfies equation (P) and similarly the pair $(u, v): \overline{\mathbb{R}_{+}} \longrightarrow \mathbb{R}_{+}$is a solution to the system (S) if

$$
\begin{aligned}
& r^{\alpha_{1}}\left|u^{\prime}(r)\right|^{\beta_{1}} u^{\prime}(r), r^{\alpha_{2}}\left|v^{\prime}(r)\right|^{\beta_{2}} v^{\prime}(r) \in C^{1}\left(\overline{\mathbb{R}}_{+}\right), \\
& \lim _{r \rightarrow 0} r^{\alpha_{1}}\left|u^{\prime}(r)\right|^{\beta_{1}} u^{\prime}(r)=\lim _{r \rightarrow 0} r^{\alpha_{2}}\left|v^{\prime}(r)\right|^{\beta_{2}} v^{\prime}(r)=0 \text { if } \alpha_{i}<0, i=1,2
\end{aligned}
$$

and (u, v) satisfies the system (S).
The problems (P) and (S) are models of many elliptic problems when we are looking for radially symmetric solutions. For instance, if $\alpha=N-k, \beta=k-1$ and $\gamma=N-1$ with $k=1,2, \ldots, N$, then positive blow-up solutions to (P) are solutions to the problem

$$
\left\{\begin{array}{l}
S_{k}\left(D^{2} u\right)=\lambda C(N, k) f(|x|, u,|\nabla u|) \text { in } \mathbb{R}^{N} \tag{1.1}\\
u>0 \text { in } \mathbb{R}^{N}, \\
u \longrightarrow \infty \text { as }|x| \longrightarrow \infty
\end{array}\right.
$$

where $S_{k}\left(D^{2} u\right)$ is the k-Hessian Operator and $C(N, k)=(N-1)!/(N-k)!(k-1)!k$, which includes as a special case the Monge-Ampère Operator when $k=N$.

The second problem studied is related to the following system,

$$
\left\{\begin{array}{l}
\operatorname{div}\left(a_{1}(x)|\nabla u|^{\beta_{1}} \nabla u\right)=\lambda b_{1}(x) f_{1}(|x|, u, v,|\nabla u|,|\nabla v|) \text { in } \mathbb{R}^{N}, \tag{1.2}\\
\operatorname{div}\left(a_{2}(x)|\nabla v|^{\beta_{2}} \nabla v\right)=\mu b_{2}(x) f_{2}(|x|, u, v,|\nabla u|,|\nabla v|) \text { in } \mathbb{R}^{N}, \\
u, v>0 \text { in } \mathbb{R}^{N}, \\
u, v \longrightarrow \infty \text { as }|x| \longrightarrow \infty
\end{array}\right.
$$

where $a_{i}(x)=|x|^{k_{i}}, b_{i}(x)=|x|^{l_{i}}$ with $k_{i}, l_{i} \in \mathbb{R}$ and $\alpha_{i}=k_{i}+N-1, \gamma_{i}=l_{i}+N-1(i=1,2)$. Here we would like to attract the reader's attention to the fact that functions a_{i} and b_{i} may be singular at the origin. When $k_{i}=l_{i}=0$ and $\beta_{1}=p-2$, $\beta_{2}=q-2$ with $1<p, q<\infty$, we obtain a (p, q)-Laplacian System.

Besides the problems (1.1), (1.2) and their versions for system and simple equation, respectively, we believe that our methods also can be applied with slight modifications of (P) and (S) to establish the existence of large solutions defined on the whole space \mathbb{R}^{N} for other classes of quasilinear problems like

$$
\Delta_{\phi} u=\lambda f(|x|, u,|\nabla u|) \text { in } \mathbb{R}^{N}
$$

and systems

$$
\left\{\begin{array}{l}
\Delta_{\phi_{1}} u=\lambda f_{1}(|x|, u, v,|\nabla u|,|\nabla v|) \text { in } \mathbb{R}^{N} \\
\Delta_{\phi_{2}} v=\mu f_{2}(|x|, u, v,|\nabla u|,|\nabla v|) \text { in } \mathbb{R}^{N}
\end{array}\right.
$$

where $\Delta_{\phi} u:=\operatorname{div}(\phi(|\nabla u|) \nabla u)$, is the ϕ-Laplacian operator (see, Fukagai and Narukawa [2]).
The problems (P) and (S) considered here were motivated by Covei [1], Zhang and Zhou [5] (see also Zhang [4]); these authors discussed the case in which the right-hand side does not depend on the gradient ∇u. Furthermore, we are able to treat more general classes of quasilinear equations.

Now, inspired by Kuzano and Swanson [3], we assume the following hypotheses.
First of all, we consider $i \in\{0,1,2\}, \alpha_{i}^{+}:=\max \left(\alpha_{i}, 0\right), \alpha_{i}^{-}:=\max \left(0,-\alpha_{i}\right)$ and define the auxiliary function

$$
\phi_{i}(t):=\frac{\beta_{i}+1}{\alpha_{i}^{-}+\beta_{i}+1} t^{\left(\alpha_{i}^{-}+\beta_{i}+1\right) /\left(\beta_{i}+1\right)}, t \geq 0
$$

where $\alpha_{0}=\alpha, \beta_{0}=\beta, \gamma_{0}=\gamma$ and $\phi_{0}=\phi$.
(h1) Suppose that $\beta_{i}>-1$ and $\gamma_{i} \geq \alpha_{i}^{+}$.
(h2) $f(t, x, z)$ is a nondecreasing function with respect to x and z for a fixed values of the other variables. That is, the functions $x \mapsto f(t, x, z)$ and $z \mapsto f(t, x, z)$ are nondecreasing, for fixed (t, z) and fixed (t, x) respectively.
(h3) $f_{i}(t, x, y, z, w), i=1,2$ is a nondecreasing function with respect to x, y, z and w for fixed values of the other variables.
(h4) There exists a constant $\delta>0$ such that

$$
\int_{0}^{\infty} t^{\gamma-\alpha^{+}} f\left(t, \delta(\phi(t)+1), \delta \phi^{\prime}(t)\right) \mathrm{d} t<\infty
$$

(h5) There exist constants $\delta_{i}>0$ such that

$$
\int_{0}^{\infty} t^{\gamma_{i}-\alpha_{i}^{+}} f_{i}\left(t, \delta_{1}\left(\phi_{1}(t)+1\right), \delta_{2}\left(\phi_{2}(t)+1\right), \delta_{1} \phi_{1}^{\prime}(t), \delta_{2} \phi_{2}^{\prime}(t)\right) \mathrm{d} t<\infty, i=1,2 .
$$

Our aim is to find increasing solutions u of (P) and increasing solutions (u, v) of (S) respectively subject to the initial conditions $u(0)=\xi$ and $(u(0), v(0))=\left(\xi_{1}, \xi_{2}\right)$, for some positive values of ξ, ξ_{1} and ξ_{2}. Thus, any solution u to (P) is a function such that $u^{\prime}(r)>0$ if $r>0$ and satisfies the integral equation

$$
u(r)=\xi+\int_{0}^{r}\left(\lambda s^{-\alpha} \int_{0}^{s} t^{\gamma} f\left(t, u(t), u^{\prime}(t)\right) \mathrm{d} t\right)^{1 / \beta+1} \mathrm{~d} s, r>0
$$

Similarly, any solution (u, v) of (S) is such that u and v are increasing functions of the variable r and satisfies the following system of integral equations

$$
\left\{\begin{array}{l}
u(r)=\xi_{1}+\int_{0}^{r}\left(\lambda s^{-\alpha_{1}} \int_{0}^{s} t^{\gamma_{1}} f_{1}\left(t, u(t), v(t), u^{\prime}(t), v^{\prime}(t)\right) \mathrm{d} t\right)^{1 / \beta_{1}+1} \mathrm{~d} s, r>0 \tag{1.3}\\
v(r)=\xi_{2}+\int_{0}^{r}\left(\mu s^{-\alpha_{2}} \int_{0}^{s} t^{\gamma_{2}} f_{2}\left(t, u(t), v(t), u^{\prime}(t), v^{\prime}(t)\right) \mathrm{d} t\right)^{1 / \beta_{2}+1} \mathrm{~d} s, r>0 .
\end{array}\right.
$$

Our main results are as follows.
Theorem 1.1. Assume (h1) with $i=0$, (h2) and (h4). Then there is $\Lambda>0$ such that for each $\lambda \in(0, \Lambda]$ and for each $\xi \in(0, \delta]$, problem (P) admits increasing solution u satisfying

$$
\begin{aligned}
& \xi \leq u(r) \leq \xi(\phi(r)+1), r \geq 0 \\
& u(r) \longrightarrow \infty \quad \text { as } \quad r \longrightarrow \infty
\end{aligned}
$$

and u is strictly convex if $\alpha \leq 0$.
Theorem 1.2. Assume (h1) with $i=1,2$, (h3) and (h5). Then there is $\Lambda>0$ such that for each $\lambda, \mu \in(0, \Lambda]$ and for each $\xi_{1}, \xi_{2} \in$ $(0, \delta]$, problem (S) admits increasing solution (u, v) satisfying

$$
\begin{aligned}
& \xi_{1} \leq u(r) \leq \xi_{1}\left(\phi_{1}(r)+1\right), \quad \xi_{2} \leq v(r) \leq \xi_{2}\left(\phi_{2}(r)+1\right), \quad r \geq 0 \\
& u(r) \longrightarrow \infty, \quad v(r) \longrightarrow \infty \quad \text { as } \quad r \longrightarrow \infty
\end{aligned}
$$

and (u, v) is strictly convex if $\alpha_{1}, \alpha_{2} \leq 0$.

2. Proof of Theorem 1.1

For a fixed choice of ξ in the interval $(0, \delta]$ and λ a small positive parameter, the solutions to (P) are fixed points of the compact operator

$$
(F u)(r)=\xi+\int_{0}^{r}\left(\lambda s^{-\alpha} \int_{0}^{s} t^{\gamma} f\left(t, u(t), u^{\prime}(t)\right) \mathrm{d} t\right)^{1 / \beta+1} \mathrm{~d} s
$$

on the closed convex set

$$
\mathcal{C}=\left\{u \in C^{1}\left(\overline{\mathbb{R}}_{+}\right) ; u(0)=\xi, 0 \leq u^{\prime}(r) \leq \xi \phi^{\prime}(r), r \geq 0\right\}
$$

In order to prove that $F: \mathcal{C} \longrightarrow C^{1}\left(\overline{\mathbb{R}}_{+}\right)$has a fixed point, we need consider a countable family of semi-norms

$$
p_{n}(u):=\max _{r \in I_{n}}\left\{|u(r)|,\left|u^{\prime}(r)\right|\right\}, I_{n}:=[0, n], n=1,2,3, \ldots
$$

and the invariant complete metric

$$
\begin{equation*}
d\left(u, u_{0}\right)=\sum_{n=1}^{\infty} \frac{2^{-n} p_{n}\left(u-u_{0}\right)}{1+p_{n}\left(u-u_{0}\right)} ; u, u_{0} \in C^{1}\left(\overline{\mathbb{R}}_{+}\right), \tag{2.1}
\end{equation*}
$$

under which the space $C^{1}\left(\overline{\mathbb{R}}_{+}\right)$becomes a Fréchet space. For simplicity, we denote this topology by C^{1}, that is $C^{1}:=$ $\left(C^{1}\left(\overline{\mathbb{R}}_{+}\right), d\right)$.

Preliminary results

Now we present some auxiliary results that will be used. The first lemma is a well-known inequality, which is obtained from Mean Value Theorem, whose proof we omit.

Lemma 2.1. Let $\sigma>-1$. There exists a constant $C_{\sigma}>0$ such that

$$
\begin{equation*}
\left||x|^{\sigma} x-|y|^{\sigma} y\right| \leq C_{\sigma}\left(|x|^{\sigma}+|y|^{\sigma}\right)|x-y| \tag{2.2}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$.
Lemma 2.2. Suppose (h1) with $i=0$, (h2) and (h4) and let $\xi \in(0, \delta]$. There exists $\Lambda>0$ such that if $\lambda \in(0, \Lambda]$ then $F \mathcal{C} \subset \mathcal{C}$.
Proof. Assume that ξ is fixed such that $0<\xi \leq \delta$. For any $u \in \mathcal{C}$ we have $(F u)(0)=\xi$. From $\left(h_{2}\right)$ and $\left(h_{4}\right)$, there is $M>0$ such that

$$
\lambda \int_{0}^{\infty} t^{\gamma-\alpha^{+}} f\left(t, \xi(\phi(t)+1), \xi \phi^{\prime}(t)\right) \mathrm{d} t \leq \lambda M, \lambda>0
$$

Hence, there exist $\Lambda>0$ such that

$$
\lambda \int_{0}^{\infty} t^{\gamma-\alpha^{+}} f\left(t, \xi(\phi(t)+1), \xi \phi^{\prime}(t)\right) \mathrm{d} t \leq \xi^{\beta+1}
$$

for all $\lambda \in(0, \Lambda]$. Since $u \in \mathcal{C}$, then $u(r) \leq \xi(\phi(r)+1), r>0$. It follows from (h_{4}) that

$$
\begin{aligned}
0 \leq(F u)^{\prime}(r) & =\left(\lambda r^{-\alpha} \int_{0}^{r} t^{\gamma} f\left(t, u(t), u^{\prime}(t)\right) \mathrm{d} t\right)^{1 / \beta+1} \\
& \leq r^{\frac{\alpha^{-}}{\beta+1}}\left(\lambda \int_{0}^{\infty} t^{\gamma-\alpha^{+}} f\left(t, \xi(\phi(t)+1), \xi \phi^{\prime}(t)\right) \mathrm{d} t\right)^{1 / \beta+1} \\
& \leq \xi \phi^{\prime}(r), \quad r \geq 0
\end{aligned}
$$

From the above analysis, $F \mathcal{C} \subset \mathcal{C}$.
Lemma 2.3. $F: \mathcal{C} \longrightarrow C^{1}\left(\overline{\mathbb{R}}_{+}\right)$is continuous in the C^{1}-topology.
Proof. Let $\left\{u_{j}\right\} \subset \mathcal{C}$ and $u \in \mathcal{C}$ such that $d\left(u_{j}, u\right) \longrightarrow 0$. It follows that $f\left(r, u_{j}, u_{j}^{\prime}\right) \longrightarrow f\left(r, u, u^{\prime}\right)$ uniformly on I_{n}. Then, given any $\epsilon>0$, there is a positive integer $J_{0}=J_{0}(\epsilon, n)$ such that

$$
\left|r^{\gamma-\alpha^{+}}\left\{f\left(r, u_{j}, u_{j}^{\prime}\right)-f\left(r, u, u^{\prime}\right)\right\}\right|<\frac{\epsilon}{n^{1+\alpha^{-}}}, j \geq J_{0}, r \in I_{n}
$$

Therefore

$$
\left|r^{-\alpha} \int_{0}^{r} t^{\gamma} f\left(r, u_{j}, u_{j}^{\prime}\right) \mathrm{d} t-r^{-\alpha} \int_{0}^{r} t^{\gamma} f\left(r, u, u^{\prime}\right) \mathrm{d} t\right| \leq r^{\alpha^{-}} \int_{0}^{r}\left|t^{\gamma-\alpha^{+}}\left\{f\left(r, u_{j}, u_{j}^{\prime}\right)-f\left(r, u, u^{\prime}\right)\right\}\right| \mathrm{d} t<\epsilon
$$

for $j \geq J_{0}$ and $r \in I_{n}$. Then we get the convergences $\left(F u_{j}\right)^{\prime} \longrightarrow(F u)^{\prime},\left(F u_{j}\right) \longrightarrow(F u)$ uniformly on I_{n}. Thus $p_{n}\left(F u_{j}-\right.$ $F u) \longrightarrow 0$, which implies that $d\left(F u_{j}, F_{u}\right) \longrightarrow 0$. So F is continuous.

Lemma 2.4. $F \mathcal{C} \subset \mathcal{C}$ is relatively compact in the C^{1}-topology.

Proof. Set $[F \mathcal{C}]=\{F u / u \in \mathcal{C}\},[F \mathcal{C}]^{\prime}=\left\{(F u)^{\prime} / u \in \mathcal{C}\right\}$ and note that they are uniformly bounded. Now, we show [FC] and $[F \mathcal{F}]^{\prime}$ is locally equicontinuous. Let $r_{1}, r_{2} \in[a, b]$ with $0 \leq r_{1}<r_{2}$. Thus

$$
\left|(F u)\left(r_{2}\right)-(F u)\left(r_{1}\right)\right| \leq \xi\left(\phi\left(r_{2}\right)-\phi\left(r_{1}\right)\right)
$$

from which $[F C]$ is equicontinuous in any $[a, b] \subset \overline{\mathbb{R}}_{+}$. On the other hand,

$$
\left|(F u)^{\prime}\left(r_{2}\right)-(F u)^{\prime}\left(r_{1}\right)\right|=\left|\left(r_{2}^{-\alpha} \int_{0}^{r_{2}} t^{\gamma} f\left(t, u, u^{\prime}\right) \mathrm{d} t\right)^{\frac{1}{\beta+1}}-\left(r_{1}^{-\alpha} \int_{0}^{r_{1}} t^{\gamma} f\left(t, u, u^{\prime}\right) \mathrm{d} t\right)^{\frac{1}{\beta+1}}\right|
$$

From inequality (2.2) with $\sigma+1=\frac{1}{\beta+1}$,

$$
\begin{aligned}
\left|(F u)^{\prime}\left(r_{2}\right)-(F u)^{\prime}\left(r_{1}\right)\right| \leq & C_{\sigma}\left|\left(r_{2}^{-\alpha} \int_{0}^{r_{2}} t^{\gamma} f\left(t, u, u^{\prime}\right) \mathrm{d} t\right)^{\sigma}+\left(r_{1}^{-\alpha} \int_{0}^{r_{1}} t^{\gamma} f\left(t, u, u^{\prime}\right) \mathrm{d} t\right)^{\sigma}\right| \\
& \left|\left(r_{2}^{-\alpha} \int_{0}^{r_{2}} t^{\gamma} f\left(t, u, u^{\prime}\right) \mathrm{d} t\right)-\left(r_{1}^{-\alpha} \int_{0}^{r_{1}} t^{\gamma} f\left(t, u, u^{\prime}\right) \mathrm{d} t\right)\right|
\end{aligned}
$$

Next, we will divide our study into two cases:
Case 1: $\sigma \geq 0$ (that is $-1<\beta \leq 0$).
Since $u \in \mathcal{C}$ and $\xi \in(0, \delta]$ it follows that

$$
\left|(F u)^{\prime}\left(r_{2}\right)-(F u)^{\prime}\left(r_{1}\right)\right| \leq C_{\sigma}\left|\left(r_{2}^{-\alpha} \int_{0}^{r_{2}} t^{\gamma} f\left(t, u, u^{\prime}\right) \mathrm{d} t\right)-\left(r_{1}^{-\alpha} \int_{0}^{r_{1}} t^{\gamma} f\left(t, u, u^{\prime}\right) \mathrm{d} t\right)\right|
$$

for all $r_{1}, r_{2} \in[a, b]$. Consider the function $g(r):=r^{-\alpha} \int_{0}^{r} t^{\gamma} f\left(t, u, u^{\prime}\right) \mathrm{d} t$ and notice that

$$
\left.\left|g^{\prime}(r)\right| \leq(1+|\alpha|) b^{\gamma-\alpha} f\left(r, \delta(\phi(r)+1), \delta \phi^{\prime}(r)\right)\right), r \in[a, b] .
$$

Thus, $\sup _{r \in[a, b]}\left|g^{\prime}(r)\right|<\infty$ and by the Mean Value Theorem,

$$
\left|(F u)^{\prime}\left(r_{2}\right)-(F u)^{\prime}\left(r_{1}\right)\right| \leq C_{\sigma}\left|r_{2}-r_{1}\right| \text { with } r_{1}, r_{2} \in[a, b] .
$$

Implying the equicontinuity of $[F \mathcal{C}]^{\prime}$ on any $[a, b] \subset \overline{\mathbb{R}}_{+}$.
Case 2: $-1<\sigma<0$ (that is $\beta>0$).
Now, if $[a, b] \subset \overline{\mathbb{R}}_{+}$with $0<a_{0} \leq a$, then we proceed as in the Case 1 . On the other hand, if $a=0$, since the function $h:[0,1] \longrightarrow \mathbb{R} ; h(g)=g^{\sigma+1}, 0<\sigma+1<1$ is Hölder continuous and $\lim _{r \rightarrow 0} g(r)=0$, we have

$$
\left|(F u)^{\prime}\left(r_{2}\right)-(F u)^{\prime}\left(r_{1}\right)\right|=\left|\left(g\left(r_{2}\right)\right)^{\sigma+1}-\left(g\left(r_{1}\right)\right)^{\sigma+1}\right| \leq C\left|g\left(r_{2}\right)-g\left(r_{1}\right)\right|^{\sigma+1}
$$

and once again, by the Mean Value Theorem we obtain the equicontinuity of $[F \mathcal{C}]^{\prime}$ on any $[0, b]$.
Therefore, from Ascoli's Theorem, it follows that $[F \mathcal{C}]$ and $[F \mathcal{C}]^{\prime}$ are relatively compact in any compact interval of $\overline{\mathbb{R}}_{+}$. Consequently, by a diagonal argument, we conclude that $F \mathcal{C}$ is relatively compact in the C^{1}-topology.

Proof of Theorem 1.1 (closing)

By Lemma 2.2, we have $\overline{F \mathcal{C}} \subset \overline{\mathcal{C}}=\mathcal{C}$, thus $\widetilde{\mathcal{C}}:=\overline{\operatorname{Conv}}(\overline{F \mathcal{C}}) \subset \mathcal{C}$ is compact and $F \widetilde{\mathcal{C}} \subset \widetilde{\mathcal{C}}$. Therefore, the Schauder-Tychonov fixed point theorem implies that $F \mid \widetilde{\mathcal{C}}: \widetilde{\mathcal{C}} \longrightarrow \widetilde{\mathcal{C}}$ has a fixed point. Then, there is $u \in \mathcal{C}$ such that

$$
u(r)=\xi+\int_{0}^{r}\left(\lambda s^{-\alpha} \int_{0}^{s} t^{\gamma} f\left(t, u(t), u^{\prime}(t)\right) \mathrm{d} t\right)^{1 / \beta+1} \mathrm{~d} s
$$

It follows that $u^{\prime}(r) \geq 0, r \geq 0, u^{\prime}(0)=0$ and

$$
\xi \leq u(r) \leq \xi(\phi(r)+1), r \geq 0
$$

Furthermore, u satisfies

$$
\left(\left(u^{\prime}(r)\right)^{\beta+1}\right)^{\prime}+\frac{\alpha}{r}\left(u^{\prime}(r)\right)^{\beta+1}=\lambda r^{\gamma-\alpha} f\left(r, u, u^{\prime}\right), r \geq 0
$$

If $\alpha \leq 0$, we have $u^{\prime \prime}(r)>0$ for all $r>0$ since

$$
(\beta+1)\left(u^{\prime}(r)\right)^{\beta+1} u^{\prime \prime}(r) \geq \lambda r^{\gamma-\alpha} f\left(r, u, u^{\prime}\right)>0, r>0
$$

from where it follows that u is strictly convex. On the other hand, given $\alpha>0$ we obtain $r_{0}>0$ such that

$$
\alpha<\frac{\lambda r_{0}^{\gamma-\alpha+1}}{\xi^{\beta+1}} \inf _{r \in\left[r_{0}, \infty\right)} f(r, \xi, 0)
$$

and again $u^{\prime \prime}(r)>0$ for all $r>r_{0}$. Hence,

$$
u(r) \geq u^{\prime}\left(r_{0}\right)\left(r-r_{0}\right) \longrightarrow \infty \text { if } r \longrightarrow \infty
$$

3. Proof of Theorem 1.2

To find solutions to the system (S), consider the mapping

$$
I(u, v)=\left(F_{1}(u, v), F_{2}(u, v)\right)
$$

defined by the system of integral equations

$$
\begin{aligned}
& F_{1}(u, v)(r)=\xi_{1}+\int_{0}^{r}\left(\lambda s^{-\alpha_{1}} \int_{0}^{s} t^{\gamma_{1}} f_{1}\left(t, u(t), v(t), u^{\prime}(t), v^{\prime}(t)\right) \mathrm{d} t\right)^{1 / \beta_{1}+1} \mathrm{~d} s \\
& F_{2}(u, v)(r)=\xi_{2}+\int_{0}^{r}\left(\mu s^{-\alpha_{2}} \int_{0}^{s} t^{\gamma_{2}} f_{2}\left(t, u(t), v(t), u^{\prime}(t), v^{\prime}(t)\right) \mathrm{d} t\right)^{1 / \beta_{2}+1} \mathrm{~d} s,
\end{aligned}
$$

on the closed convex set $\mathcal{C}:=\mathcal{C}_{1} \times \mathcal{C}_{2}$, where

$$
\mathcal{C}_{i}=\left\{u \in C^{1}\left(\overline{\mathbb{R}}_{+}\right) ; u(0)=\xi_{i}, 0 \leq u^{\prime}(r) \leq \phi_{i}^{\prime}(r), r \geq 0\right\}, i=1,2
$$

Similar to what was done previously, $I: \mathcal{C} \longrightarrow C^{1} \times C^{1}$ is well defined, is continuous, and $I \mathcal{C} \subset \mathcal{C}$ is relatively compact in the C^{1}-topology by considering the metric $d^{\prime}\left(\left(u, u_{0}\right),\left(v, v_{0}\right)\right)=d\left(u, u_{0}\right)+d\left(v, v_{0}\right)$ where d is given by (2.1). We can then apply the Schauder-Tychonov fixed point theorem to conclude that there exists an element $(u, v) \in \mathcal{C}$ such that $I(u, v)=(u, v)$. Thus (u, v) satisfies (1.3), and hence also (u, v) is a solution to the original system (S). To finish the proof, we proceed as in the proof of the Theorem 1.1.

Acknowledgements

The author is grateful to the anonymous referees for a number of helpful comments and suggestions for the improvement of this work.

References

[1] D.-P. Covei, A necessary and sufficient condition for the existence of the positive radial solutions to Hessian equations and systems with weights, Acta Math. Sci. 37B (1) (2017) 47-57.
[2] N. Fukagai, K. Narukawa, On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems, Ann. Math. 186 (2007) 539-564.
[3] T. Kusano, C. Swanson, Existence theorems for elliptic Monge-Ampère equations in the plane, Differ. Integral Equ. 3 (1990) 487-493.
[4] Z. Zhang, Existence of positive radial solutions for quasilinear elliptic equations and systems, Electron. J. Differ. Equ. 50 (2016) 1-9.
[5] Z. Zhang, S. Zhou, Existence of entire positive k-convex solutions to Hessian equations and systems with weights, Appl. Math. Lett. 50 (2015) 48-55.

[^0]: E-mail address: angelo@mat.ufcg.edu.br.
 http://dx.doi.org/10.1016/j.crma.2017.03.003
 1631-073X/© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

