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In this note, under an additional condition, we present an alternative proof of a stability 
theorem for the boundary asymptotics of the Bergman kernel due to T. Ohsawa. Our 
method relies on the localization of the minimum integral related to the weighted Bergman 
kernel.
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r é s u m é

Dans cette note, nous présentons, sous une certaine condition additionnelle, une preuve 
alternative d’un théorème de stabilité pour le comportement asymptotique à la frontière 
du noyau de Bergman, démontré antérieurement par T. Ohsawa. Notre méthode s’appuie 
sur la localisation de l’intégrale minimale liée au noyau de Bergman à poids.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

In complex differential geometry, the study of holomorphic invariants has been motivated by a desire to be able to 
comprehend intrinsic values of sub-domains of complex manifolds. For this reason, the Bergman kernel and its boundary 
behavior have been extensively studied on various types of domains in Cn , including pseudoconvex domains and those 
of D’Angelo finite type (see [2,7] and the references therein). In particular, the boundary behavior of the Bergman kernel 
of weakly pseudoconvex domains in Cn motivated the celebrated Ohsawa–Takegoshi L2 extension theorem [8] on Stein 
manifolds. Recently, Błocki [1] and Guan, Zhou, and Zhu [3] obtained independently sharp estimates on this L2 extension 
theorem. These results have rekindled the interest in the L2 extension theorem and its application. For instance, Ohsawa 
posed the following problem.
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Problem. Let D = {z : ρ(z) < 0} be a domain in Cn with a C2-smooth boundary, and let D0 be a sub-domain of D defined by

D0 = {z = (z′, zn) ∈C
n−1 ×C : ψ(z) + log |zn|2 < 0},

where ψ(w) = − log(−ρ(w)) for all w ∈ D. Then, find a condition so that, up to constant multiples,

lim
(z′,0)→∂ D0∩{zn=0}

K D0((z′,0), (z′,0))

K D ′,ψ (z′, z′)
= 1,

where K D ′,ψ (z′, w ′) is the weighted Bergman kernel of D ′ = D ∩ {zn = 0} with respect to the weight ψ .

T. Ohsawa recently gave an affirmative answer to this problem together with a refinement of his extension result with 
negligible weights (see [7] and the references therein). In this note, we present yet another proof of his answer to the above 
problem with a further condition that ∂ D0 ∩ {zn = 0} are local holomorphic peak points. Our method essentially relies on a 
localizing argument of the minimum integral related to the weighted Bergman kernel.

We now briefly review some basics on a weighted version of the minimum integral below.

Definition 1. Let � be a domain in Cn and ϕ any continuous function in �. For a fixed ζ ∈ �, we define a minimum integral I�,ϕ
0 (ζ )

of � with the weight ϕ by setting

I�,ϕ
0 (ζ ) = inf

⎧⎨⎩
∫
�

| f (z)|2e−ϕ(z)dλ(z) : f ∈ A2
ϕ(�) and f (ζ ) = 1

⎫⎬⎭ ,

where dλ is the Lebesgue measure on � and A2
ϕ(�) :=O(�) ∩ L2

ϕ(�).

In a similar fashion to the unweighted case, the weighted Bergman kernel K�,ϕ on the diagonal can be represented as 
follows.

Proposition 2. Let � and ϕ be as above. Then the weighted Bergman kernel K�,ϕ satisfies

K�,ϕ(z, z) = sup
{
| f (z)|2 : f ∈ A2

ϕ(�) and ‖ f ‖L2
ϕ(�) ≤ 1

}
.

Proof. For each f ∈ A2
ϕ(�) such that ‖ f ‖L2

ϕ(�) ≤ 1, the reproducing property of K�,ϕ and the Cauchy–Schwarz inequality 
imply

| f (z)|2 = |〈 f , K�,ϕ(·, z)〉L2
ϕ(�)|2 ≤ ‖ f ‖2

L2
ϕ(�)

‖K�,ϕ(·, z)‖2
L2
ϕ(�)

= ‖ f ‖2
L2
ϕ(�)

K�,ϕ(z, z) ≤ K�,ϕ(z, z). (1)

This observation ensures that, if K�,ϕ(z, z) = 0, then f (z) ≡ 0 for all f ∈ A2
ϕ(�) such that ‖ f ‖2

L2
ϕ(�)

≤ 1. In the case when 

K�,ϕ(z, z) > 0, we define a function g by setting g(p) = K�,ϕ(p, z)/
√

K�,ϕ(z, z) for each p ∈ �. Then g satisfies the follow-
ing:

|g(z)|2 = K�,ϕ(z, z) and ‖g‖2
L2
ϕ(�)

= 1.

This, in conjunction with (1), completes the proof. �
Moreover, the following proposition shows that the minimum integral I�,ϕ

0 can be viewed as the reciprocal of the 
weighted Bergman kernel on the diagonal, provided K�,ϕ(p, p) does not vanish at p ∈ �.

Proposition 3. Let � and ϕ be as above. Then the minimum integral I�,ϕ
0 satisfies

I�,ϕ
0 (ζ ) = 1

K�,ϕ(ζ, ζ )
,

whenever K�,ϕ(ζ, ζ ) �= 0 for all ζ ∈ �.

Proof. Let us first fix a point ζ ∈ �. Then we define a function f by setting f (ξ) = K�,ϕ(ξ, ζ )/K�,ϕ(ζ, ζ ) for each ξ ∈ �. 
This function f clearly satisfies f (ζ ) = 1. Since moreover∫

| f (ξ)|2e−ϕ(ξ)dλ(ξ) = 1

K�,ϕ(ζ, ζ )
,

�
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it follows that I�,ϕ
0 (ζ ) ≤ 1/K�,ϕ(ζ, ζ ). For the opposite inequality, we note that for each z ∈ �,

| f (z)|2 = |〈 f , K�,ϕ(·, z)〉L2
ϕ(�)|2 ≤ ‖ f ‖2

L2
ϕ(�)

‖K�,ϕ(·, z)‖2
L2
ϕ(�)

= ‖ f ‖2
L2
ϕ(�)

K�,ϕ(z, z). (2)

Then substitute z = ζ into the relation (2) to obtain

1

K�,ϕ(ζ, ζ )
= | f (ζ )|2

K�,ϕ(ζ, ζ )
≤ ‖ f ‖2

L2
ϕ(�)

. (3)

Thus taking the infimum of the right-hand side of (3), we eventually reach that

1

K�,ϕ(ζ, ζ )
≤ I�,ϕ

0 (ζ ),

as desired. �
We now state our first main result, which is a weighted version of the localization of the minimum integral in [5].

Theorem 4. Let � be a smoothly bounded pseudoconvex domain in Cn. Suppose that p ∈ ∂� is a local holomorphic peak point and ϕ
is plurisubharmonic on �. Then for any neighborhood U of p in Cn, we have

lim
ζ→p

I�∩U,ϕ
0 (ζ )

I�,ϕ
0 (ζ )

= 1. (4)

Exploiting this localization argument of the minimum integral related to the weighted Bergman kernel, we next come to 
the following second main result of this note.

Theorem 5. Let � be a smoothly bounded pseudoconvex domain in Cn and ρ a defining function of �. Let H� be a subset of a complex 
hypersurface defined by

H� = � ∩
{

z = (z′, zn) ∈C
n−1 ×C : H(z) = 0

}
�= ∅

for a continuous function H. We denote by ̃� a sub-domain of � such that

�̃ = {z ∈ � : − log(−ρ(z)) + 2 log |H(z)| < 0}
and ψ(z) := − log(−ρ(z)) is plurisubharmonic on �̃. In particular, we have H� = H�̃ . Suppose that p ∈ ∂� ∩ H� is a local holo-
morphic peak point; there exist a neighborhood U of p and a biholomorphism 
 from ̃� ∩U onto a bounded Hartogs domain

D :=
{
(z̃′, z̃n) ∈ P1
(H�̃ ∩ U) ×C ⊂ C

n−1 ×C : |z̃n|2 < ψ ◦ 
−1(z̃′,0) for a projection P1(z̃′, z̃n) := z̃′}
satisfying that ψ̃

∣∣∣
D∩{

z̃n=0
} := ψ |H�∩U ◦ 
−1 and 
(p) ∈ ∂ D ∩ 
(H� ∩U). Then we have

lim
ζ→p

K�̃(ζ, ζ )

K H�,ψ(ζ, ζ )
= 1

π
.

We remark that in the case when �̃ = D and H(z′, zn) = zn , the conclusion of Theorem 5 reduces to the conclusion of 
Theorem 0.2 of T. Ohsawa [7] with a further assumption that p is a local holomorphic peak point which is necessary for 
the localization arguments in this note.

2. Proofs

2.1. Proof of Theorem 4

Throughout what follows, we use the same notation as in Theorem 4. Let h be a local holomorphic peak function at 
p ∈ ∂� and U the associated neighborhood of the point p as above. Now we choose another open neighborhood V of p
such that V � U and h �= 0 on V . Then there is a constant s ∈ (0, 1) such that |h| ≤ s on the closure � ∩ (U\V). Let us next 
choose a cut-off function χ ∈ C∞

0 (U) such that χ = 1 on V and 0 ≤ χ ≤ 1 on U .
Now we shall utilize a L. Hörmander’s estimate in [4] to get an upper bound of the ratio of the minimum integrals with 

a weight function in (4). In order to take this end, we first fix a point ζ ∈ V . Let us define a plurisubharmonic function ϕ̃
on � by setting ϕ̃(z) = (2n + 2) log |z − ζ | for the previously fixed point ζ ∈ V . Since ϕ is chosen as a plurisubharmonic 
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function on � in our assumption, we note that ϕ + ϕ̃ is also plurisubharmonic on �. Given any function f ∈ A2
ϕ(� ∩U), we 

define a smooth closed (0, 1)-form α ∈ L2
ϕ(�) ∩ L2

ϕ+ϕ̃
(�) by setting α = ∂̄(χ f hk) for each k ≥ 1. Since α is indeed equal to 

(∂̄χ) f hk from its definition, it follows that

supp(α) ⊂ � ∩ (U\V). (5)

By adopting Theorem 4.4.2 of L. Hörmander [4], we obtain a solution u to the equation ∂̄u = α on � such that∫
�

|u(z)|2e−ϕ(z)−ϕ̃(z)(1 + |z|2)−2
dλ(z) ≤

∫
�

|α(z)|2e−ϕ(z)−ϕ̃(z)dλ(z) < ∞. (6)

This relation also holds if we replace ϕ + ϕ̃ by ϕ . The choice of f ∈ A2
ϕ(� ∩U) and the relation (5) ensure the finiteness of 

the integral in (6). Taking the infimum of 1/(1 + |z|2)2
on � in (6), one can show that∫

�

|u(z)|2e−ϕ(z)−ϕ̃(z)dλ(z) ≤ sup
z∈�

(1 + |z|2)2
∫
�

|α(z)|2e−ϕ(z)−ϕ̃(z)dλ(z).

We denote by C and C̃ the values of sup
z∈�

(1 + |z|2)2
and sup

z∈�∩(U\V)

1/|z − ζ |2n+2, respectively. Since α ∈ L2
ϕ(�) ∩ L2

ϕ+ϕ̃
(�), 

we see that∫
�

|u(z)|2e−ϕ(z)−ϕ̃(z)dλ(z) ≤ C

∫
�

|α(z)|2e−ϕ(z)−α̃(z)dλ(z) ≤ CC̃

∫
�∩(U\V)

|α(z)|2e−ϕ(z)dλ(z) < ∞. (7)

In particular, (7) forces u to satisfy u(ζ ) = 0 for the fixed point ζ ∈ V . Moreover, the boundedness of � implies that there 
exists a constant C1 > 0 such that∫

�

|u(z)|2e−ϕ(z)(1 + |z|2)−2
dλ(z) ≥ C1

∫
�

|u|2e−ϕ(z)dλ(z). (8)

From (5) and the fact that |h| ≤ s ∈ (0, 1), it follows that there exists a constant C2 > 0 such that∫
�

|α(z)|2e−ϕ(z)dλ(z) =
∫

�∩(U\V)

|∂̄χ(z)|2| f (z)|2|h(z)|2ke−ϕ(z)dλ(z)

≤ C2

∫
�∩(U\V)

| f (z)|2|h(z)|2ke−ϕ(z)dλ(z)

≤ C2s2k‖ f ‖2
L2
ϕ(�∩U)

.

(9)

Combining (8) with (9), we deduce that∫
�

|u(z)|2e−ϕ(z)dλ(z) ≤ 1

C1

∫
�

|u(z)|2e−ϕ(z)(1 + |z|2)−2
dλ(z)

≤ 1

C1

∫
�

|α(z)|2e−ϕ(z)dλ(z)

≤ C2

C1
s2k‖ f ‖2

L2
ϕ(�∩U)

.

(10)

Now we shall define a function Fk on � by setting Fk = χ f hk − u for each k ≥ 1. Then the linearity of A2
ϕ(�) yields 

Fk ∈ A2
ϕ(�). More precisely, using (10), we have

‖Fk‖L2
ϕ(�) ≤ ‖χ f hk‖L2

ϕ(�) + ‖u‖L2
ϕ(�)

≤ ‖ f hk‖L2
ϕ(�∩U) + ‖u‖L2

ϕ(�)

≤ ‖ f ‖L2
ϕ(�∩U) + ‖u‖L2

ϕ(�)

≤
(

1 +
√

C2

C1
s2k

)
‖ f ‖L2

ϕ(�∩U).

(11)
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We shall choose a function f so that f is the minimizing function for I�∩U
0 (ζ ), that is, ‖ f ‖2

L2
ϕ(�∩U)

= I�∩U ,ϕ
0 (ζ ) and 

f (ζ ) = 1. Let us define a function g on � by setting g = Fk

hk(ζ )
. Then this function g satisfies that g ∈ A2

ϕ(�) and g(ζ ) = 1. 

From the property of the minimum integral in Definition 1, it follows that

I�,ϕ
0 (ζ ) ≤ ‖g‖2

L2
ϕ(�)

≤

(
1 +

√
C2

C1
s2k

)2

|h(ζ )|2k
‖ f ‖2

L2
ϕ(�∩U)

=

(
1 +

√
C2

C1
s2k

)2

|h(ζ )|2k
I�∩U,ϕ
0 (ζ );

hence,

I�,ϕ
0 (ζ )

I�∩U,ϕ
0 (ζ )

≤

(
1 +

√
C2

C1
s2k

)2

|h(ζ )|2k
. (12)

Since the function h is chosen as a local holomorphic peak function at p ∈ ∂�, (12) implies that

lim
ζ→p

sup
I�,ϕ
0 (ζ )

I�∩U,ϕ
0 (ζ )

≤
(

1 +
√

C2

C1
s2k

)2

. (13)

Then, letting k → +∞ in (13), we get

lim
ζ→p

sup
I�,ϕ
0 (ζ )

I�∩U,ϕ
0 (ζ )

≤ 1. (14)

In addition, it is inferred from the monotone increasing property of the minimum integral that the opposite inequality

I�,ϕ
0 (ζ )

I�∩U,ϕ
0 (ζ )

≥ 1.

Thus, combining (14) with the previous relation, we complete the proof.

2.2. Proof of Theorem 5

Throughout what follows, we use the same notation as in Theorem 5. By employing the localization argument of the 
minimum integral related to the Bergman kernel in [5], we note that

K�̃(ζ, ζ ) = K�̃∩U (ζ, ζ ) (15)

as ζ tends to p. Then, combining Theorem 4 with (15), it follows that

lim
ζ→p

K�̃(ζ, ζ )

K H�,ψ(ζ, ζ )
= lim

ζ→p

K�̃∩U (ζ, ζ )

K H�∩U,ψ (ζ, ζ )
. (16)

Applying the transformation formulas for the Bergman kernel and the weighted Bergman kernel to (16), one can deduce 
that

lim
ζ→p

K�̃∩U (ζ, ζ )

K H�∩U,ψ (ζ, ζ )
= lim

ζ→p

|det Jac(
, ζ )|2 K
(�̃∩U)(
(ζ ),
(ζ ))

|det Jac(
, ζ )|2 K
(H�∩U),ψ̃ (
(ζ ),
(ζ ))
= lim

ζ→p

K D(
(ζ ),
(ζ ))

K D∩{|z̃n|=0},ψ̃ (
(ζ ),
(ζ ))
.

Thus we conclude that

lim
ζ→p

K�̃(ζ, ζ )

K H�,ψ(ζ, ζ )
= lim

ζ→p

K D(
(ζ ),
(ζ ))

K D∩{|z̃n|=0},ψ̃ (
(ζ ),
(ζ ))
= 1

π

by using the Forelli–Rudin construction in [6].
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