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We investigate the discrete spectrum behaviour for the 2d Pauli operator with nonconstant 
magnetic field, perturbed by a sign-indefinite self-adjoint electric potential that decays 
polynomially at infinity. A localisation of the eigenvalues and new asymptotics are 
established.
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r é s u m é

Cette note est consacrée à l’étude du comportement des valeurs propres (discrètes) 
associées à l’opérateur de Pauli 2d en présence d’un champ magnétique non constant 
et d’un potentiel électrique autoadjoint de signe non fixé qui décroît polynomialement à 
l’infini. De nouvelles asymptotiques sur les valeurs propres sont obtenues en plus de leur 
localisation sur le spectre.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and results

We consider a quantum spin- 1
2 non-relativistic particle submitted to an electromagnetic field and described by the Pauli 

operator
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H(b, V ) :=
(

(−i∇ − A)2 − b 0
0 (−i∇ − A)2 + b

)
+ V on L2(R2,C2), (1.1)

where V = V (x), x ∈ R
2, is a 2 × 2 Hermitian matrix-valued potential, and A is a vector potential generating the magnetic 

field b = ∇ ∧ A. We assume b = b(x) to be an admissible magnetic field in the sense that there exists a constant b0 > 0 such 
that

b(x) = b0 + b̃(x), (1.2)

with the Poisson equation �ϕ̃ = b̃ admitting a solution ϕ̃ ∈ C2(R2) satisfying supx∈R2 |Dαϕ̃(x)| < ∞ for α ∈ N, |α| ≤ 2. We 
refer for instance to [4] for examples of admissible magnetic fields.

In the unperturbed case where V = 0, the spectrum of H(b, 0) belongs to {0} ∪ [ζ, +∞) with ζ = 2b0e−2osc(ϕ̃) and 
osc(ϕ̃) := supx∈R2 ϕ̃(x) − infx∈R2 ϕ̃(x). Furthermore, 0 is an eigenvalue of infinite multiplicity (see, e.g., [4]). Notice that 
in the constant magnetic field case b = b0, we have ζ = 2b0 the first Landau level of the shifted Schrödinger operator 
(−i∇ − A)2 + b. The case where V is of definite sign has been already studied in [4]. In the present note, we are interested 
in the sign-indefinite potentials V of the form

V (x) :=
(

0 U (x)
U (x) 0

)
, for x ∈ R

2, (1.3)

where the function U (x) ∈ C satisfies

|U (x)| = O(〈x〉−m), 〈x〉 :=
√

1 + |x|2, for some m > 0. (1.4)

Remark. The potentials V of the form (1.3) are sign-indefinite since their eigenvalues are given by ±|U (x)|.

Under condition (1.4), V is relatively compact with respect to H(b, 0) so that σess
(

H(b, V )
) = σess

(
H(b, 0)

)
, where σess

denotes the essential spectrum. However, H(b, V ) may have a discrete spectrum σdisc
(

H(b, V )
)

that can accumulate at 0. 
The aim of this note is to study this discrete spectrum near the low-ground energy 0. The novelty of this work arises from 
sign-indefinite perturbations we consider and the behaviours we obtain. This is probably one of the first works dealing with 
sign-indefinite perturbations in a magnetic framework, see also the recent work [6] where the case of 3d Pauli operators 
are studied in a resonance point of view. We denote

H± := (−i∇ − A)2 ± b on L2(R2) := L2(R2,C), (1.5)

the component operators of the Pauli operator (1.1). Let p := p(b) be the orthogonal projection of L2(R2) onto the (infinite 
dimensional) kernel of H− . The corresponding projection in the constant magnetic field case will be denoted p0 := p(b0). 
For a bounded operator B ∈ L

(
L2(R2)

)
, we introduce the operator W(B) defined by(

W(B) f
)
(x) := U (x)B(U f )(x). (1.6)

If I denotes the identity operator on L2(R2), then W(I) is the multiplication operator by the function x 
−→ |U (x)|2. This 
function will be denoted W(I) again. Our results are strongly related to the operator W(B) through the Toepliz operator

pW(B)p, B = I or H−1+ . (1.7)

Since the spectrum of the invertible operator H+ belongs to [ζ, +∞) and U fulfils (1.4), then it follows from [4, Lemma 3.5]
that the positive self-adjoint operators pW(I)p and pW

(
H−1+

)
p are compact on L2(R2). For further use, let us introduce the 

following:

Assumption (A). The function U ∈ C1(R2) satisfies

0 ≤ U (x) ≤ C〈x 〉−m, |∇U (x)| ≤ C〈x 〉−m−1, x ∈R
2, (1.8)

for some constants C > 0, m > 0, and U (x) = U0
( x

|x|
)|x|−m(1 + o(1)), |x| → +∞, with 0 �≡ U0 ∈ C0(S1).

Integrated density of states (IDS): For x ∈ R
2, let χT ,x be the characteristic function of the square x + (T /2, T /2)2 with 

T > 0. Denote 1I (H−) the spectral projection of H− on the interval I ⊂ R. A non-increasing function g : R −→ [0, +∞) is 
called an IDS for the operator H− if it satisfies for any x ∈ R

2

g(t) = lim
T →∞ T −2 Tr

[
χT ,x1(−∞,t)(H−)χT ,x

]
,

for each point t of continuity of g (see, e.g., [4]).
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Remark. If b = b0 is constant, then there exists naturally an IDS for the operator H− given by

g(t) = b0

2π

∞∑
q=0

χR+(t − 2b0q), t ∈R, χR+(t) =
{

1 if t ∈R
+,

0 otherwise.

In the next results, the discrete eigenvalues of the operator H(b, eV ) are counted according to their multiplicity defined 
by (2.6), for which we conjecture that it coincides with the geometric multiplicity.

Theorem 1.1. Assume that V and U fulfil (1.3) and (1.4), respectively. Then, there exists a discrete set E ⊂R such that for any e ∈R \E
and any 0 < r0 � 1, the following holds:

(i) localization: if z is a discrete eigenvalue of H(b, eV ) near zero, then z ≤ 0;
(ii) asymptotic: Suppose that #

{
z ∈ σ(pW(H−1+ )p) : z ≥ r

} → +∞ as r ↘ 0. Then, there exists a positive sequence (r�)� tending to 
0 such that as � −→ ∞,

#
{

z ∈ σdisc (H(b, eV )) : −r0e2 ≤ z < −r�e2} = #
{

z ∈ σ(pW(H−1+ )p) : z ≥ r�

}(
1 + o(1)

); (1.9)

(iii) upper bound: assume that there exists an IDS g for the operator H− . If W(I) satisfies Assumption (A) and
Tr 1[r(1+ν),r(1−ν)]

(
pW(H−1+ )p

) = Tr 1[r,1]
(

pW(H−1+ )p
)(

o(1) +O(ν)
)

for any 0 < ν � 1, r ↘ 0, then,

lim sup
r↘0

#
{

z ∈ σdisc(H(b, eV )) : −r0e2 ≤ z < −re2
}

#
{

z ∈ σ
(
ζ−1 pW(I)p

) : z ≥ r
} ≤ 1. (1.10)

Furthermore, if the magnetic field is constant (i.e. b = b0), we obtain the following theorem.

Theorem 1.2.

(i) Assume that #
{

z ∈ σ
(
(p0Up0

)∗
p0Up0

)
: z ≥ 2rb0

} = φ(r)
(
1 + o(1)

)
, r ↘ 0, where φ

(
r(1 ± ν)

) = φ(r)
(
1 + o(1) +O(ν)

)
for 

any 0 < ν � 1. Suppose, moreover, that Tr 1[r,1]
(

p0W(H−1+ )p0
) = φ(r)

(
1 + o(1)

)
, φ(r) −→ +∞, r ↘ 0. Then, as r ↘ 0,

#
{

z ∈ σdisc(H(b0, eV )) : −r0e2 ≤ z < −re2} = #
{

z ∈ σ
((

p0Up0
)∗

p0Up0

)
: z ≥ 2rb0

}(
1 + o(1)

)
. (1.11)

(ii) Assume that U satisfies Assumption (A). Then, as r ↘ 0,

#
{

z ∈ σdisc(H(b0, eV )) : −r0e2 ≤ z < −re2} = #
{

z ∈ σ(p0Up0) : z ≥ (
2rb0

) 1
2
}(

1 + o(1)
)
. (1.12)

Remarks.

(i) The proof of Theorem 1.2, (ii) shows that #
{

z ∈ σ(p0W(H−1+ )p0) : z ≥ r
} → +∞ as r ↘ 0. Then, by Theorem 1.1, (ii), 

the asymptotic (1.9) holds with p = p0.
(ii) Notice that thanks to the asymptotics of [5, Lemma 3.3], (1.12) implies that the number of eigenvalues of the operator 

H(b0, eV ) near 0 satisfies

#
{

z ∈ σdisc
(

H(b0, eV )
) : −r0e2 ≤ z < −re2} = Cm

(
1

2b0

)1/m

r−1/m(
1 + o(1)

)
, (1.13)

as r ↘ 0, where

Cm := b0

4π

∫
S1

U0(t)
2/mdt. (1.14)

In particular, it holds from (1.13) that the eigenvalues of H(b0, eV ) less than −re2 accumulate at zero with an accumu-
lation rate of order r−1/m , whereas it was of order r−2/m for V of definite sign in [4].

(iii) Otherwise, we can expect that this kind of accumulation also occurs near all the Landau levels 2b0q, q ∈ N, of the 
operator H(b0, V ). However, the spectral analysis is more difficult due to the contribution of the half-Pauli operators 
H± near each Landau level 2b0q, q ∈N

∗ .
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2. Strategy of the proofs

We explain the main ideas of the proofs and the relationship between the initial operator and the new quantities we 
are going to introduce. First, let us introduce some useful notations. For H a separable Hilbert space, we denote S∞(H )

(resp. GL(H )) the set of compact (resp. invertible) linear operators in H . Let D ⊆ C be a connected open set, Z ⊂ D be 
a discrete and closed subset, A : D\Z −→ GL(H ) be a finite meromorphic operator-valued function (see, e.g., [2] and [3, 
Section 4]) and Fredholm at each point of Z . For an operator A that does not vanish on γ a positive oriented contour, the 
index of A with respect to γ is defined by

Indγ A := 1

2iπ
tr

∫
γ

A′(z)A(z)−1dz = 1

2iπ
tr

∫
γ

A(z)−1 A′(z)dz. (2.1)

2.1. Reduction of the problem

Let us consider the punctured disk D(0, ε)∗ := {
z ∈ C : 0 < |z| < ε

}
for 0 < ε < ζ . For z ∈ D(0, ε)∗ small enough, we 

have (
H(b, V ) − z

)(
I 0

−(H+ − z)−1U (H+ − z)−1

)
=

(
H− − z − U (H+ − z)−1U U (H+ − z)−1

0 I

)
,

so that the following characterisation holds:

H(b, V ) − z is invertible ⇔ H− − z − U (H+ − z)−1U is invertible. (2.2)

Thus, we reduce the study of the discrete eigenvalues of H(b, V ) near z = 0 to the analysis of the non-invertibility of the 
operator H− − z − U (H+ − z)−1U . It is not difficult to prove the following lemma, which gives a new representation of the 
operator U (H+ − z)−1U .

Lemma 2.1. For z small enough, the operator U(H+ − z)−1U admits the representation

U (H+ − z)−1U = w∗ (I + M(z)) w, (2.3)

where w := H−1/2
+ U and

z 
−→ M(z) := z
∑
k≥0

zk H−k−1+ (2.4)

is analytic near z = 0.

Let R−(z) denote the resolvent of the operator H− . We have the following:

Lemma 2.2. For z small enough, the operator-valued function

D(0, ε)∗ � z 
−→ TV (z) := (
I + M(z)

)
wR−(z)w∗,

is analytic with values in S∞
(
L2(R2)

)
.

Proof. Since M(z) and R−(z) are well defined and analytic for z in D(0, ε)∗ , then the analyticity of TV (z) follows. The 
compactness holds from that of U R−(z)U , by combining the diamagnetic inequality and [7, Theorem 2.13]. �

We have the following Birman–Schwinger principle:

Proposition 2.1. For z0 near zero, the following assertions are equivalent:

(i) z0 is a discrete eigenvalue of H(b, V ),
(ii) I − TV (z0) is not invertible.

Proof. Set R(z) := (
H− − z − U (H+ − z)−1U

)−1
. Then, the proof follows directly from (2.2), the fact that R(z) and 

(
I +

M(z)
)
wR(z)w∗ have the same poles (the discrete eigenvalues z) near 0, together with the identity(

I − (
I + M(z)

)
wR−(z)w∗)(

I + (
I + M(z)

)
wR(z)w∗) = I. � (2.5)
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In Proposition 2.1, (ii), z0 is said to be a characteristic value of the operator-valued function I − TV (·). Sometimes, by 
abuse of language, we will say that z0 is a characteristic value of the operator I − TV (z). The multiplicity of a discrete 
eigenvalue z0 is defined by

mult(z0) := Indγ

(
I − TV (·)

)
, (2.6)

where γ is a small positively oriented contour containing z0 as the unique discrete eigenvalue of H(b, V ) (see (2.1)). We 
will denote Z

(
I − TV (·)) the set of characteristic values of I − TV (·).

2.2. Sketch of proof of Theorem 1.1

As preparation, we point out some facts. Since p is the orthogonal projection onto ker H− and p⊥ := 1 − p, then we have

R−(z) = (H− − z)−1 p + (H− − z)−1 p⊥ = −z−1 p + (H− − z)−1 p⊥.

In particular, this implies that

TV (z) = −1

z
wpw∗ − z−1M(z)wpw∗ + (

I + M(z)
)
wR−(z)p⊥w∗. (2.7)

In the first term of the r.h.s. of (2.7), write the operator wpw∗ as wpw∗ = (pw∗)∗(pw∗). By the definition of w in 
Lemma 2.1, we have w∗w = U H−1+ U . Since σ(H+) ⊂ [ζ, ∞), then we have

(pw∗)(pw∗)∗ = pw∗wp = pW(H−1+ )p ≤ ζ−1 pW(I)p, (2.8)

where W(•) is the operator defined by (1.6). According to Proposition 2.1, the discrete eigenvalues z of the operator H(b, eV )

near 0 are the characteristic values of the operator I − TeV (z). Let us set K V (z) := wpw∗ − z A(z), where

A(z) := −z−1M(z)wpw∗ + (
I + M(z)

)
wR−(z)p⊥w∗. (2.9)

Thus, we have

I − TeV (z) = I + e2

z
K V (z) = I − K (e)

V (λ)

λ
, (2.10)

with the rescaling λ = −z/e2 and the operator K (e)
V (λ) defined by K (e)

V (λ) := K V (−λe2), so that K (e)
V (0) = K V (0) = wpw∗ . 

Moreover, 
(

K (e)
V

)′
(λ) = −e2 K ′

V (−λe2) so that 
(

K (e)
V

)′
(0) = −e2 K ′

V (0). Let �0 be the orthogonal projection onto ker K V (0). 
The compactness of the operator K ′

V (0)�0 implies the existence of a discrete set {en} ⊂ R finite or infinite such that the 
operator I + e2 K ′

V (0)�0 is invertible for each e ∈ E := R \ {en}. For L ∈ S∞
(
L2(R2)

)
, we set

n+(r, L) := rank 1[r,∞)(L), r > 0, (2.11)

where 1[r,∞)(L) is the spectral projection of L on the interval [r, ∞). We have

n+
(
r,wpw∗) = n+

(
r, pw∗wp

) = n+
(

r, pW
(

H−1+
)

p
)
, r > 0. (2.12)

Then, (2.8) implies that

n+
(
r,wpw∗) ≤ n+

(
r, ζ−1 pW(I)p

)
, r > 0. (2.13)

We return now to the proof of Theorem 1.1.

(i)–(ii): The claim (i) follows immediately from [1, Corollary 3.4] with z replaced by λ = −z/e2, thanks to (2.10). To deal 
with the claim (ii), introduce the sector Cα(a, a′) := {x + iy ∈ C : a ≤ x ≤ a′, −αx ≤ y ≤ αx}, with a > 0 tending to 0, 
a′ > 0 fixed, and α > 0. Proposition 2.1 together with (2.10) show that z is a discrete eigenvalue near zero if and only 
if λ is a characteristic value of I − TeV (−λe2). Moreover, the proof of (i) shows that for −r0e2 ≤ z < −re2, 0 < r0 � 1, 
the characteristic values λ = −z/e2 are concentrated in the sector λ ∈ Cα(r, r0) ∩ R, for any α > 0. Hence, by setting 
N

(
Cα(r, r0) ∩R

) := #
{
λ ∈Z

(
I − TeV (−λe2)

) : λ ∈ Cα(r, r0) ∩R
}

, one has

#
{

z ∈ σdisc
(

H(b, eV )
) : −r0e2 ≤ z < −re2} = N

(
Cα(r, r0) ∩R

) +O(1), 0 < r0 � 1. (2.14)

For an interval � ⊂R
∗ , let

n(�) := Tr 1�

(
K V (0)

)
, (2.15)

be the number of eigenvalues of the operator K V (0) lying in � and counted according to their multiplicity. In view of (2.13), 
we have n

([r, r0]
) ≤ n+

(
r, ζ−1 pW(I)p

)
, so that (ii) follows from (2.14) together with [1, Corollary 3.9] and (2.12).
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(iii): Concerning (iii), if there exists an IDS for the operator H− and if the function W(I) satisfies Assumption (A), then by [5, 
Lemma 3.3] we have n+

(
r, ζ−1 pW(I)p

) = C̃m(ζ r)−1/m
(
1 + o(1)

)
, r ↘ 0, for some constant C̃m > 0. Otherwise, [1, Theorem 

3.7] implies that for any ν > 0 small enough, there exists r(ν) > 0 such that for all 0 < r < r(ν), we have

N
(
Cα(r,1) ∩R

) = n
([r,1])(1 +O

(
ν| lnν|2)) +O

(| lnν|2)n
([r(1 − ν), r(1 + ν)]) +Oν(1), (2.16)

where the O’s are uniform with respect to r, ν but the Oν may depend on ν . Since we have n
([r, 1]) ≤ n+

(
r, ζ−1 pW(I)p

)
, 

then if Tr 1[r(1+ν),r(1−ν)]
(

pW(H−1+ )p
) = Tr 1[r,1]

(
pW(H−1+ )p

)(
o(1) + O (ν)

)
, we deduce from (2.16) that

N
(
Cα(r,1) ∩R

) ≤ n+
(

r, ζ−1 pW(I)p
)(

1 +O
(
ν| lnν|2))

+O
(| lnν|2)n+

(
r, ζ−1 pW(I)p

)(
o(1) +O(ν)

) +Oν(1).
(2.17)

Since N
(
Cα(r, r0) ∩R

) =N
(
Cα(r, 1) ∩R

) +O(1), then putting this together with (2.14) and (2.17), we get

lim sup
r↘0

#
{

z ∈ σdisc(H(b, eV )) : −r0e2 ≤ z < −re2
}

n+
(
r, ζ−1 pW(I)p

) ≤ 1 +O
(
ν| lnν|2) +O

(| lnν|2)O(ν).

Now, letting ν tend to 0, the claim (iii) follows immediately.

2.3. Sketch of the proof of Theorem 1.2

If the magnetic field is constant, then (2b0)−1 p0 = H−1+ p0 ≤ H−1+ . This implies that

(2b0)
−1(p0Up0

)∗(
p0Up0

) ≤ p0W
(

H−1+
)

p0. (2.18)

(i): If the assumptions of item (i) are satisfied, then we have

n
([

r(1 − ν), r(1 + ν)
]) = n

([r,1])(o(1) +O(ν)
)
,

0 < ν � 1. Since φ(r) −→ ∞, then it follows easily from (2.16) that

N
(
Cα(r,1) ∩R

) = n
([r,1])(1 + o(1)

) = φ(r)
(
1 + o(1)

)
, r ↘ 0. (2.19)

Now, (2.14) together with the identities N
(
Cα(r, r0) ∩R

) =N
(
Cα(r, 1) ∩R

) +O(1) and (2.19) give (i).

(ii): If the magnetic field is constant, remember that we have ζ = 2b0. Thus, if the function U satisfies U ≥ 0, then (2.13)
together with (2.18) imply that

n+
(
(2rb0)

1
2 , p0Up0

)
≤ n+

(
r, K V (0)

) ≤ n+
(
2rb0, p0W(I)p0

)
, r > 0. (2.20)

Recall that W(I) = |U |2 as function. Therefore, if U ≥ 0 satisfies Assumption (A), then [5, Lemma 3.3] implies that the l.h.s. 
and the r.h.s. quantities of (2.20) have the same first asymptotic term as r ↘ 0. Namely as r ↘ 0, n+

(
(2rb0)

1
2 , p0Up0

) =
Cm(2b0)

−1/mr−1/m
(
1 + o(1)

)
and n+

(
2rb0, p0W(I)p0

) = Cm(2b0)
−1/mr−1/m

(
1 + o(1)

)
, the constant Cm > 0 being defined by 

(1.14). This implies that

n+
(
r, K V (0)

) = Cm(2b0)
−1/mr−1/m(

1 + o(1)
)
, r ↘ 0. (2.21)

Then, (ii) follows from (2.14) together with [1, Corollary 3.11] and the identity N
(
Cα(r, r0) ∩R

) =N
(
Cα(r, 1) ∩R

) +O(1).
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