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The purpose of this article is to introduce a new functional of the domain, to be used 
in shape optimization problems as a means to enforce the constructibility of shapes by 
additive manufacturing processes. This functional aggregates the self-weights of all the 
intermediate structures of the shape appearing in the course of its layer-by-layer assembly. 
Its mathematical analysis is performed and an algorithm is proposed to accelerate the 
significant computational effort entailed by the implementation of these ideas. Eventually, 
a numerical validation and a concrete example are discussed.
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article under the CC BY-NC-ND license 
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r é s u m é

Nous introduisons dans cet article une nouvelle fonctionnelle dépendant du domaine 
qui, utilisée comme contrainte dans un problème d’optimisation de forme, impose la 
constructibilité par les procédés de fabrication additive. Cette fonctionnelle agrège les 
poids propres de toutes les structures intermédiaires de la forme mises en jeu au 
cours du processus d’assemblage par strates. Après son analyse mathématique, nous 
proposons un algorithme pour accélérer significativement les calculs coûteux entraînés par 
l’implémentation de ces idées. Une validation numérique ainsi qu’un exemple concret sont 
enfin présentés.
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article under the CC BY-NC-ND license 
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Fig. 1. Rough sketch of the slicing procedure, initiating any additive manufacturing process.

1. Introduction

The additive manufacturing technologies have demonstrated a unique potential in realizing structures with a high degree 
of complexity, thereby allowing one to process almost directly the designs predicted by shape and topology optimization 
algorithms [12]. These breakthroughs come along with new opportunities, and with new challenges – see [7] for a detailed 
and comprehensive overview of both, and the references therein.

To summarize its main features in a few words, additive manufacturing is a common label for quite different methodolo-
gies, which share the fact that the construction process starts with a slicing procedure: the Computer-Aided Design (CAD) 
model for the input shape (which is often supplied by means of a mesh under the popular STL format [25]) is converted 
into a series of two-dimensional layers (see Fig. 1).

Thence, these layers are assembled individually, one above the other, according to the selected technology. As far as these 
technologies are concerned, two important categories are the following:

– material extrusion methods, such as Fused Filament Fabrication (FFF), act by selectively extruding the molten material 
through a nozzle; such methods are typically used to process plastic (ABS);

– powder bed fusion methods (such as Selective Laser Sintering, or Electron Beam Melting) are on the contrary used to 
process metals; at the beginning of the construction of each layer, metallic powder is spread within the build chamber 
and a laser (or an electron beam) is used to bind the grains together.

These technologies show competing features in terms of cost, speed, accuracy... and also in terms of the restrictions 
they impose on the manufacturing process and the constructed shape. Beyond their differences, one challenge is faced by 
all additive manufacturing technologies, that of building shapes showing large overhangs, i.e. regions hanging over void (or 
powder) without sufficient support from the lower structure.

– In the case of material extrusion methods, parts of the boundary showing large overhangs cannot be produced as is, 
since this demands depositing material on void.

– In the case of powder bed fusion methods, the rapid melting then solidification of the material induces large thermal 
variations in the structure; this creates residual stresses, and causes the structure to warp. This phenomenon is all the 
more likely to occur in regions that are unanchored to the lower structure (in particular, overhanging regions); see [19]. 
Another source of difficulties in the assembly of overhanging regions lies in that the fused material may drip between 
the unfused powder of the lower structure, thus leaving the processed boundary with rough patches [5].

One way to cope with the presence of overhangs is to erect scaffolds (or supports) at the same time as the shape is 
constructed, with the purpose of anchoring the overhanging regions [8]. This scaffold structure has to be removed manually 
at the end of the process, which is cumbersome and time-consuming. Another way is to constrain the presence of overhangs 
in the formulation of the shape optimization problem guiding the design of the shape. Hitherto, ad hoc criteria, based on a 
minimum angle between the structural boundary and the horizontal directions, have been used to tackle this issue [11,17,
18].

The present article is devoted to the modeling and the mathematical analysis of a new mechanical constraint for the 
optimization of shapes that are processed by an additive manufacturing method. Several variants of this constraint, and 
various numerical examples and discussions of engineering applications will be presented in a forthcoming article [4]. 
Under the simplifying assumption that the components of one single layer of material are built simultaneously during the 
manufacturing process, we introduce a new constraint functional for shape optimization problems, which appraises the 
constructibility of shapes at each stage of their assembly. In particular, overhang constraints are naturally addressed by this 
formulation, which appeals to their mechanical origin. To achieve our purpose, in the setting of the optimization problem, 
we distinguish the mechanical situation where the final shape � is utilized, on which the optimization criterion is based, 
and that where � (and all the successive, intermediate structures) is under construction, which guides the definition of 
our constraint functional. Our first main result is to provide a shape derivative for this new constraint functional (see 
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Theorem 3.1), which is not a completely standard matter since the upper boundaries of the intermediate shapes are not 
subject to optimization, being dictated by the additive manufacturing process.

Our second main result is an acceleration method for the computation of our new constraint functional and for that of 
its shape derivative. Indeed, their expressions involve mechanical problems posed on all the intermediate structures of the 
considered shape, the number of which is precisely the number of layers in the additive manufacturing process (typically of 
the order of a few hundreds). Therefore, these evaluations are quite costly in numerical practice. Our idea is to interpolate, 
with piecewise affine functions of the height, the values of the functional and of its derivative, thus relying on the derivatives 
of the mechanical solutions with respect to the height of the intermediate structures.

This article is organized as follows. In Section 2, we introduce our shape optimization problem. In Section 3, we describe 
the mechanical context in which shapes are constructed, we formulate our new manufacturing constraint and we prove our 
first main mathematical result, Theorem 3.1, concerning its shape derivative. As we have mentioned, the resulting functional 
of the domain and its shape derivative are costly to evaluate in practice. Thus, in Section 4 we propose an interpolation 
method for accelerating significantly these calculations. For this purpose, we introduce a variant of the Hadamard method 
of shape deformations where only the upper horizontal boundary of the intermediate structures is allowed to vary, while 
the rest of the boundary is fixed. In this setting, first-order Taylor approximations of the mechanical performances of the 
intermediate shapes can be computed in terms of the height. Eventually, a numerical validation of our acceleration process 
and an optimization example are provided in Section 5.

2. Presentation of the shape optimization problem

A shape is a bounded, regular domain � ⊂ Rd , d = 2, 3, filled with a linear elastic material with Hooke’s law A. In the 
context of its final utilization, � is clamped on a subset �D ⊂ ∂�, and it is submitted to surface loads f ∈ L2(�N )d applied 
on a region �N of ∂� disjoint from �D ; the remaining part of the boundary � := ∂� \ (�D ∪�N) is traction-free. The elastic 
displacement um

� is the unique solution in H1
�D

(�)d := {
u ∈ H1(�)d, u = 0 on �D

}
to the mechanical system:⎧⎪⎪⎪⎨⎪⎪⎪⎩

−div(Ae(um
�)) = 0 in �,

um
� = 0 on �D ,

Ae(um
�)n = 0 on �,

Ae(um
�)n = f on �N .

(1)

For simplicity, the objective J (�) driving the optimization problem is the compliance:

J (�) =
∫
�

Ae(um
�) : e(um

�) dx =
∫
�N

f · um
� ds. (2)

Our optimization problem then reads:

min
�∈Uad

J (�), such that P (�) ≤ α. (3)

In (3), Uad is a set of admissible shapes �, which are assumed to be of class C∞ for simplicity, and whose boundaries 
enclose the non-optimizable regions �D , �N and �0 (the latter is defined in Section 3 below), i.e.

Uad =
{
� ⊂ Rd is open, bounded, and of class C∞, �D ∪ �N ∪ �0 ⊂ ∂�

}
,

P (�) is our new constraint functional, whose definition and properties are discussed in the next sections, and α is a 
tolerance threshold. In practice, so that (3) be physically relevant, other constraints (e.g., on the volume Vol(�) of shapes) 
may be added, which we omit for the mathematical analysis; see Section 5.

Most popular optimization algorithms for the numerical resolution of (3) rely on the derivatives of J (�) and P (�) with 
respect to the domain; these are understood in the framework of Hadamard’s method (see, e.g., [1,15,20,22,24]): variations 
of a shape � are considered under the form:

�θ := (Id + θ)(�), θ ∈ W 1,∞(Rd,Rd), ||θ ||W 1,∞(Rd,Rd)< 1.

A generic function F (�) of the domain is then shape differentiable if the underlying mapping θ �→ F (�θ ), from W 1,∞(Rd, Rd)

into R, is Fréchet differentiable at θ = 0; the corresponding derivative is denoted by F ′(�)(θ). In practice, the deformations 
θ featured in this definition are restrained to a subset of W 1,∞(Rd, Rd); in the following, we shall consider the sets

�k =
{
θ ∈ Ck,∞(Rd,Rd), θ = 0 on �D ∪ �N ∪ �0

}
,

where k ≥ 1, and Ck,∞(Rd, Rd) is the set of k times continuously differentiable functions from Rd into itself, whose deriva-
tives up to order k are uniformly bounded.
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Fig. 2. Intermediate shape �h at height h during the construction of the final structure �: the red zone is the lower boundary �0 and the blue zone is the 
upper boundary �u

h .

For instance, if f is smooth, it is well known (see [3]) that the objective (2) is shape differentiable when deformations 
are restrained to �k , k ≥ 1, and that its shape derivative reads:

∀θ ∈ �k, J ′(�)(θ) = −
∫
�

Ae(um
�) : e(um

�) θ · n ds.

3. Description and analysis of the mechanical constraint

In this section, we introduce and analyze mathematically our new mechanical constraint functional P (�) describing the 
manufacturing process of shapes.

3.1. Formulation of the constraint functional P (�)

The constraint P (�) relies on the mechanical situation of � in the course of the manufacturing process: assuming a 
vertical build direction ed (the dth vector of the canonical basis (e1, ..., ed) of Rd), � is enclosed in a box D = S × (0, H), 
where S ⊂ Rd−1. In practice, D represents the build chamber. For h ∈ (0, H),

�h := � ∩
{

x = (x1, ..., xd) ∈Rd, 0 < xd < h
}

(4)

is the intermediate shape describing the stage where the final shape � is assembled up to height h. The boundary ∂�h is 
decomposed in a different fashion from that of Section 2:

∂�h = �0 ∪ �u
h ∪ �l

h , where 
– �0 = {x ∈ ∂�h, xd = 0} is the contact region between � and the build table,
– �u

h = {x ∈ ∂�h, xd = h} is the upper side of the intermediate structure,

– �l
h = ∂�h \ (�0 ∪ �u

h ) is the lateral surface.

Eventually, we define �h := {x ∈ ∂�, xd = h}, the part of the boundary ∂� lying at height h (typically a curve in three space 
dimensions); see Fig. 2 about these notations.

Each intermediate shape �h is clamped on �0, and is only subjected to gravity effects, accounted for by a body force 
g ∈ L2(Rd)d . Its elastic displacement uc

�h
∈ H1

�0
(�h)d satisfies the system:⎧⎪⎨⎪⎩

−div(Ae(uc
�h

)) = g in �h,

uc
�h

= 0 on �0,

Ae(uc
�h

)n = 0 on �l
h ∪ �u

h ,

(5)

The compliance c�h of �h then reads:

c�h =
∫

Ae(uc
�h

) : e(uc
�h

) dx =
∫

g · uc
�h

dx. (6)
�h �h



G. Allaire et al. / C. R. Acad. Sci. Paris, Ser. I 355 (2017) 699–717 703
Our constraint P (�) of the final structure � aggregates the compliances of all the intermediate shapes:

P (�) =
H∫

0

j(c�h ) dh, (7)

where j : R → R is a given, smooth function. For instance, using j(s) = sp for 1 ≤ p < ∞ (and elevating (7) to the power 
1/p), P (�) is the Lp(0, H) norm of the mapping h �→ c�h . Recall that a close approximation of the L∞ norm functional 
� �→ sup

h∈(0,H)

|c�h | is classically achieved by high values of the exponent p.

Note that, as pointed out in the introduction, P (�) only involves the intermediate stages �h of the construction of �
where the successive layers are completed (and not all the stages where these layers are themselves under construction, 
and partially assembled).

Remark 1. We considered gravity forces in (5) and compliance in (6): other choices are of course possible and are minor 
variants of our approach. More generally, it is only incidental that similar mechanical models (namely, linear elasticity 
systems) are used for describing the mechanical and manufacturing stages of shapes. One could very well imagine modeling 
cooling effects with a constraint involving the temperature of the intermediate shapes �h via the heat equation; see the 
forthcoming article [2] about this idea.

3.2. Differentiability of P (�) with respect to the domain

Throughout this section, we consider a fixed shape � ∈ Uad. The rigorous exposition of the shape differentiability analysis 
of P (�) requires that we introduce two open sets O1 �O2 in Rd and a smooth function χ :Rd →R such that:{

x ∈ ∂� \ �0, n(x) · ed = ±1
} ⊂ O1, 0 ≤ χ ≤ 1, χ ≡ 0 on O1, and χ ≡ 1 on Rd \O2.

In other words, O1 is an open neighborhood of the ‘flat horizontal regions’ of ∂� \ �0, and χ is a cutoff function whereby 
these regions will be ignored. Using these notations, the relevant sets for deformations of � are the Banach spaces

Xk =
{
θ = χθ̃, θ̃ ∈ �k

}
, equipped with the quotient norm ||θ ||Xk= inf

{||θ̃ ||Ck,∞(Rd,Rd), θ = χθ̃
}
. (8)

Among other things, vector fields θ ∈ Xk vanish near the points of ∂� \ �0 where the normal vector n is parallel to ed .
Let us explain the roles of the cutoff function χ and of the space Xk of shape perturbations:

– deformations �θ of �, with θ ∈ Xk , can be equivalently described by ‘horizontal’ perturbations (see Proposition 3.2), 
which are the only ones for which the shape derivative of the compliances c�h can be rigorously calculated owing to 
Lemma 3.2;

– deformations θ ∈ Xk vanish around any point x ∈ ∂� where n(x) is ‘vertical’. This is because at such points x (where the 
tangent plane is ‘horizontal’) the intermediate structure �h at height h = xd shows a turning point at x, and therefore 
may be not even Lipschitz regular around x. The poor regularity of uc

�h
in this region (see [13] §3.3 for a related study) 

would be an obstruction to our mathematical analysis.

The main result of this section is the following:

Theorem 3.1. The functional P (�) given by (7) is shape differentiable at �, in the sense that the mapping θ �→ P (�θ ), from Xk into 
R is differentiable for k ≥ 1. Its derivative is:

∀θ ∈ Xk, P ′(�)(θ) =
∫

∂�\�0

D� θ · n ds, (9)

where the integrand factor D� is defined, for a.e. x ∈ ∂� \ �0 , by:

D�(x) =
H∫

xd

j′(c�h )
(

2g · uc
�h

− Ae(uc
�h

) : e(uc
�h

)
)

(x) dh. (10)

The shape sensitivity P (�) expressed in Theorem 3.1 does not result so easily from standard arguments, since P (�)

involves all the intermediate structures �h of �, which are only Lipschitz regular (in particular, they show angles at the tip 
of the upper boundary). We perform the proof in several steps.
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(1) In Section 3.2.1, we start by proving that θ �→ P (�θ ) is differentiable if θ is restricted to the subset

Xk
H :=

{
θ ∈ Xk, θ · ed = 0

}
of ‘horizontal’ perturbations in Xk , and we show that formulae (9), (10) hold in this case.

(2) We prove in Section 3.2.2 that for a given θ ∈ Xk , there exists a horizontal deformation ξ ≡ ξ(θ) ∈ Xk
H accounting for 

the same perturbed shape: �θ = �ξ(θ) . We also prove that the mapping θ �→ ξ(θ) is differentiable, and we calculate its 
derivative.

(3) Theorem 3.1 arises in Section 3.2.3 as a consequence of chain rule and of the two previous points.

Remark 2. Formulae (9) and (10) have an intuitive structure: the shape gradient of P (�) at a point x = (x1, ..., xd) ∈ ∂� \�0
involves the elastic energy in x for all the intermediate structures �h , h > xd .

3.2.1. Step 1: shape differentiability of θ �→ P (�θ ) when θ ∈ Xk
H

Let us start with the following lemma:

Lemma 3.2. The compliance θ �→ c(�θ )h at level h, defined by (6), is Fréchet differentiable over Xk
H for k ≥ 1, and the corresponding 

derivative reads:

∀θ ∈ Xk
H , c′

�h
(θ) =

∫
�l

h

(
2g · uc

�h
− Ae(uc

�h
) : e(uc

�h
)
)

θ · n ds. (11)

Proof. The key feature of horizontal deformations lies in the following relation, which holds for θ ∈ Xk
H small enough:

(�θ )h = {x ∈ �θ, 0 < xd < h} ≡ (�h)θ = (Id + θ)(�h).

Hence, because it only involves deformations θ ∈ Xk
H , Lemma 3.2 merely boils down to the differentiation of the compliance 

� �→ c� defined by (6) at � = �h . The only difference with the usual setting, as in, e.g., [3,15], is that the domain �h is not 
smooth. More precisely, �h is piecewise smooth and exhibits corners in two dimensions, ridge edges in three dimensions, 
at points x ∈ �h (see again Fig. 2).

However, �h is necessarily locally convex around the sharp features formed by the points x ∈ �h where the normal vector 
n(x) is not parallel to ed (in two dimensions, the angles corresponding to these corners are in (0, π)). As a consequence, 
the theory of elliptic equations in polygonal domains implies that the solution uc

�h
to (5) enjoys H2 regularity in �h \ O1

(see [13], Remark 3.2.4.6).
Since deformations θ ∈ Xk (in particular θ ∈ Xk

H ) identically vanish on O1, which contains the ‘bad points’ where n(x)
is parallel to ed (see (8)), the classical arguments (see [15], §5.3) leading to the expression (11) for the shape derivative 
of � �→ c� at �h , involving the calculation of the Lagrangian and Eulerian derivatives of the mapping � �→ uc

� at �h , 
and elementary (but tedious) calculations based on the Green formula, can be worked out in our particular situation. 
Similar calculations are performed in a slightly more general context in Proposition 4.2 below, and we do not replicate the 
argument. �

We are now in good shape for proving Theorem 3.1 in the special case where θ ∈ Xk
H .

Proposition 3.1. The mapping θ �→ P (�θ ) defined by (7), from Xk
H into R (for k ≥ 1), is Fréchet differentiable at θ = 0. Its shape 

derivative reads:

∀θ ∈ Xk
H , P ′(�)(θ) =

∫
∂�\�0

D� θ · n ds, where D� is given by (10).

Proof. Let us first discuss the shape differentiability of P (�); denoting by m(θ, h) = j(c(�h)θ ), it follows from Lemma 3.2
(and arguments similar to those involved in its proof) that:

– the mapping (θ, h) �→ m(θ, h) is continuous on X × (0, H), where X is a neighborhood of 0 in Xk
H ;

– for any h ∈ (0, H), the mapping θ �→ m(θ, h) is Fréchet differentiable on X ;
– the (partial) Fréchet derivative (θ, h) �→ ∂m

∂θ
(θ, h) of θ �→ m(θ, h) is continuous from X × (0, H) into the dual space 

of Xk
H .

Then, it follows from the Lebesgue dominated convergence theorem and Lemma 3.2 that θ �→ P (�θ ) is Fréchet differentiable 
at θ = 0, and that its derivative reads:
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∀θ ∈ Xk
H , P ′(�)(θ) =

H∫
0

j′(c�h ) c′
�h

(θ) dh.

Recalling the expression (11) of c′
�h

(θ) and using the shorthand I(x, h) ≡ (2g · uc
�h

− Ae(uc
�h

) : e(uc
�h

))(x), this rewrites:

P ′(�)(θ) =
H∫

0

j′(c�h )

⎛⎜⎜⎝∫
�l

h

I(x,h)(θ · n)(x) ds(x)

⎞⎟⎟⎠ dh. (12)

The rest of the proof relies on repeated applications of the Fubini theorem, which in particular entails:

∫
�l

h

ρ(x) dx =
h∫

0

∫
�z

ρ(x) d�(x) dz,

for a (smooth) function ρ . From (12), we obtain successively:

P ′(�)(θ) =
H∫

0

h∫
0

∫
�z

j′(c�h )I(x,h)(θ · n)(x) d�(x) dz dh

=
H∫

0

H∫
z

∫
�z

j′(c�h )I(x,h)(θ · n)(x) d�(x) dh dz

=
H∫

0

∫
�z

⎛⎝ H∫
xd

j′(c�h )I(x,h) dh

⎞⎠ (θ · n)(x) d�(x) dz

=
∫

∂�\�0

⎛⎝ H∫
xd

j′(c�h )I(x,h) dh

⎞⎠ (θ · n)(x) ds(x),

which is the desired conclusion. �
3.2.2. Step 2: parameterization by horizontal perturbations

In this section, we prove that ‘horizontal’ perturbations θ ∈ Xk
H are the only needed ingredient to describe variations 

of � of the form �θ , at least when θ ∈ Xk (here again, the cutoff function χ plays a key role). For this purpose, it is 
convenient to introduce an alternative way to express identities of the form �θ = �ξ , for θ, ξ ∈ Xk . Let us consider an 
implicit representation for �, that is, a smooth function φ :Rd →R such that:⎧⎨⎩

φ(x) < 0 if x ∈ �,

φ(x) = 0 if x ∈ ∂�,

φ(x) > 0 if x ∈Rd \ �.

(13)

For arbitrary vector fields θ, ξ ∈ W 1,∞(Rd, Rd) with ||θ ||W 1,∞(Rd,Rd)< 1, ||ξ ||W 1,∞(Rd,Rd)< 1, we define

F(θ, ξ) = φ ◦ (Id + θ)−1 ◦ (Id + ξ)

as an element in the set C(∂�) of continuous functions on ∂�.

Lemma 3.3. Let θ, ξ ∈ W 1,∞(Rd, Rd) be such that

||θ ||W 1,∞(Rd,Rd)< 1, and ||ξ ||W 1,∞(Rd,Rd)< 1 . (14)

Then the domains �θ and �ξ coincide if and only if F(θ, ξ) = 0 in C(∂�).

Proof. We only need to discuss the ‘if’ part of the above statement: assume that F(θ, ξ) = 0. Because of (14), �θ and �ξ

are bounded, Lipschitz regular domains that are Lipschitz diffeomorphic, see [10]. For the same reason, ∂�θ and ∂�ξ are 
compact, Lipschitz submanifolds of Rd that are also Lipschitz diffeomorphic.
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Fig. 3. Perturbation of a two-dimensional shape � by a vector field θ ∈ Xk , and by the corresponding horizontal deformation ξ(θ) ∈ Xk
H .

Moreover, since the function φ ◦ (Id + θ)−1 implicitly describes �θ (in the sense that (13) holds with �θ instead of �), 
and since F(θ, ξ) = 0 implies that φ ◦ (Id + θ)−1 vanishes on (Id + ξ)(∂�) = ∂�ξ , if follows that ∂�ξ ⊂ ∂�θ .

Let us now write ∂�ξ = ⋃N
i=1 Bi as the disjoint reunion of its connected components; each Bi is a compact, Lipschitz 

submanifold in Rd , and so it is a connected component of ∂�θ too. Hence, if the inclusion ∂�ξ ⊂ ∂�θ were strict, there 
would exist one Lipschitz submanifold B ⊂ Rd , disjoint from ∂�ξ , such that ∂�θ = B ∪ ∂�ξ , in contradiction with the fact 
that ∂�θ and ∂�ξ are Lipschitz diffeomorphic. �

Before proceeding, let us introduce an additional notation: when x ∈ ∂�, nH (x) := n(x) − (n(x) · ed)ed denotes the orthog-
onal projection of the normal vector to � on the ‘horizontal space’, spanned by e1, ..., ed−1.

Recall (see [15], Prop. 5.4.14) that the normal vector field n can be extended from ∂� to Rd as a whole, into a vector 
field of class C∞ that has unit norm in a neighborhood of ∂�. In the following, with a small abuse of notations, we still 
denote by n (resp. nH ) this extended normal vector field (resp. its projection on the horizontal space).

The desired result is the following; see Fig. 3 for an illustration.

Proposition 3.2. For every k ≥ 1, there exists a mapping θ �→ ξ(θ), from a neighborhood X of 0 in Xk+1 into Xk
H such that, for θ ∈X , 

�θ and �ξ(θ) coincide.
In addition, θ �→ ξ(θ) is Fréchet differentiable on X and the restriction to ∂� of its derivative at θ = 0 reads:

∀θ ∈ Xk+1, ξ ′(0)(θ)

∣∣∣
∂�

= 1

|nH |2 (θ · n) nH . (15)

Proof. The proof is decomposed into three steps.
(i): Let us define the Banach spaces

Fk =
{
ζ ∈ Ck(∂�), ζ = 0 on �0 ∪ �D ∪ �N

}
,

and

Y k =
{
ζ = χζ̃ , ζ̃ ∈ Fk

}
, equipped with the norm ||ζ ||Y k= inf

{
||̃ζ ||Ck(∂�), ζ̃ ∈ Fk s.t. ζ = χζ̃

}
. (16)

Introducing a sufficiently small neighborhood X (resp. Y) of 0 in Xk+1 (resp. in Y k), let us define:

∀θ ∈ X , ∀ζ ∈ Y, G(θ, ζ ) = φ ◦ (Id + θ)−1 ◦ (Id + ζnH ) ∈ Ck(∂�). (17)

Our first observation is that G actually maps X ×Y into Y k . Indeed, if θ ∈X and ζ ∈Y , there exist θ̃ ∈ �k and ̃ζ ∈Fk such 
that θ = χθ̃ and ζ = χζ̃ . Then, for x ∈ ∂�, letting z = (Id + ζnH )(x), we first calculate:

(Id + θ)−1(z) − z = (Id + θ)−1(z) − (Id + θ)−1(z + θ(z)),

= χ(z)

1∫
∇((Id + θ)−1)(z + tθ(z)) θ̃ (z) dt.

(18)
0
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Using Taylor’s formula on χ(z) in the right-hand side of the above formula yields:

χ(z) = χ(x) + χ(x)̃ζ (x)

1∫
0

∇χ(x + tζ(x)nH (x)) · nH (x) dt.

It follows that there exists r ∈ �k such that:

(Id + θ)−1 ◦ (Id + ζnH ) = Id + χr.

Then, for arbitrary x ∈ ∂�, we obtain:

G(θ, ζ )(x) = (φ ◦ (Id + θ)−1(Id + ζnH ))(x) = φ(x + χ(x)r(x)) − φ(x),

= χ(x)

1∫
0

∇φ(x + tχ(x)r(x)) · r(x) dt,

which confirms that G(θ, ζ ) ∈ Y k .
(ii): Using analogous arguments, it is easily seen that G is differentiable; its partial differential at (0, 0) with respect to 

the ζ variable reads:

∀̂ζ ∈ Y k, dζG(0,0)(̂ζ ) = (∇φ · nH ) ζ̂ = |nH |2ζ̂ . (19)

Since the partial differential dζG(0, 0) defined by (19) is invertible from Y k into itself, the Implicit Function theorem (see, 
e.g., [16], Chapter I, Theorem 5.9) allows us to conclude that, after possibly taking smaller neighborhoods X and Y of 0 in 
Xk+1 and Y k respectively, there exists a mapping X � θ �→ ζ(θ) ∈ Y of class C1 such that:

∀θ ∈ X , ζ ∈ Y, G(θ, ζ ) = 0 ⇔ ζ = ζ(θ).

(iii): At this point, the only remaining operation is to extend the scalar function ζ(θ) : ∂� → R into a vector field defined 
on Rd as a whole. To this end, we denote by p∂�(x) the closest point on ∂� to an arbitrary point x ∈ Rd; since ∂� is 
smooth, x �→ p∂�(x) is well defined and smooth on a tubular neighborhood V of ∂�; see again [15], Prop. 5.4.14. Let also 
γ :Rd → Rd be a smooth function such that γ ≡ 1 on a smaller neighborhood of ∂� and γ ≡ 0 on Rd \V . We now define, 
for θ ∈X ,

ξ(θ) = (ζ(θ) ◦ p∂�) γ nH ∈ Xk.

It readily follows from Lemma 3.3 that �θ = �ξ(θ) . Eventually, differentiating the relation G(θ, ζ(θ)) = 0 with respect 
to θ , then evaluating at θ = 0, we obtain the Fréchet derivative of θ �→ ζ(θ) at θ = 0:

∀θ ∈ Xk+1, ζ ′(0)(θ) = 1

|nH |2 θ · n,

which readily leads to (15) and terminates the proof. �
Remark 3. Notice that the horizontal deformation ξ(θ) supplied by Proposition 3.2, giving rise to the same variation �θ of 
� as the argument θ , has one degree of regularity less than θ . This technical point is a side effect of our application of the 
Implicit Function theorem to the function G defined by (17) and of the underlying choice (16) of functional spaces (see in 
particular formula (18), where we need one more derivative for θ ). We do not know whether this result can be improved.

3.2.3. End of the proof of Theorem 3.1
For k ≥ 1, let θ �→ ξ(θ) be the mapping from Xk+1 into Xk

H supplied by Proposition 3.2. Then, as a consequence of 
definitions, it holds, for θ ∈ Xk+1 small enough that �θ = �ξ(θ) and thus

P (�θ ) = P (�ξ(θ)).

The combination of the chain rule with Proposition 3.1 allows us to conclude.

Remark 4. Formulae (9)–(10) for the shape derivative of J (�) can be retrieved in a formal way by using the interesting 
results in [23,26], about the differentiation of functions of the form:

t �→
∫
D

(a ◦ �t) b dx,

where a and b are special functions with bounded variations (e.g., characteristic functions), and t �→ �t is the flow generated 
by a vector field.
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Remark 5. A careful investigation of the proof of Theorem 3.1 shows that it was not necessary to assume that the final 
shape � ∈ Uad is of class C∞ . Rather a shape of class Ck+1 is enough.

4. Practical calculation of the mechanical constraint and of its derivative

The numerical evaluation of P (�) and P ′(�)(θ), or equivalently D� , by means of formulae (7) and (9), (10) relies on a 
discretization of the height interval (0, H) with a sequence 0 = h0 < h1 < ... < hN = H . The intuitive, ‘0th-order’ method to 
calculate approximations P 0

N and D0
N of P (�) and D� consists in replacing c�h and uc

�h
by piecewise constant quantities 

on each interval Ii := (hi, hi+1) before applying (7) and (10):

c�h ≈ c�hi+1
and uc

�h
≈ uc

�hi+1
on �h, for h ∈ Ii = (hi,hi+1). (20)

This procedure is costly since the piecewise constant approximation (20) is low order: so that its accuracy is guaranteed, 
the subdivision {hi}i=0,...,N of (0, H) has to be quite fine, which brings about many numerical resolutions of the elasticity 
system (5) for the uc

�hi
.

The efficiency of the ‘0th-order’ method can be improved by constructing a higher-order approximation of the mappings 
h �→ c�h and h �→ uc

�h
on each interval Ii . This requires the calculation of the derivatives of these mappings in an adequate 

sense, which is the main purpose of this section.

4.1. A review of shape differentiation using diffeomorphisms

This section takes place in a slightly different setting from that of Section 3 where shape derivatives were computed by 
Hadamard’s method, as described in Section 2, i.e. by differentiating functionals of the type θ �→ F (�θ ). Here, we rather rely 
on shape variations described by a parameter-dependent diffeomorphism t �→ Tt . This change in point of views will come in 
handy in Section 4.2 below: it will allow us to describe intermediate shapes �h−t close to �h (see (4) for the definition of 
�h) as variations of �h , i.e. �h−t = Tt(�h). This paves the way to a ‘natural’ notion of differentiation of quantities such as 
the compliance h �→ c�h defined by (6) and the elastic behavior h �→ uc

�h
given by (5) of the intermediate shapes �h with 

respect to the height parameter.
For the moment, we drop the index h and we consider a bounded domain � in Rd , which is only assumed to be 

Lipschitz regular (as is �h). Its boundary reads as the disjoint reunion ∂� = �0 ∪ �, where �0 is a non-optimizable subset 
of ∂� of positive (d − 1)-dimensional Hausdorff measure.

In this context, we denote by v� ∈ H1
�0

(�)d the unique solution to the system:⎧⎨⎩
−div(Ae(v�)) = g in �,

Ae(v�)n = 0 on �,

v� = 0 on �0,

where g is a given function in H1(Rd)d . As announced above, the variations of � are performed by means of a mapping 
t �→ Tt , defined on the interval (−t0, t0) for some t0 > 0, which satisfies the properties:

for any t ∈ (−t0, t0), Tt is a diffeomorphism of Rd such that Tt(�0) = �0; (21)

for any t ∈ (−t0, t0), (Tt − Id) ∈ W 1,∞(Rd,Rd), and

the mapping t �→ (Tt − Id) is of class C1 from (−t0, t0) into W 1,∞(Rd,Rd).
(22)

We define V (x) := dTt (x)
dt |t=0∈ W 1,∞(Rd, Rd).

We now calculate the Eulerian and Lagrangian derivatives of the mapping � �→ v� , with respect to variations of � driven 
by Tt . Although the involved arguments are quite classical (see, e.g., [1,21]), the (tedious) proof of these formulae is not so 
easily found in the literature in the context of the linearized elasticity system. For the sake of convenience, we recall the 
main steps in the Appendix.

Proposition 4.1. Let t �→ Tt be a mapping satisfying (21) and (22). Then,

(i) the mapping � �→ v� has a material derivative in the sense that the transported function t �→ vt := v Tt (�) ◦ Tt , from (−t0, t0)

into H1
�0

(�)d is Fréchet differentiable at t = 0; its derivative ˚v� satisfies:⎧⎪⎨⎪⎩
−div(Ae( ˚v�)) = div(g ⊗ V + (divV )Ae(v�) − AC(v�, V ) − Ae(v�)∇V T) in �,

Ae( ˚v�)n = −(divV )Ae(v�)n + AC(v�, V )n + Ae(v�)∇V Tn on �

˚v = 0 on � ,

(23)
� 0
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Fig. 4. Example of one diffeomorphism Tt of Rd mapping �h onto �h−t .

where we have used the shorthand:

C(v, V ) = 1

2
(∇v∇V + ∇V T∇vT); (24)

(ii) assuming that ∇v�V ∈ H1
�0

(�)d, the mapping � �→ v� has an Eulerian derivative v ′
� := ˚v� − ∇v�V in H1

�0
(�)d, where v ′

�

is the solution to the system:⎧⎪⎨⎪⎩
−div(Ae(v ′

�)) = 0 in �,

Ae(v ′
�)n = − ∂

∂n ((Ae(v�)n) (V · n) + Ae(v�)(∇�(V · n)) on �,

v ′
� = 0 on �0,

(25)

with ∇�ζ = ∇ζ − (∇ζ · n)n, the tangential gradient of a (smooth enough) function ζ : � → R.

Remark 6. A word about notations. For (smooth) vector fields v, w : Rd → Rd , we denote by ∇v the d × d Jacobian matrix 
of v , that is, the matrix with entries: (∇v)i j = ∂vi

∂x j
, i, j = 1, ..., d. Accordingly, ∇v w is the vector field with components 

(∇v w)i = (w · ∇)vi := ∑d
j=1

∂vi
∂x j

w j .

As an easy consequence, we obtain the following result about the shape differentiation of the compliance

c� =
∫
�

g · v� dx =
∫
�

Ae(v�) : e(v�) dx.

Corollary 4.1. Let t �→ Tt be a mapping satisfying (21) and (22). Then, t �→ cTt (�) is differentiable at t = 0, and its derivative reads:

d

dt
(cTt (�))

∣∣∣∣
t=0

=
∫
�

(2g · v� − Ae(v�) : e(v�)) V · n ds. (26)

4.2. Using shape variations to identify close layers

In this section, we consider a fixed shape � ∈ Uad, and a height h ∈ (0, H) satisfying:

for any x ∈ �h, the normal vector n(x) is not parallel to ed. (27)

Our purpose is to show that, for t > 0 small enough, the intermediate structures �h and �h−t can be expressed in terms 
of one another via a shape variation of the form (21), (22), namely that there exists a diffeomorphism Tt of Rd such 
that Tt(�h) = �h−t (see Fig. 4). Then we shall use the material in Section 4.1 to differentiate the mappings h �→ c�h and 
h �→ uc

�h
; see Section 4.3 below.

Lemma 4.2. Under the assumption (27), there exist t0 > 0 and a mapping (−t0, t0) � t �→ Tt satisfying (21) and (22), as well as the 
additional property:

for t ∈ (−t0, t0), Tt is a diffeomorphism from �h onto �h−t; (28)

for any such mapping, let V ∈ W 1,∞(Rd, Rd) be defined by V (x) = dTt (x)
dt

∣∣∣ . Then,

t=0
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Fig. 5. Illustration of one diffeomorphism τ of Rd used in the construction of Tt in the proof of Lemma 4.2.

(i) for any point x ∈ �u
h , V (x) · ed = −1,

(ii) for any point x ∈ �0 ∪ �l
h , V (x) · n(x) = 0.

Proof. First observe that, under the hypothesis (27), the existence of a mapping t �→ Tt satisfying (21), (22), and (28)
follows from elementary considerations of differential geometry. Indeed, since (27) holds, there exist t0 > 0 and a smooth 
diffeomorphism τ of Rd that maps the slice K := {x ∈ �, h − t0 < xd < h + t0} onto the straight cylinder �u

h × (h − t0, h +
t0) ⊂Rd−1 ×R in such a way that:

∀x = (x1, ..., xd) ∈Rd, πd(τ (x)) = xd,

where πd :Rd−1 ×R → R is the standard projection onto the last coordinate: πd(y, s) = s for y ∈Rd−1 and y ∈R; see Fig. 5. 
Let us now introduce a smooth function l : (−t0, t0) ×R →R such that:

– for every t ∈ (−t0, t0), l(t, ·) :R →R is a strictly increasing, one-to-one function;
– for t ∈ (−t0, t0), l(t, s) = s for all s ∈ (−∞, h − t0] ∪ [h + t0, +∞), and l(t, h) = h − t .

We finally define:

∀(y, s) ∈Rd−1 ×R, Lt(y, s) = (y, l(t, s)).

Then the mapping Tt = τ−1 ◦ Lt ◦ τ has the desired properties (21), (22) and (28).

We now turn to the proof of (i). Let x0 ∈ �u
h be given, and let ε > 0 be so small that the ball Bε(x0) with center x0 and 

radius ε is compactly contained in �. Let ψ be an arbitrary function of class C∞ with compact support in Bε(x0). On the 
one hand, a change of variables produces:

p(t) :=
∫

�h−t

ψ(x) dx =
∫
�h

|det∇Tt | ψ ◦ Tt dx,

whence, differentiating at t = 0 and using Green’s formula:

p′(0) =
∫
�h

((divV )ψ + ∇ψ · V ) dx =
∫

�u
h ∩Bε(x0)

ψ V · ed ds. (29)

On the other hand, since ψ has compact support in Bε(x0), one may alternatively perform the change of variables:

p(t) =
∫
�h

|det∇ T̃t | ψ ◦ T̃t dx,

where T̃t is the diffeomorphism of Rd defined by T̃t(x) = (x1, x2, ..., xd−1, xd − t). Hence,

p′(0) =
∫

�u
h ∩Bε(x0)

ψ Ṽ · ed ds, (30)

where Ṽ (x) = dT̃t (x)
dt

∣∣∣
t=0

= −1. Since both expressions (29) and (30) hold for arbitrary ψ ∈ C∞
c (Bε(x0)), one infers in partic-

ular that V (x) · ed = −1, which is the desired result.

The proof of (ii) relies on similar arguments. For a given point x0 ∈ �l
h ∪ �0, take ε > 0 small enough so that the ball 

Bε(x0) is compactly contained in the half-space 
{

x ∈Rd, xd < h
}

. Let also ψ be an arbitrary function of class C∞ with 
compact support in Bε(x0). On the one hand, one has, for t > 0 small enough:
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q(t) :=
∫

�h−t

ψ(x) dx =
∫
�h

ψ(x) dx, (31)

and so q′(0) = 0. On the other hand, using the same change of variables as that leading to (29), we obtain:

q′(0) =
∫

�l
h∪�0

ψ V · n ds. (32)

Since both expressions (31) and (32) hold for arbitrary ψ , it follows that (V · n)(x0) = 0, and the desired conclusion fol-
lows. �
4.3. Derivatives of the mappings h �→ c�h and h �→ uc

�h

Our first result is concerned with the derivative of the compliance h �→ c�h defined by (6). The key observation is that, 
for t > 0 small enough, c�h−t = cTt (�h) , for any mapping t �→ Tt furnished by Lemma 4.2. Therefore, combining Corollary 4.1
with Lemma 4.2 straightforwardly yields the following proposition.

Proposition 4.2. Let � ∈ Uad , and h ∈ (0, H) be such that (27) holds; then the mapping h �→ c�h is differentiable at h and:

d

dh
(c�h )

∣∣∣∣
h
=

∫
�u

h

(2g · uc
�h

− Ae(uc
�h

) : e(uc
�h

)) ds. (33)

Let us now turn to giving a suitable meaning to the derivative of h �→ uc
�h

. Roughly speaking, this derivative is defined as 
the Eulerian derivative (in the sense of Proposition 4.1) of t �→ uc

Tt (�h) , associated with any diffeomorphism t �→ Tt mapping 
�h onto �h−t .

To make these considerations precise, let us summarize the results from Sections 4.1 and 4.2:

– there exist t0 > 0 and a mapping (−t0, t0) � t �→ Tt satisfying the properties:
(i) for t ∈ (−t0, t0), Tt is a diffeomorphism of Rd , mapping �h onto �h−t such that Tt(�0) = �0,

(ii) the mapping (−t0, t0) � t �→ (Tt − Id) ∈ W 1,∞(Rd, Rd) is of class C1 and we define

V (x) := dTt(x)

dt

∣∣∣∣
t=0

∈ W 1,∞(Rd,Rd); (34)

– the mapping t �→ u�c
h−t

◦ Tt is differentiable from (−t0, t0) into H1
�0

(�h)d . Its derivative Y�h at t = 0 may be interpreted 
as the Lagrangian derivative of h �→ u�c

h
;

– the function U�h := Y�h − ∇u�c
h

V is the solution in H1
�0

(�h)d to the system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−div(Ae(U�h )) = 0 in �h,

U�h = 0 on �0,

Ae(U�h )n = 0 on �l
h,

Ae(U�h )n = ∂
∂n

(
(Ae(u�c

h
)n

)
on �u

h .

(35)

It is natural to refer to U�h as the Eulerian derivative of the mapping h �→ uc
�h

.

As is clear from (35) (and as expected), U�h is independent of the diffeomorphism t �→ Tt used in its construction, as 
long as Tt satisfies the intuitive properties (34). In particular, U�h does not depend on V since V (x) ·ed = −1 for a.e. x ∈ �u

h .

Remark 7. Notice that, from a formal point of view, the Eulerian derivative U�h is the derivative of t �→ uc
�h−t

at t = 0, and 
not that of t �→ uc

�h+t
; the reason for this seemingly unintuitive convention will find proper justification in Section 4.4 (see 

Formula (37)).

4.4. Practical algorithm

The considerations of Section 4.3 suggest the following procedure for calculating first-order approximations P 1
N and D1

N
of P (�) and D� , respectively. This allows for an accurate and computationally efficient calculation of these quantities, using 
a coarser subdivision {hi}i=1,...,N of (0, H) than in the calculation of the 0th-order approximate values P 0

N and D0
N , defined 

by (20).
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Fig. 6. (Top) Setting of the validation experiment and initial shape �0; (bottom) relative errors of the 0th- and 1st-order approximations of P (�0) and its 
derivative D�0 .

(1) For i = 0, ..., N calculate the compliances c�hi
as (6) and the displacements uc

�hi
by solving (5).

(2) For i = 0, ..., N , calculate the derivative d
dh (c�h )

∣∣∣
h=hi

of the compliance by using Proposition 4.2.

(3) For i = 1, ..., N , calculate the Eulerian derivative U�hi
at hi by using (35).

(4) On each interval Ii = (hi, hi+1), i = 0, ..., N − 1, the compliance c�h is approximated by a cubic spline c̃i(h), which is 
uniquely determined by the data:

c̃i(hi) = c�hi
, c̃i(hi+1) = c�hi+1

, c̃i
′(hi) = d

dh
(c�h )

∣∣∣∣
hi

, and c̃i
′(hi+1) = d

dh
(c�h )

∣∣∣∣
hi+1

. (36)

(5) For i = 0, ..., N − 1 and h ∈ Ii = (hi, hi+1), uc
�h

is approximated by ũh , defined by:

ũh(x) = uc
�hi+1

(x) + (hi+1 − h) U�hi+1
(x), a.e. x ∈ �h; (37)

notice that the above relation does make sense for x ∈ �h regardless of the height h ∈ (hi, hi+1) since uc
�hi+1

and U�hi+1

are well defined on �h ⊂ �hi+1 (see Remark 7).

5. Numerical illustrations

Let us consider the 2d MBB Beam test case: the shapes � are contained in a rectangular domain D of size 6 × 1. Due 
to symmetry, only half of D is meshed by 300 × 100 Q1 elements. In the context of their final utilization (described by the 
system (1)), the horizontal displacement of shapes is fixed on a small part of their lower-left side, and both horizontal and 
vertical displacements are fixed on a small part of its lower-right side, and a unit vertical load f = (0, −1) is applied at the 
middle of their upper side. When it comes to their construction (modeled by (5)), shapes are built vertically from bottom 
to top, so that �0 coincides with the lower side of D . The function j : R → R used in the definition (7) of P (�) is simply 
the identity: j(s) = s. The design �0 in Fig. 6 (top) is used for the numerical validation of our methods in Section 5.1 and it 
is the initial guess for the shape optimization of Section 5.2.

5.1. Validation of the approximations of Section 4

At first, we calculate the functional P (�) and its shape derivative D� in the particular case where � = �0, by using a 
uniform subdivision of (0, H) made of 100 layers and the 0th-order approximation scheme, i.e. we evaluate P 0

100 and D0
100, 

which serve as reference values for the comparisons in this section. We then calculate the 0th- and 1st-order approximations 
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Fig. 7. Optimized design �∗ for the shape optimization problem (38).

Fig. 8. Optimized shapes for (39) using the respective approximations for P (�) and D�: (up) P 0
100 and D0

100; (down) P 1
25 and D1

25.

Table 1
Values of the shape functionals and iteration numbers.

Shape � J (�) Vol(�) P (�) Iterations Evaluations

Fig. 7 104.165 0.600 0.730 25 38
Fig. 8 (up) 98.484 0.599 0.343 127 143
Fig. 8 (down) 99.313 0.600 0.343 187 206

P i
N and Di

N , i = 0 and 1, associated with several subdivisions of (0, H) made of N intervals with equal length. We are 
interested in the behavior of the relative errors:

err(P , N, i) = |P i
N − P 0

100|
P 0

100

and err(D, N, i) = ||Di
N −D0

100||L2(∂�\�0)

||D0
100||L2(∂�\�0)

.

The results are displayed in Fig. 6 (bottom): while the 1st-order approximation method does not bring a lot of improvement 
when it comes to evaluating the constraint functional P (�), it allows for a substantial gain (i.e. a faster convergence with 
respect to the number N of subdivisions) in the evaluation of its derivative.

5.2. A numerical example

Recalling that J (�) is the compliance, defined by (2), we now turn to the shape optimization problem:

min
�∈Uad

J (�) such that Vol(�) ≤ 0.2 Vol(D). (38)

We first solve (38), starting from the initial design �0, by using an SLP-type algorithm in the spirit of that presented in [9], 
and the level set method on a fixed Cartesian mesh when it comes to tracking the deformation of shapes [3]. The optimized 
design �∗ is shown in Fig. 7; in particular, several overhanging parts appear in �∗ .

We now add our mechanical constraint P (�) to this problem, and solve:

min
�∈Uad

J (�) such that

{
Vol(�) ≤ 0.2 Vol(D),

P (�) ≤ 0.5 P (�∗). (39)

The resulting optimized shapes, obtained by using 0th- and 1st-order approximations of P (�) and D� with different (uni-
form) subdivisions of (0, H) are represented in Fig. 8. The computational effort is significantly different: about 237 h are 
needed when the 0th-order approximation process is used with N = 100 layers, whereas the total calculation takes ‘only’ 
82 h when using 1st-order approximations and N = 25 layers. The values of the corresponding quantities of interest are 
collected in Table 1.

As is clear from the above computational times, the implementation of our algorithm has not been optimized at all. 
The reasons for such large CPU times are obvious, as are the possible remedies in a near future. Indeed, the optimization 
algorithm and the Finite Element analyses for the mechanical systems (1) and (5) are carried out in different softwares: 



714 G. Allaire et al. / C. R. Acad. Sci. Paris, Ser. I 355 (2017) 699–717
we re-use a previous Scilab script [6] for the optimization algorithm, while we rely on FreeFem++ [14] for the mechanical 
analyses. Then, the communications between these two softwares is done through file exchanges, a notorious source of 
unefficiency. Also, we did not investigate the straightforward parallelization of the Finite Element resolutions of all the linear 
elasticity systems (5) posed on the intermediate structures �h associated with a common shape �, which are independent 
one from another. Our point in giving these CPU data is only to emphasize the improvement in computational efficiency 
allowed by the use of the 1st-order method instead of the 0th-order one.

Notice that, on the optimized designs in Fig. 8, several overhangs placed at the lower part of the optimal shape �∗
without manufacturing constraint have vanished. Still, a few overhangs remain in the superior regions of the optimized 
shapes in Fig. 8; this may be explained in two ways:

– the definition (7) of our mechanical constraint P (�) focuses on the performance (in terms of the self-weight (6)) of the 
lower intermediate shapes; indeed, high values of the self-weight c�h0

of an intermediate structure �h0 generally cause 
high values of the self-weights c�h of some of the upper intermediate structures �h , h > h0, whereas the converse does 
not hold;

– The constraint P (�) has been devised under the simplifying assumption that each layer of material is assembled at 
once, and does not bring into play the stages where these layers are themselves under construction. Hence, completely 
flat parts such as those observed in the designs of Fig. 8 are not so ‘bad’ in terms of P (�) as long as they are anchored 
to the lower structure.

We refer the reader to the companion article [4] for further discussions about the practical use of the mechanical constraint 
P (�), and variations of it, built upon the same philosophy.

It is also remarkable that the value of the objective function is lower for the constrained problem, meaning that the 
constraint has the (surprising) effect of driving the algorithm in a lower local minimum (this may be due to the larger 
number of iterations in the latter case).
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Appendix A. Proof of Proposition 4.1

Proof of (i). We compute the material or Lagrangian derivative, starting from the variational formulation for v Tt (�):

∀w ∈ H1
�0

(Tt(�))d,

∫
Tt (�)

Ae(v Tt (�)) : e(w) dx =
∫

Tt (�)

g · w dx,

which yields, after the usual change of variables, for an arbitrary test function w ∈ H1
�0

(Tt(�))d:∫
�

|det∇Tt | (Ae(v Tt (�)) ◦ Tt) : (e(w) ◦ Tt) dx =
∫
�

|det∇Tt |(g ◦ Tt) · (w ◦ Tt) dx. (A.1)

Now, relying on the identities, for any w ∈ H1
�0

(Tt(�))d ,

(∇w) ◦ Tt = ∇(w ◦ Tt)∇T −1
t , e(w) ◦ Tt = 1

2

(
∇(w ◦ Tt)∇T −1

t + ∇T −T
t ∇(w ◦ Tt)

T
)

,

and using test functions of the form w ◦ T −1
t , w ∈ H1

�0
(�)d in (A.1), we obtain the following variational formulation for vt :

∀w ∈ H1
�0

(�)d,

∫
�

|det∇Tt | A

(
1

2

(
∇vt∇T −1

t + ∇T −T
t ∇vt

T
))

:
(

1

2

(
∇w∇T −1

t + ∇T −T
t ∇wT

))
dx

=
∫
�

|det∇Tt |(g ◦ Tt) · w dx.

At this point, a classical argument using the Implicit Function theorem (see, e.g., [15,20]) reveals that the mapping t �→ vt

is differentiable, from (−t0, t0) into H1
�0

(�)d (up to decreasing the value of t0). Its derivative ˚v� at t = 0 is the solution to 
the following variational problem:
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∀w ∈ H1
�0

(�)d,

∫
�

Ae( ˚v�) : e(w) dx =
∫
�

((divV )g · w + ∇gV · w) dx −
∫
�

(divV )Ae(v�) : e(w) dx

+
∫
�

(AC(v�, V ) : e(w) + AC(w, V ) : e(v�)) dx, (A.2)

where C(v, V ) is defined by (24), as follows, from a straightforward (yet tedious) calculation. The expression (A.2) can be 
rearranged owing to the following identities, valid for w ∈ H1

�0
(�)d , g ∈ H1(Rd)d , V ∈ W 1,∞(Rd, Rd), and σ ∈ L2(�)d×d:

(divV )g + ∇gV = div(g ⊗ V ), and σ : C(w, V ) = 1

2
(σ∇V T + σ T∇V T) : ∇w.

It follows from (A.2) that:

∀w ∈ H1
�0

(�)d,

∫
�

Ae( ˚v�) : e(w) dx =
∫
�

div(g ⊗ V ) · w dx −
∫
�

(divV )Ae(v�) : e(w) dx

+
∫
�

(AC(v�, V ) : e(w) + (Ae(v�)∇V T) : ∇w) dx.

Eventually, integrating by parts, we end up with the classical formulation (23) for the problem characterizing the material 
derivative ˚v� ∈ H1

�0
(�)d . �

Proof of (ii). We now consider the Eulerian derivative v ′
� of v� , defined from ˚v� via the formula:

v ′
� = ˚v� − ∇v�V .

Using (23), v ′
� ∈ H1

�0
(�)d is characterized as the solution to the following problem:⎧⎪⎨⎪⎩

−div(Ae(v ′
�)) = div(g ⊗ V + Ae(∇v�V ) + (divV )Ae(v�) − AC(v�, V ) − Ae(v�)∇V T) in �,

Ae(v ′
�)n = −Ae(∇v�V )n − (divV )Ae(v�)n + AC(v�, V )n + Ae(v�)∇V Tn on �,

v ′
� = 0 on �D .

(A.3)

We now simplify (A.3). For w ∈ H1
�0

(�)d and V ∈ W 1,∞(Rd, Rd), the d × d matrix ∇(∇w V ) has entries:

(∇(∇w V ))i j =
d∑

k=1

∂2 wi

∂x j∂xk
Vk + (∇w∇V )i j, i, j = 1, ...,d,

which produces:

Ae(∇w V )i j =
d∑

k=1

∂

∂xk

(
Ae(w)i j

)
Vk + (AC(w, V ))i j . (A.4)

Likewise, simple calculations yield:

− (div(Ae(w)) ⊗ V )i j = −
d∑

k=1

∂

∂xk
(Ae(w)ik)V j, (A.5)

(Ae(w)∇V T)i j =
d∑

k=1

Ae(w)ik
∂V j

∂xk
, (A.6)

and eventually:

(divV )Ae(w)i j =
(

d∑
k=1

∂Vk

∂xk

)
Ae(w)i j . (A.7)

Inserting (A.4), (A.5), (A.6) and (A.7) into (A.3), we obtain successively:
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(g ⊗ V + Ae(∇v�V ) + (divV )Ae(v�) − AC(v�, V ) − Ae(v�)∇V T)i j

=
d∑

k=1

(
∂

∂xk

(
Ae(v�)i j

)
Vk + ∂Vk

∂xk
Ae(v�)i j − ∂

∂xk
(Ae(v�)ik)V j − Ae(v�)ik

∂V j

∂xk

)
,

=
d∑

k=1

(
∂

∂xk

(
Ae(v�)i j Vk

) − ∂

∂xk
(Ae(v�)ik V j)

)
,

whence, as expected,

−div(Ae(v ′
�))i =

d∑
j,k=1

∂2

∂x j∂xk

(
Ae(v�)i j Vk − Ae(v�)ik V j)

) = 0.

Let us now rearrange the boundary condition featured in (A.3). Using again (A.4), (A.6), (A.7), and the fact that Ae(v�)n =
0 on �, we obtain the following identity on �, for i = 1, ..., d:

(Ae(v ′
�)n)i = −

d∑
j,k=1

∂
∂xk

(Ae(v�)i j)Vkn j +
d∑

j=1
Ae(v�)i j(∇V Tn) j,

=
d∑

j,k=1

(
Ae(v�)i j

∂Vk
∂x j

nk − ∂
∂xk

(Ae(v�)i j)Vkn j

)
.

(A.8)

Now, taking advantage of the fact that Ae(v�)n = 0 on �, we infer, by taking derivatives in the direction of a tangential 
vector field:

d∑
j=1

∇(Ae(v�)i j) · V� n j =
d∑

j=1

Ae(v�)i j∇n j · V�,

where V� = V − (V · n)n is the tangential part of the vector field V . Hence (A.8) becomes:

(Ae(v ′
�)n)i = −

(
d∑

j=1

∂
∂n (Ae(v�)i j)n j

)
(V · n) +

d∑
j=1

Ae(v�)i j

(
d∑

k=1

∂Vk
∂x j

nk + ∇n j · V�

)
,

= − ∂
∂n ((Ae(v�)n) (V · n) +

d∑
j=1

Ae(v�)i j

(
d∑

k=1

∂
∂x j

(Vknk) +
d∑

k=1

(
∂n j
∂xk

− ∂nk
∂x j

)
Vk

)
.

(A.9)

Notice that, in passing from the first to the second line in (A.9), we have used the classical facts from tangential calculus 
(see [15], Chap. 5):

∇n = ∇nT, and ∇nn = ∇nTn = 0 on a neighborhood of ∂�.

Eventually, using once again these facts together with the boundary condition Ae(v�)n = 0 on �, we end up with:

Ae(v ′
�)n = − ∂

∂n
((Ae(v�)n) (V · n) + Ae(v�)(∇�(V · n)) on �,

which is the announced result (25). �
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