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r é s u m é

Dans cette note, on donne des quasi-isomorphismes explicites calculant l’homologie cy-
clique des algèbres produits-croisés.
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0. Introduction

There is a large amount of work on the cyclic homology of crossed-product algebras (see, e.g., [1–3,6,8,10,11,17]). How-
ever, at the exception of the chain map of Connes [6,7] for the homogeneous component of periodic cyclic homology, we 
do not have explicit quasi-isomorphisms. The aim of this note is to present the construction of explicit quasi-isomorphisms 
for the cyclic homology and the periodic cyclic homology of crossed-product algebras, including for the localizations at infi-
nite order components. Furthermore, the arguments use only elementary homological algebra. This allows us to bypass the 
difficult homological arguments involved in some previous approaches to the cyclic homology of crossed-product algebras.

The focus of this note is on algebraic crossed-products A� = A � � associated with the action of an arbitrary group �
on a unital algebra A over a commutative ring k ⊃ Q. In the sequel [18], we will explain how to apply the results in the 
contexts of group actions on manifolds and varieties.

1. Cyclic homology and triangular S-modules

We refer to [5,7,15] for background on cyclic homology, including cyclic and bi-cyclic modules, mixed complexes, and 
S-maps. If C = (C•, b, B) is a mixed complex, we let C � = (C �•, b + S B) be its cyclic complex, where C �

m = Cm ⊕Cm−2 ⊕· · · and 
S : C �• → C �

•−2 is the periodicity operator. The homology of the chain complex C � is the cyclic homology of C and is denoted 
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by HC•(C). The periodic cyclic homology HP•(C) is the homology of the complex C� = (C�•, b + B), where C�

i = ∏
q≥0 C2q+i , 

i = 0, 1.
We refer to [11] for background on paracyclic, bi-paracyclic and cylindrical modules, parachain and cylindrical complexes, 

and parachain bicomplexes. When C is a bi-paracyclic module (resp., parachain bicomplex), we denote by Diag(C) (resp., 
Tot(C)) its diagonal paracyclic module (resp., total parachain complex). When C is cylindrical, we obtain a cyclic complex 
(resp., mixed complex) (see [11]).

The S-modules of Jones–Kassel [13,14] encapsulate various approaches to cyclic homology. More generally, by a 
para-S-module we shall mean the datum of (C•, b, S), where Cm , m ≥ 0, are k-modules and d : C• → C•−1 and S : C• → C•−2
are k-module maps commuting with each other such that d2 = (1 −T )S , where T : C• → C• is some k-module map commut-
ing with both d and S . When d2 = 0, we obtain an S-module. For instance, if C = (C•, b, B) is a parachain complex, then we 
can define its cyclic complex of the para-S-module C � = (C �•, b + S B, S). Notions of para-S-module maps and S-homotopies 
of para-S-module maps make sense in the same way as with S-modules. Therefore, although quasi-isomorphisms do not 
quite make sense for para-S-modules, the S-homotopy inverse of a para-S-module map and the S-homotopy equivalence 
of para-S-modules do make sense. This enables us to state a version of the Eilenberg–Zilber theorem for bi-paracyclic mod-
ules ([19]). If C is a bi-paracyclic module, then there is an S-homotopy equivalence between Diag(C) and Tot(C). It is given 
by S-maps ��� : Tot•(C)� → Diag•(C)� and AW� : Diag•(C)� → Tot•(C)� whose zeroth degree components are the shuffle and 
Alexander–Whitney maps.

A left triangular para-S-module is given by the datum of (C•,•, d, b, B, S), where C p,q , p, q ≥ 0, are k-modules, (C•,q, d, S) is 
a para-S-module and (C p,•, b, B) is a parachain complex for all p, q ≥ 0, the horizontal operators (d, S) both commute with 
each of the vertical differentials (b, B). We say that we have a (left) triangular S-module when d2 + S(bB + Bb) = 0. There is 
a similar definition of the right triangular para-S-module and of the S-module (C•,•, b, B, d, S), where the operators (d, S)

act vertically and the operators (b, B) act horizontally. The triangular (para-)S-modules provide us with a natural framework 
for defining the tensor product of (para-)S-modules with mixed and parachain complexes.

Any triangular para-S-module C = (C•,•, �d, b, B, S) gives rise to a total para-S-module Tot(C) = (Tot•(C), d†, S), where 
Totm(C) = ⊕

p+q=m C p,q and d† = d + (−1)p(b + S B) on C p,q . When C is a triangular S-module, the condition d2 + S(bB +
Bb) = 0 ensures us that (d†)2 = 0, and so we actually obtain an S-module. Furthermore, the filtration by columns of Tot•(C)

is a filtration of chain complexes, and so it gives rise to a spectral sequence converging to H•(Tot(C)).
We also observe that if C = (C•,•, �b, �B, b, B) is a cylindrical complex, then Tot(C)� is the total S-module of the left 

triangular S-module C�σ := (C�σ•,•, �b + S�B, b, B, S), where C�σ
p,q = C p,q ⊕ C p−2,q ⊕ · · · . It is also the total S-module of the 

right triangular S-module Cσ = (Cσ•,•, �b, �B, b + S B, S), where Cσ
p,q = C p,q ⊕ C p,q−2 ⊕ · · · . As a result, we obtain two spectral 

sequences converging to HC•(Tot(C)). The spectral sequence of Getzler–Jones [11] is an instance of such a spectral sequence.

2. The cylindrical complexes Cφ(�, CCC )

From now on, we assume that � is a group acting on a unital algebra A over a commutative ring k ⊃ Q. The 
cyclic k�-module of � is C(�) = (C•(�), d, s, t), where Cm(�) = k�m+1, m ≥ 0, and (d, s, t) are given by d(ψ0, . . . , ψm) =
(ψ0, . . . , ψm−1), s(ψ0, . . . , ψm) = (ψm, ψ0, . . . , ψm), and t(ψ0, . . . , ψm) = (ψm, ψ0, . . . , ψm−1), ψ j ∈ �. Its b-differential is 
given by ∂(ψ0, . . . , ψm) = ∑

0≤ j≤m(−1) j(ψ0, . . . , ψ̂ j, . . . , ψm). Given any k�-module M , the group homology H•(�, M )

is the homology of the chain complex (C•(�, M ), ∂), where Cm(�, M ) = Cm(�) ⊗� M , m ≥ 0. The group cohomology
H•(�, M ) is the cohomology of the dual cochain complex (C•(�, M ), ∂), where Cm(�, M ) consists of all �-equivariant 
maps u : �m+1 → M and ∂u = u ◦ ∂ .

Let φ be a central element of �. This gives rise to the paracyclic k�-module Cφ(�) = (C•(�), d, sφ, tφ), where d is as 
above and (sφ, tφ) are given by sφ(ψ0, . . . , ψm) = (φ−1ψm, ψ0, . . . , ψm) and tφ(ψ0, . . . , ψm) = (φ−1ψm, ψ0, . . . , ψm−1). The 
simplicial module structure of Cφ(�) agrees with that of C(�), and so its b-differential is the differential ∂ described above. 
We also note that tm+1

φ (ψ0, . . . , ψm) = (φ−1ψ0, . . . , φ−1ψm), i.e. tm+1
φ is given by the action of φ−1 on Cm(�).

In what follows, by a φ-parachain complex, we shall mean a parachain complex of k�-modules C = (C•, b, B) such 
that T := 1 − (bB + Bb) is given by the action of φ−1 on C• . We also define φ-paracyclic k�-modules as paracyclic 
k�-modules C = (C•, d, s, t) such that tm+1 is given by the action of φ−1 on Cm (so that the associated parachain complex 
is a φ-parachain complex). The paracyclic k�-module Cφ(�) is a φ-paracyclic module. Another example of φ-paracyclic 
k�-module is the twisted cyclic k�-module Cφ(A) = (C•(A), dφ, s, tφ), where Cm(A) = Am+1 and (dφ, s, tφ) are given 
by dφ(a0 ⊗ · · · ⊗ am) = [(φ−1am)a0] ⊗ a1 ⊗ · · · ⊗ am−1, s(a0 ⊗ · · · ⊗ am) = 1 ⊗ a0 ⊗ · · · ⊗ am and tφ(a0 ⊗ · · · ⊗ am) =
(φ−1am) ⊗ a0 ⊗ · · · ⊗ am−1. For φ = 1 we recover the cyclic module C(A) of A.

Given (left) k�-modules M1 and M2 we shall denote by M1 ⊗� M2 their tensor product over k�, i.e. the quotient of 
M1 ⊗k M2 by the action of �. If C and C ′ are parachain complexes of k�-modules (resp., paracyclic k�-modules), then we 
can form their tensor product C ⊗� C ′ so as to get a parachain complex of k-modules (resp., a bi-paracyclic k-modules). 
When C and C ′ are φ-parachain complexes (resp., φ-paracyclic modules) the tensor product C ⊗� C ′ is cylindrical.

In what follows, when C is a φ-parachain complex (resp., φ-paracyclic k�-module) we shall denote by Cφ(�, C ) the 
cylindrical complex (resp., cylindrical k-module) Cφ(�) ⊗� C . We shall use the notation Cφ(�, A) for C = Cφ(A). It can be 
shown that if α : C• → C ′• is a quasi-isomorphism of φ-parachain complexes, then 1 ⊗α : Tot•(Cφ(�, C )) → Tot•(Cφ(�, C ′))
is a quasi-isomorphism of mixed complexes.
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3. Splitting along conjugacy classes

The crossed-product algebra A� := A � � is the unital k-algebra with generators a ∈ A and uφ , φ ∈ � subject to the 
relations a0uφ0a1uφ1 = a0(φ−1

0 a1)uφ0φ1 for all a j ∈ A and φ j ∈ �. Given any φ ∈ �, we shall denote by [φ] its conjugacy 
class in �. We then denote by C(A�)[φ] the cyclic submodule of C(A�) generated by chains a0uφ0 ⊗ · · · ⊗ amuφm , with 
a j ∈ A and φ j ∈ � such that φ0 · · ·φm ∈ [φ]. We then have a direct-sum decomposition of cyclic k-modules C•(A�) =⊕

C•(A�)[φ] , where the summation goes over all conjugacy classes. This provides us with the corresponding decomposition 
and inclusion at the level of the cyclic and periodic complexes. We shall denote by HC•(A�)[φ] (resp., HP•(A�)[φ]) the 
cyclic homology (resp., periodic cyclic homology) of C(A�)[φ] . We then have a splitting HC•(A�) = ⊕

HC•(A�)[φ] , and an 
inclusion 

⊕
HP•(A�)[φ] ⊂ HP•(A�), which is onto when � has a finite number of conjugacy classes.

Given φ ∈ �, let us denote by �φ its centralizer in �. As φ is a central element of �φ , we may form the cylindrical 
complex Cφ(�φ, A) as in Section 2. We have a natural embedding of cyclic k-modules μφ : Diag•(Cφ(�φ, A)) → C•(A�)[φ]
given by μφ

(
(ψ0, . . . ,ψm) ⊗�φ (a0 ⊗ · · · ⊗ am)

) = [(ψ−1
m φ) · a0]u

φψ−1
m ψ0

⊗ (ψ−1
0 · a1)u

ψ−1
0 ψ1

⊗ · · · ⊗ (ψ−1
m−1 · am)u

ψ−1
m−1ψm

. This 
embedding can be shown to be a quasi-isomorphism. Combining this with the Eilenberg–Zilber theorem for bi-paracyclic 
modules, we then obtain explicit quasi-isomorphisms:

Tot•
(
Cφ(�φ,A)

)� ���−−−⇀↽−−−
AW�

Diag•
(
Cφ(�φ,A)

)� μφ−−→ C•(A�)
�
[φ]. (1)

There are analogous quasi-isomorphisms between the corresponding periodic cyclic complexes. All this reduces the study of 
the cyclic module of A� to that of the mixed complexes Tot•(Cφ(�φ, A)), φ ∈ �.

4. The cyclic module Cφ(A)[φ]. Finite order case

Suppose that φ is an element of � of finite order r. Let Cφ(�φ) be the mixed complex (C(�φ), ∂, 0). Given any φ-invariant 
mixed complex of k�φ-modules C = (C•, b, B), we shall denote by C �(�φ, C ) the mixed bicomplex C �(�φ) ⊗�φ C . More 
generally, if C = (C•, b, B) is a φ-parachain complex, then we have a φ-invariant mixed complex C φ = (C φ• , b, B), where 
C φ

m is the φ-invariant submodule of Cm . We then may form the mixed bicomplex C �(�φ, C φ).
Bearing this in mind, let νφ : C•(�φ) → C•(�φ) be the k�φ-module map defined by νφ(ψ0, . . . , ψm) = 1

rm+1 ×
∑

0≤ j≤r−1(φ
0ψ0, . . . , φmψm), ψ j ∈ �φ . We also let ε : C•(�φ) → C•(�φ) be the antisymmetrization map ε(ψ0, . . . , ψm) =

1
(m+1)!

∑
σ∈Sm

(ψσ−1(0), . . . , ψσ−1(m)), where Sm is the group of permutations of {0, . . . , m}. As νφ and ε both are pro-
jections and commute with each other, the composition ενφ is a projection as well. It can be checked that the com-

position ενφ : Cφ• (�φ) → C �(�φ) is a map of parachain complexes which is both a projection and ∂-homotopic to the 
identity (compare [4,16]). By elaborating on the perturbation theory of Kassel [14], it can be shown that the associ-
ated S-map ενφ : Cφ• (�φ)� → C �•(�φ)� has an explicit S-homotopy inverse (ενφ)� : C �•(�φ)� → Cφ

b t(�φ, C )� which is an 
S-map whose zeroth degree component is ενφ . Given any φ-parachain complex C , we obtain a parachain bicomplex map 
(ενφ) ⊗ 1 : Cφ•,•(�φ, C ) → C �•,•(�φ, C φ). A homotopy inverse of the S-map (ενφ) ⊗ 1 : Tot•(Cφ(�φ, C ))� → Tot•(C �(�φ, C φ))�

is given by (ενφ)� ⊗ 1 : Tot•(C �(�φ, C φ))� → Tot•(Cφ(�φ, C ))� . Therefore, we arrive at the following result.

Theorem 4.1. Let φ ∈ � have finite order. Suppose we are given a quasi-isomorphism of parachain complex α : Cφ• (A) → C• , where 
C is a φ-parachain complex. Then we have quasi-isomorphisms,

Tot•
(
C �(�φ,C φ)

)� (ενφ)⊗α←−−−−− Tot•
(
Cφ(�φ,A)

)� ���−−−⇀↽−−−
AW�

Diag•
(
Cφ(�φ,A)

)� μφ−−→ C•(A�)
�
[φ].

If β : C• → Cφ• (A) is a quasi-inverse (resp., homotopy inverse) of α, then (ενφ)� ⊗ β is a quasi-inverse (resp., homotopy inverse) of 
(ενφ) ⊗ α. There are analogous statements at the level of the corresponding periodic cyclic complexes. We thus obtain isomorphisms 
HC•(A�)[φ] � HC•(Tot(C �(�φ, C φ))) and HP•(A�)[φ] � HP•(Tot(C �(�φ, C φ))).

Remark 4.2. By interpreting Tot•
(
C �(�φ,C φ)

)�
as the total S-module of triangular S-modules (cf. Section 1), we obtain 

spectral sequences converging to HC•(A�)[φ] . In particular, we obtain a refinement of the spectral sequence of Getzler–
Jones [11] and recover the spectral sequence of Feigin–Tsygan [10].

Remark 4.3. When �φ is finite, we can construct an explicit pair of S-homotopy inverses between Tot(C �(�φ, C φ)) and the 
�φ-invariant cyclic complex C �φ,� . We thus obtain isomorphisms HC(A�)[φ] � HC•(C �φ ) and HP(A�)[φ] � HP•(C �φ ).
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5. The cyclic module Cφ(A)[�]. Infinite order case

Suppose that φ is an infinite-order element of �. Set �φ = �φ/〈φ〉, where 〈φ〉 is the subgroup generated by φ. Composing 
the natural projection �π� : Cφ• (�φ)� → C•(�φ) with the antisymmetrization map of C•(�φ) defined in the previous section, 
we get a chain map �ε� := ε�π� : Cφ• (�φ)� → C•(�φ). If M is a φ-invariant k�φ-module, then the action of �φ on M descends 
to an action of �φ , and so we obtain a chain map �ε� ⊗ 1 : Cφ• (�φ, M )� → C•(�φ, M ). Using results of Marciniak [16]
and Kassel [14], this chain map can be shown to give rise to an S-homotopy equivalence. In addition, let uφ ∈ C2(�φ, Z)

be a 2-cocycle representing the Euler class eφ ∈ H2(�φ, Z) of the central extension 1 → 〈φ〉 → �φ → �φ → 1. The cap 
product with uφ then gives rise to a chain map uφ � − : C•(�φ) → C•−2(�φ). We then can construct an explicit chain 
homotopy hφ : Cφ• (�φ)� → C•−1(�φ) such that �ε� S − (uφ � −)�ε� = ∂hφ + hφ(∂ + Bφ S), where Bφ is the B-differential of 
Cφ(�φ) (compare [12]).

As uφ � − is a chain map degree −2, we get an S-module Cσ (�φ) = (C•(�φ), ∂, uφ � −). Given any φ-invariant mixed 
complex C = (C•, b, B), we denote by Cσ (�φ, C ) the triangular S-module given by the tensor product Cσ (�φ) ⊗�φ

C . 
Its total S-module is Tot(Cσ (�φ, C )) = (Tot•(Cσ (�φ, C )), d†, uφ � −), where Totm(Cσ (�φ, C )) = ⊕

p+q=m C p(�φ, Cq) and 
d† = ∂ + (−1)pb + (−1)B(uφ � −). We then obtain a chain map θ : Tot•(Cφ(�φ, C ))� → Tot•(Cσ (�φ, C )) by letting θ =
�ε� ⊗ 1 + (−1)p−1(1 ⊗ B)(hφ ⊗ 1) on C p,q(�φ, C ). It can be shown that θ is a quasi-isomorphism and θ S − (uφ � −)S =
d†(hφ ⊗ 1) + (hφ ⊗ 1)d†, where we have denoted by d† the differentials of Tot(Cφ(�φ, C ))� and Tot(Cσ (�φ, C )).

Theorem 5.1. Let φ ∈ � have infinite order. Suppose we are given a quasi-isomorphism of parachain complexes α : Cφ• (A) → C• , 
where C is a φ-invariant mixed complex. Then we have quasi-isomorphisms,

Tot•(Cσ (�φ,C ))
θ(1⊗α)←−−−− Tot•

(
Cφ(�φ,A)

)� ���−−−⇀↽−−−
AW�

Diag•
(
Cφ(�φ,A)

)� μφ−−→ C•(A�)
�
[φ].

This gives an isomorphism HC•(A)[φ] � H•
(
Tot(Cσ (�φ,C ))

)
, under which the periodicity operator of HC•(A)[φ] is given by the cap 

product eφ �− : H•(Tot(Cσ (�φ, C ))) −→ H•−2(Tot(Cσ (�φ, C ))).

Actions satisfying the assumptions of Theorem 5.1 naturally appear in the context of group actions on manifolds (cf. [18]). 
In general, we have the following result.

Theorem 5.2. Let φ ∈ � have infinite order. Suppose we are given a quasi-isomorphism of parachain complexes α : Cφ• (A) → C• , 
where C = (C•, b, B) is a φ-parachain complex. Then we have a spectral sequence,

E2
p,q = H p(�φ, Hq(C )) =⇒ HCp+q(A�)[φ],

where H•(C ) is the homology of (C•, b). If b = 0, then E2
p,q = H p(�φ, Cq) and the E2-differential is given by (−1)p B(uφ � −) :

H p(�φ, Cq) → H p−2(�φ, Cq+1).

Remark 5.3. When C = Cφ(A) and α = id, the above spectral sequence specializes to the spectral sequence of Feigin–
Tsygan [10].

Let δ : Cφ• (�φ) → Diag•(Cφ(�φ, k) ⊗ Cφ(�φ)) be the paracyclic k-module map given by δ(ψ0, . . . , ψm) = [(ψ0, . . . , ψm) ⊗�φ

1] ⊗ (ψ0, . . . , ψm). Combining it with the bi-paracyclic Alexander–Whitney map, we obtain a para-S-module map AW� ◦δ :
Cφ• (�φ)� → Tot•(Cφ(�φ, k) ⊗ Cφ(�φ))� . Let C �(�φ, k) be the mixed complex (C•(�φ), ∂, 0), and let us form the vertical 
triangular para-S-module C �(�φ, k) ⊗�φ Cφ(�φ)� . We have a para-S-module map (ε�π) ⊗ 1 : Tot•(Cφ• (�φ, k) ⊗ Cφ(�φ))� →
Tot•(C �(�φ, k) ⊗ Cφ(�φ)�). We thus obtain a para-S-module map �� := ((ε�π) ⊗ 1) AW� ◦δ : Cφ(�φ)� → Tot•(C �(�φ, k) ⊗
Cφ(�φ)�). This gives rise to a bilinear differential graded map,

� : C•(�φ,k) × Tot•
(
Cφ(�φ,A)

)� −→ Tot•
(
Cφ(�φ,A)

)�
. (2)

More precisely, given any cochain u ∈ C p(�φ, k), p ≥ 0, and chains η ∈ Cφ• (�φ)� and ξ ∈ C•(A), we have u � (η ⊗� ξ) =[
(u ⊗ 1)��η

] ⊗�φ ξ .

Theorem 5.4. Let φ ∈ � have infinite order. The quasi-isomorphisms (1) and the bilinear map (2) give rise to an associative action of 
the cohomology ring H•(�φ, k) on HC•(A�)[φ] . Moreover, the periodicity operator of HC•(A�)[φ] is given by the action of the Euler 
class eφ . In particular, HP•(A�)[φ] = 0 whenever eφ is nilpotent in H•(�φ, k).
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Remark 5.5. The result that HC•(A�)[φ] is a module over H•(�φ, k) and the action of eφ gives the periodicity is due to 
Nistor [17]. The improvement with respect to [17] is twofold. First, we are able to bypass the difficult homological algebra 
arguments of [17]. Second, we have an explicit description of the action at the level of chains.

Remark 5.6. The nilpotence of eφ is closely related to the Bass and idempotent conjectures ([9,12]). In particular, eφ is 
rationally nilpotent for every infinite order element φ ∈ � whenever � belongs to one of the following classes of groups: 
free products of Abelian groups, hyperbolic groups, and arithmetic groups.
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