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In this note, we produce explicit quasi-isomorphisms computing the cyclic homology of 
crossed-product algebras associated with group actions on manifolds. We obtain explicit 
relationships with equivariant cohomology. On the way, we extend the results of the first 
part to the setting of group actions on locally convex algebras.
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r é s u m é

Dans cette note, on produit des quasi-isomorphismes explicites calculant l’homologie 
cyclique des algèbres produits-croisés provenant d’actions de groupes sur les variétés. On 
obtient des liens avec la cohomologie équivariante. On étend aussi les résultats de la 
première partie au cadre des actions de groupes sur les algèbres localement convexes.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

0. Introduction

In [13], referred hereafter as Part I, we constructed explicit quasi-isomorphisms for cyclic and periodic complexes of 
algebraic crossed-products A � �, where � is any group acting on a unital algebra A over a commutative ring k ⊃ Q. 
In this note, we extend these results to actions on locally convex algebras where we use the cyclic space of completed 
chains. We then apply this results in the setting of group actions on manifolds to get explicit quasi-isomorphisms. For the 
finite-order components, the results are expressed in terms of what we call “mixed equivariant homology”. By using a cap 
product construction, this enables us to construct cyclic cycles out of equivariant characteristic classes. This improves the 
description of cyclic homology given in [5]. For the infinite-order components, we simplify the approach of [9] and correct 
the misidentification of the cyclic homology there. There are analogues of these results for group actions on varieties (see 
Remark 3.6).

Throughout this note we shall assume the notation, definitions and main results of Part I.
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1. Actions on locally convex algebras

In this section, we extend the results of Part I to group actions on locally convex algebras. Given a unital locally convex 
algebra A, we let C(A) be its cyclic space of completed chains (C•(A), d, s, t), where C(A) =A⊗̂(m+1) and ⊗̂ is the projec-
tive tensor product. The algebraic space of chains C•(A) is dense in C•(A). The cyclic (resp., periodic cyclic) homology of 
C(A) is denoted by HC•(A) (resp., HP•(A)).

Let � be a group acting on A by continuous automorphisms. We endow the crossed-product algebra A� := A � �

with the weakest locally convex topology with respect to which the linear embeddings A � a → auφ ∈ A� , φ ∈ �, are 
continuous. With respect to this topology A� is a locally convex algebra. In Part I we made use of the direct-sum of 
cyclic spaces C(A) = ⊕C(A�)[φ] , where the summation is over all conjugacy classes [φ] and C(A)[φ] is generated by chains 
a0uφ0 ⊗· · ·⊗amuφm with φ0 · · ·φm ∈ [φ]. Let C•(A�)[φ] be the closure of C•(A�)[φ] in C•(A�)[φ] . We obtain a cyclic subspace 
and, as in the algebraic case, C(A�) = ⊕C(A�)[φ] . Let us denote by HC•(A�)[φ] (resp., HP•(A�)[φ]) the cyclic (resp., periodic 
cyclic) homology of C(A�)[φ] . Then HC•(A�) = ⊕ HC•(A�)[φ] and ⊕ HP•(A�)[φ] ⊂ HP•(A�), where the inclusion is onto 
when � has finitely many conjugacy classes.

Given φ ∈ �, the structural operators (dφ, s, tφ) of the paracyclic C�φ-module Cφ(A) uniquely extends to continuous 
operators on C•(A) so that we obtain a paracyclic C�φ-module Cφ(A) := (C•(A), dφ, s, tφ). We denote by Cφ(�φ, A) the 
cylindrical space Cφ(�φ, Cφ(A)) as defined in Part I. This is just the tensor product over �φ of the paracyclic C�φ-modules 
Cφ(�φ) and Cφ(A). The space of (p, q)-chains is Cφ

p,q(�φ, A) := C p(�φ) ⊗�φ Cq(A). We equip it with the weakest locally 
convex topology with respect to which the linear embeddings Cq(A) � ξ → (ψ0, . . . , ψp) ⊗�φ ξ ∈ Cφ

p,q(�φ, A), ψ j ∈ �φ , are 
continuous. In Part I, we exhibited a cyclic space embedding and quasi-isomorphism μφ : Diag•(Cφ(�φ, A)) → C•(A�)[φ] . 
It uniquely extends to a continuous embedding and quasi-isomorphism μφ : Diag•(Cφ(�φ, A)) → C•(A�)[φ] . Therefore, we 
obtain quasi-isomorphisms of cyclic complexes,

Tot•(Cφ(�φ,A))�

∃ �−−−⇀↽−−−
AW�

Diag•(Cφ(�φ,A))�
μφ−−→ C•(A�)

�
[φ]. (1)

There are similar quasi-isomorphisms between the respective periodic cyclic complexes. The mixed complex Tot•
(
Cφ(�φ,

A)
)�

can be studied in the same way as in Part I. Thereon all the results of Section 4 and Section 5 of Part I for C(A�)[φ]
hold mutatis mutandis C(A�)[φ] by replacing Cφ(�φ, A) and Cφ(A) by their closures Cφ(�φ, A) and Cφ(A).

Suppose that φ has finite order r. As in Part I, given a φ-invariant mixed complex C we denote by C �(�φ, C ) the 
mixed bicomplex obtained as the tensor product over �φ of the mixed complex C �(�φ) = (C(�φ), ∂, 0) with C . We re-
fer to Part I for the definitions of φ-parachain complexes and φ-cyclic spaces. If C is a φ-parachain complex, then 
we denote by C φ its φ-invariant subcomplex. This is a mixed complex, and so we may form the mixed bicomplex 
C �(�φ, C φ). As shown in Part I, we have an S-homotopy equivalence (ενφ) : Cφ(�φ)� → C �(�φ)� , where νφ : Cφ• (�φ) →
C•(�φ) and ε : C•(�φ) → C �•(�φ) are the parachain complex maps νφ(ψ0, . . . , ψm) = 1

rm+1

∑
0≤� j≤r−1(φ

�0ψ0, . . . , φ�mψm)

and ε(ψ0, . . . , ψm) = 1
(m+1)!

∑
σ∈Sm

(ψσ−1(0), . . . , ψσ−1(m)). (Here Sm is the group of permutations of {0, . . . , m}.)

Theorem 1.1. Let φ ∈ � have finite order, and suppose we are given a quasi-isomorphism of φ-parachain complexes α : Cφ• (A) → C• . 
Then the following are quasi-isomorphisms of cyclic complexes,

Tot•
(
C �(�φ,C φ)

)� (ενφ)⊗α←−−−−− Tot•
(
Cφ(�φ,A)

)�

∃ �−−−⇀↽−−−
AW�

Diag•
(
Cφ(�φ,A)

)� μφ−−→ C•(A�)
�
[φ].

There are similar quasi-isomorphisms between the respective periodic cyclic complexes. This provides us with isomorphisms 
HC•(A�)[φ] � HC•(Tot(C �(�φ, C φ))) and HP•(A�)[φ] � HP•(Tot(C �(�φ, C φ))).

Remark 1.2. When �φ is finite, there is an explicit S-homotopy equivalence between the cyclic complexes of Tot
(
C �(�φ,

C φ))
)

and the �φ-invariant mixed complex C �φ . We thus obtain explicit quasi-isomorphisms that identify HC•(A�)[φ] and 
HP•(A�)[φ] with HC•(C �φ ) and HP•(C �φ ).

Suppose now that φ has infinite order. Set �φ = �φ/〈φ〉, where 〈φ〉 is the subgroup generated by φ. In addition, let 
uφ ∈ C2(�φ, C) be a group 2-cocycle representating the Euler class eφ ∈ H2(�φ, C) of the central extension 1 → 〈φ〉 →
�φ → �φ → 1. The cap product uφ � − : C•(�φ) → C•−2(�φ) is a chain map, and so Cσ (�φ) := (C•(�φ), ∂, uφ � −) is 
an S-module in the sense of Jones–Kassel [11,12]. We refer to Part I for the definition of a triangular S-module. As in 
Part I, given any φ-invariant mixed complex C = (C•, b, B), we denote by Cσ (�φ, C ) the triangular S-module given by the 
tensor product over �φ of Cσ (�φ) and C . Its total S-module is (Tot•(Cσ (�φ, C )), d†, uφ � −), where Totm(Cσ (�φ, C )) =
⊕p+q=mC p(�φ) ⊗�φ

Cq and d† = ∂ + (−1)pb + (−1)p B(uφ � −) on C p(�φ) ⊗�φ
Cq . In Part I, we constructed an explicit 

quasi-isomorphism θ : Tot•(Cφ(�, C ))� → Tot•(Cσ (�, C )). We then have the following result.
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Theorem 1.3. Let φ ∈ � have infinite order. Suppose we are given a quasi-isomorphism of parachain complexes α : Cφ• (A) → C• , 
where C is a φ-invariant mixed complex. Then the following are quasi-isomorphisms of chain complexes,

Tot•(Cσ (�φ,C ))
θ(1⊗α)←−−−− Tot•

(
Cφ(�φ,A)

)�

∃ �−−−⇀↽−−−
AW�

Diag•
(
Cφ(�φ,A)

)� μφ−−→ C•(A�)
�
[φ].

This gives an isomorphism HC•(A)[φ] � H•(Cσ (�φ, C )), under which the periodicity operator of HC•(A)[φ] is the cap product eφ �
− : H•(Tot(Cσ (�φ, C ))) → H•−2(Tot(Cσ (�φ, C ))).

In the same way as in Part I, the bi-paracyclic Alexander–Whitney map enables us to construct a differential graded 
bilinear map � : C•(�φ, k) × Tot•

(
Cφ(�φ,A)

)� −→ Tot•
(
Cφ(�φ,A)

)�
). For general infinite order actions, we then have the 

following result.

Theorem 1.4. Let φ ∈ � have infinite order.

(1) Suppose we are given a quasi-isomorphism of parachain complexes α : Cφ• (A) → C• , where C is a φ-parachain complex. Then 
we have spectral sequence E2

p,q = H p(�φ, Hq(C )) =⇒ HCp+q(A�)[φ] .
(2) The bilinear map � and the quasi-isomorphisms (1) give rise to an associative action of the cohomology ring H•(�φ, C) on 

HC•(A�)[φ] . The periodicity operator is given by the action of the Euler class eφ ∈ H2(�φ, C). In particular, HP•(A�)[φ] = 0
whenever eφ is nilpotent in H•(�φ, C).

2. Equivariant cohomology and mixed equivariant homology

From now on we assume that � acts by diffeomorphisms on a manifold M . Let �(M) = (�•(M), d) be the de Rham 
complex of differential forms on M . Recall that the equivariant cohomology H•

�(M) is the cohomology of the total complex 
of Bott’s cochain bicomplex C�(M) = (C•,•

� (M), ∂, d), where C p,q
� (M) := C p(�, �q(M)) consists of �-equivariant maps ω :

�p+1 → �q(M). In other words, H•
�(M) is the cohomology of the cochain complex (Tot•(C�(M)), d†), where Totm(C�(M)) =

⊕p+q=mC p,q
� (M) and d† = ∂ + (−1)pd on C p,q

� (M). It is isomorphic to the cohomology of the homotopy quotient E� ×� M .

The even/odd equivariant cohomology Hev/odd
� (M) is the cohomology of the complex Cev/odd

� (M) = (Cev/odd
� (M), d†), where 

Cev/odd
� (M) = ∏

p+q even/odd C p,q
� (M). This is a natural receptacle for the construction of equivariant characteristic classes 

(cf. [2]). In particular, given any �-equivariant vector bundle E over M , we have a well-defined equivariant Chern character 
Ch�(E) ∈ Hev

� (M) (see [2,10]).
We can define the equivariant homology H�• (M) of the �-manifold M by using a dual version of Bott’s bicomplex. 

For our purpose, we actually need to construct a “mixed complex” version of equivariant homology. More precisely, we 
introduce the equivariant mixed bicomplex C(�, M) := (C•,•(�, M), ∂, 0, 0, d), where C p,q(�, M) = C p(�) ⊗� �q(M). Its total 
mixed complex is Tot(C(�, M)) = (Tot•(C(�, M), ∂, (−1)pd).

Definition 2.1. The cyclic homology of the mixed complex Tot(C(�, M)) is called the mixed equivariant homology of the 
�-manifold M and is denoted by H�• (M)� . Its periodic cyclic homology is called the even/odd mixed equivariant homology of 
M and is denoted by H�

ev/odd(M)� .

The mixed equivariant homology is the natural receptacle of the cap product between equivariant cohomology and 
group homology. Namely, the usual cap product �: C p,q

� (M) × Cm(�, C) → Cm−p,q(�, M) is compatible with the differentials 
∂ and d, and so it gives rise to a cap product �: Hev/odd

� (M) × Hev/odd(�, C) → H�
ev/odd(M)� . In particular, caping equivari-

ant characteristic classes with group homology provides us with a geometric construction of mixed equivariant homology 
classes.

3. The cyclic homology of C∞(M) ��

In this section, we assume that � is a group acting by diffeomorphisms on a compact manifold M . We get an action 
on the Fréchet algebra A := C∞(M). We shall now explain how to use the results of the previous sections for constructing 
explicit quasi-isomorphisms for the cyclic and periodic homologies of the crossed-product algebra A� =A ��. Given φ ∈ �, 
we denote by Mφ its fixed-point set in M . We shall say that the action of φ on M is clean when, for every x0 ∈ Mφ , the 
fixed-point set Mφ is a submanifold of M near x0, and we have Tx0 Mφ = ker(φ′(x0) −1) and Tx0 M = Tx0 Mφ ⊕ran(φ′(x0) −1). 
These conditions are satisfied when φ preserves a metric or more generally an affine connection. In particular, they are 
always satisfied when φ has finite order.

Suppose that φ acts cleanly on M . For a = 0, 1, . . . , dim M , set Mφ
a := {x ∈ Mφ; dim ker(φ′(x) − 1) = a}. Each subset 

Mφ
a is a submanifold of M , and so we have a stratification Mφ = �Mφ

a . This enables us to define the de Rham complex 
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�(Mφ) = (�•(Mφ), d) as the direct sum of the de Rham complexes �(Mφ
a ). Note also that each component Mφ

a is pre-
served by the action of the centralizer �φ . We also define the equivariant bicomplex C�φ (Mφ) and the equivariant mixed 
bicomplex C(�φ, Mφ) as the direct sums of the bicomplexes C�φ (Mφ

a ) and C(�φ, Mφ
a ), respectively. This enables us to de-

fine the equivariant cohomology H•
�φ

(Mφ) and the mixed equivariant homology H
�φ• (Mφ)� . We have a map of parachain 

complexes αφ : Cφ• (A) → �•(Mφ) given by αφ( f 0 ⊗ · · · ⊗ f m) = 1
m!

∑
a( f 0df 1 ∧ · · · ∧ df m)|Mφ

a
, f j ∈ A. It is known to be a 

quasi-isomorphism ([4,5]). For φ = 1, this result agrees with that of Connes [6]. We thus can input this quasi-isomorphism 
into the framework of Section 1 to get explicit quasi-isomorphisms as follows.

Suppose that φ has finite order. For φ = 1 Connes [7,8] constructed an explicit quasi-isomorphism from Cev/odd
� (M) to 

the periodic cyclic cochain complex of the homogeneous component C(A�)[1] . In general, as the mixed equivariant complex 
C(�φ, Mφ) is just the mixed bicomplex C �(�φ, C ) for C = �(Mφ), Theorem 1.1 immediately gives the following result.

Theorem 3.1. Let φ ∈ � have finite order. Then the following are quasi-isomorphisms,

Tot•
(
C(�φ, Mφ)

)� (ενφ)⊗αφ

←−−−−−− Tot•
(
Cφ(�φ,A)

)�

∃ �−−−⇀↽−−−
AW�

Diag•
(
Cφ(�φ,A)

)� μφ−−→ C•(A�)
�
[φ]. (2)

There are similar quasi-isomorphisms between the respective periodic cyclic complexes. We thus obtain isomorphisms HC•(A�)[φ] �
H

�φ• (Mφ)� and HP•(A�)[φ] � H
�φ

ev/odd(Mφ)� .

Remark 3.2. Brylinski–Nistor [5] (see also Crainic [9]) expressed HC•(A�)[φ] and HP•(A�)[φ] in terms of the equivariant 
homology of Mφ . We obtain explicit quasi-isomorphisms with the equivariant homology complex by combining the quasi-
isomorphisms (2) with the Poincaré duality for the de Rham complex �(Mφ). In particular, this enables us to recover the 
aforementioned results of [5]. When �φ is finite, by Remark 1.2 we have quasi-isomorphisms that allow us to express 
HC•(A�)[φ] and HP•(A�)[φ] in terms of the �φ-invariant de Rham cohomology H•(Mφ)�φ . In particular, when � is finite 
we recover the description of HP•(A�) given by Baum–Connes [1].

Let ηφ : H
�φ

ev/odd(Mφ)� → HP•(A�)[φ] be the isomorphism defined by the quasi-isomorphisms (2). Composing it with the 
cap product from Section 2 provides us with the following corollary.

Corollary 3.3. Let φ ∈ � have finite order. Then we have a graded bilinear graded map,

ηφ(− � −) : Hev/odd
�φ

(Mφ) × Hev/odd(�φ,C) −→ HP•(A�)[φ].

In particular, equivariant characteristic classes naturally give rise to classes in HP•(A�)[φ] .

The definition of the isomorphism ηφ involves the bi-paracyclic versions of the shuffle and Alexander–Whiteny maps. As 
it turns out, we actually obtain a very simple formula when we pair ηφ with cochains arising from equivariant currents. To 
see this, let ��(M) = (��• (M), d) be the cochain complex of equivariant currents, where ��

m(M), m ≥ 0, consists of maps C :
� → �m(M) that are �-equivariant in the sense that C(ψ−1

1 ψ0ψ1) = (ψ1)∗[C(ψ0)] for all ψ j ∈ �. (Here �m(M) is the space 
of m-dimensional currents.) Any equivariant current C ∈ ��

m(M) defines a cochain ϕC ∈ Cm(A�) by ϕC ( f 0uψ0 , . . . , f muψm ) =
1

m! 〈C(ψ), f 0d f̂ 1 ∧· · ·∧d f̂ m〉, where we have set ψ = ψ0 · · ·ψm and f̂ j = f j ◦ (ψ0 · · ·ψ j−1)
−1. This provides us with a map of 

mixed complexes from (��• (M), d, 0) to (C•(A�), B, b). Therefore, we obtain cochain maps between their respective cyclic 
and periodic cochain complexes. Note that the periodic cyclic complex of ��(M) is just (��

ev/odd(M), d). The transverse 
fundamental class cocycle of Connes [7] and the CM cocycle of an equivariant Dirac spectral triple [14] are examples of 
cocycles arising from equivariant currents. In what follows, given any equivariant chain ω = (ωp,q), ωp,q ∈ C p,q(�, M), we 
denote by ω0 its component in C0,•(�, M) � �•(M).

Proposition 3.1. Let φ ∈ � have finite order. Then, for any closed equivariant current C ∈ ��
ev/odd(M) and any equivariant cycle 

ω ∈ Cev/odd(�φ, Mφ), we have 〈ϕC , ηφ(ω)〉 = 〈C(φ), ω̃0〉, where ω̃0 ∈ �ev(M) is such that ω̃0|Mφ = ω0 .

Let E be a �φ-equivariant vector bundle over a submanifold component Mφ
a . Given any connection ∇ E on E , the equiv-

ariant Chern character of E is represented by a cocycle Ch�φ (∇ E ) ∈ Cev
�φ

(Mφ
a ) (see [2,10]). The space C0(�φ, C) � C is 

spanned by the cycle 1 := 1 ⊗�φ 1. It can be checked that (Ch�φ (∇ E ) � 1)0 = Ch(∇ E ), where Ch(∇ E ) is the Chern form 
of ∇ E . Thus, for any closed equivariant current C ∈ ��

ev(M) such that supp C(φ) ⊂ Mφ
a , we have 〈ϕC , ηφ(Ch�φ (∇ E ) �

1)〉 = 〈C(φ), Ch(∇ E )〉. More generally, let ξ = ∑
� λ�(ψ

�, . . . , ψ� ) ⊗�φ 1 be a cycle in C2q(�φ, C), q ≥ 1. We then have 
0 2q
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〈ϕC , ηφ(Ch�φ (∇ E ) � ξ)〉 = ∑
�〈C(φ), CS

(
(ψ�

0)∗∇ E , . . . , (ψ�
2q)∗∇ E

)
〉, where CS((ψ0)∗∇ E , . . . , (ψ2q)∗∇ E ) is the Chern–Simons 

form of the connections ((ψ0)∗∇ E , . . . , (ψ2q)∗∇ E ) as defined in [10].
Suppose now that φ has infinite order and acts cleanly on M . As �(Mφ) is a φ-invariant mixed complex, we may form 

the triangular S-module Cσ (�φ, �(Mφ)) as in Section 1 and Part I. Its total S-module is (Tot•(Cσ (�φ, �(Mφ))), d†, uφ � −), 
where Totm(Cσ (�φ, �(Mφ))) = ⊕p+q=mC p(�φ) ⊗�φ

�q(Mφ) and d† = ∂ + (−1)pd(uφ �−) on C p(�φ) ⊗�φ
�q(Mφ). Applying 

Theorem 1.3 then gives the following result.

Theorem 3.4. Let φ ∈ � have infinite order and act cleanly on M. The following are quasi-isomorphisms,

Tot•(Cσ (�φ,�(Mφ)))
θ(1⊗α)←−−−− Tot•

(
Cφ(�φ,A)

)�

∃ �−−−⇀↽−−−
AW�

Diag•
(
Cφ(�φ,A)

)� μφ−−→ C•(A�)
�
[φ]. (3)

This gives an isomorphism HC•(A)[φ] � H•
(
Tot(Cσ (�φ,�(Mφ)))

)
, under which the periodicity operator of HC•(A)[φ] is the cap 

product eφ �− : H•
(
Tot(Cσ (�φ,�(Mφ)))

) → H•−2
(
Tot(Cσ (�φ,�(Mφ)))

)
.

Remark 3.5. The quasi-isomorphisms (3) and the filtration by columns of Tot•(Cσ (�φ, �(Mφ))) give rise to a spectral se-
quence E2

p,q = H p(�φ, �q(Mφ)) =⇒ HCp+q(A�), where the E2-differential is given by (−1)pd(uφ � −) : H p(�φ, �q(Mφ)) →
H p−2(�φ, �q+1(Mφ)). Crainic [9] obtained such a spectral sequence, and inferred from this that HCm(A)[φ] � ⊕p+q=m H p(�φ,

�q(Mφ)) (see [9, Corollary 4.15]). What we really have is the isomorphism HC•(A)[φ] � H•
(
Tot(Cσ (�φ,�(Mφ)))

)
given by 

Theorem 3.4.

Remark 3.6. All the results of this section have analogues for group actions on smooth varieties by combining the results of 
Part I with the twisted Hochschild–Kostant–Rosenberg Theorem of [3]. When �φ is finite, we get explicit quasi-isomorphisms 
that enable us to recover the description of cyclic and periodic homology in terms of (algebraic) orbifold cohomology in [3]. 
More generally, when φ has finite order, the results are expressed in terms of a mixed equivariant homology for smooth 
varieties. Furthermore, the framework of Section 1 enables us to extend those results to the I-adic completions considered 
in [3].

Acknowledgements

I wish to thank Alain Connes, Sasha Gorokhovsky, Masoud Khalkhali, Henri Moscovici, Victor Nistor, Markus Pflaum, 
Hessel Posthuma, Bahram Rangipour, Xiang Tang, and Hang Wang for various discussions related to the subject matter of 
this note.

References

[1] P. Baum, A. Connes, Chern character for discrete groups, in: A Fête of Topology, Academic Press, Boston, 1988, pp. 163–232.
[2] R. Bott, On Some Formulas for the Characteristic Classes of Group Actions, Lecture Notes in Math., vol. 652, Springer, Berlin, 1978, pp. 25–61.
[3] J. Brodzki, S. Dave, V. Nistor, The periodic cyclic homology of crossed products of finite type algebras, Adv. Math. 306 (2017) 494–523.
[4] J.L. Brylinski, Cyclic homology and equivariant theories, Ann. Inst. Fourier (Grenoble) 37 (1987) 15–28.
[5] J.L. Brylinski, V. Nistor, Cyclic cohomology of étale groupoids, K-Theory 8 (1994) 341–365.
[6] A. Connes, Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math. 62 (1985) 257–360.
[7] A. Connes, Cyclic Cohomology and the Transverse Fundamental Class of a Foliation, Pitman Research Notes in Mathematics, vol. 123, Longman, Harlow, 

1986, pp. 52–144.
[8] A. Connes, Noncommutative Geometry, Academic Press, San Diego, 1994.
[9] M. Crainic, Cyclic cohomology of étale groupoids: the general case, K-Theory 17 (1999) 319–362.

[10] E. Getzler, The equivariant Chern character for noncompact Lie groups, Adv. Math. 109 (1994) 88–107.
[11] J.D. Jones, C. Kassel, Bivariant cyclic theory, K-Theory 3 (1989) 339–365.
[12] C. Kassel, Homologie cyclique, caractère de Chern et lemme de perturbation, J. Reine Angew. Math. 408 (1990) 159–180.
[13] R. Ponge, The cyclic homology of crossed-product algebras, I, C. R. Acad. Sci. Paris, Ser. I 355 (2017) 618–622.
[14] R. Ponge, H. Wang, Noncommutative geometry and conformal geometry. II. Connes–Chern character and the local equivariant index theorem, J. Non-

commut. Geom. 10 (2016) 307–378.

http://refhub.elsevier.com/S1631-073X(17)30127-9/bib42433A43434447s1
http://refhub.elsevier.com/S1631-073X(17)30127-9/bib426F3A4C4E4D3738s1
http://refhub.elsevier.com/S1631-073X(17)30127-9/bib42444E3A41494D3137s1
http://refhub.elsevier.com/S1631-073X(17)30127-9/bib42723A4149463837s1
http://refhub.elsevier.com/S1631-073X(17)30127-9/bib424E3A4B543934s1
http://refhub.elsevier.com/S1631-073X(17)30127-9/bib436F3A4E434447s1
http://refhub.elsevier.com/S1631-073X(17)30127-9/bib436F3A4B796F746F3833s1
http://refhub.elsevier.com/S1631-073X(17)30127-9/bib436F3A4B796F746F3833s1
http://refhub.elsevier.com/S1631-073X(17)30127-9/bib436F3A4E4347s1
http://refhub.elsevier.com/S1631-073X(17)30127-9/bib43723A4B543939s1
http://refhub.elsevier.com/S1631-073X(17)30127-9/bib47653A41494D3934s1
http://refhub.elsevier.com/S1631-073X(17)30127-9/bib4A4B3A4B543839s1
http://refhub.elsevier.com/S1631-073X(17)30127-9/bib4B613A4372656C6C653930s1
http://refhub.elsevier.com/S1631-073X(17)30127-9/bib506F3A4352415334s1
http://refhub.elsevier.com/S1631-073X(17)30127-9/bib50573A4A4E43473136s1
http://refhub.elsevier.com/S1631-073X(17)30127-9/bib50573A4A4E43473136s1

	The cyclic homology of crossed-product algebras, II
	0 Introduction
	1 Actions on locally convex algebras
	2 Equivariant cohomology and mixed equivariant homology
	3 The cyclic homology of C∞(M)x|Γ
	Acknowledgements
	References


