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We address the long-time behavior of solutions to damped dispersive stochastic partial dif-
ferential equations, namely the KdV equation and the nonlinear Schrödinger equation on 
the whole space. We prove that the transition semigroup is Feller and establish the exis-
tence of an invariant measure using the asymptotic compactness property of the transition 
semigroup and the Aldous criterion.
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r é s u m é

On étudie le comportement asymptotique des solutions d’équations dispersives stochas-
tiques amorties, en particulier les équation de KdV et les équations de Schrödinger. Nous 
montrons que le semi-groupe de transition est Feller et nous établissons l’existence d’une 
mesure invariante grâce à la propriété de compacité asymptotique du semi-groupe de tran-
sition et au critère d’Aldous.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The purpose of this Note is to report on the results in [6,7] on the long-time behavior of solutions to the stochastic 
damped dispersive equations, specifically the KdV equation

du + (∂3
x u + u∂xu + λu)dt = f dt + �dWt, (1)

on R with a nonzero deterministic force, and the nonlinear Schrödinger equation

du + (λu + i�u + iα|u|2σ u)dt = �dWt (2)

on Rd , with the main purpose of providing the proof of the existence of invariant measures.
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The existence of invariant measures for stochastic partial differential equations has been established for several important 
equations in mathematical physics [1,5,2,8,10,11]. In the case of dispersive equations, there are two main difficulties in 
carrying out the classical Krylov–Bogoliubov procedure. The first one is related to establishing the Feller property. The 
second and the main difficulty is the non-compactness of the domain and the lack of compactness in finite time for the 
solution operator necessary for establishing the tightness of the time averages. In fact, all known approaches fail due to 
the lack of compactness and dissipation. Thus, in order to obtain the tightness of averages, we are led to an unconventional 
proof. To show the tightness, we first use the existence results in [3] in order to establish uniform estimates on the solutions 
to the equation. These bounds give us tightness of measures on the space L2

loc(R) of locally square integrable functions. To 
pass from tightness in L2

loc(R) to tightness in L2(R), one intuitively needs to show that there is no mass escaping to infinity. 
In the stochastic framework, this means that we have convergence of the expectation of the square of the L2(R) norm of a 
sequence of solutions to the expectation of the square of the L2(R) norm of the limiting solution. We then use a result in 
[13] on the convergence in measure in Hilbert spaces to obtain the tightness in L2(R) and H1(R). Similar difficulties arise 
in the case of the Schrödinger equation. In this Note we concentrate more on the KdV equation and state the main result 
for the Schrödinger equation.

2. The stochastic Korteweg–de Vries equation

Fix a stochastic basis (�, G, {Gt}t≥0, P). With (ei)i∈N an orthonormal basis of L2(R), consisting of smooth compactly 
supported functions and (βi)i∈N , a sequence of mutually independent one-dimensional Brownian motions, denote by W (t) =∑

i∈N βi(t)ei a cylindrical Wiener process on L2(R). Consider the stochastic weakly damped Korteweg–de Vries equation

du + (∂3
x u + u∂xu + λu)dt = f dt + �dW (t), (3)

[3,14,15], where λ > 0, with the initial condition u(x, 0) = u0(x) for x ∈R.
For functions u, v ∈ L2(R), denote by ‖u‖L2 the L2(R) norm of u and by (u, v) the L2-inner product of u and v . For a 

Banach space B and with T > 0 and p > 0, denote by Lp([0, T ]; B) the space of functions from [0, T ] into B with integrable 
p-th power over [0, T ] and by C([0, T ]; B) the set of continuous functions from [0, T ] into B . Denote by Hσ (R) the classical 
Sobolev spaces and by B(H1(R)) the set of Borel measurable subsets of H1(R). For a Hilbert space H , we write HS(L2; H)

for the space of linear operators � from L2(R) into H with finite Hilbert–Schmidt norm. Similarly to functional spaces, for 
p > 0 we denote by Lp(�; B) the space of random variables with values in B and finite p-th moment. We assume that

f ∈ H3(R), � ∈ HS(L2(R); Hσ (R)), (4)

for some σ > 3 and that

v �→ (v, f ) is continuous in L2
loc(R). (5)

The following statement addresses the existence and uniqueness of solutions and follows from Theorem 3.1 and 
Lemma 3.2 in [3].

Theorem 2.1. Assume that u0 ∈ L2(�; H1(R)) ∩ L4(�; L2(R)) is G0-measurable. Then there exists a unique mild solution to (3) with 
paths almost surely in C([0, ∞); H1(R)) and with u ∈ L2(�; L∞(0, T ; H1(R))) for all T > 0. Additionally, if u0 ∈ L2(�; H3(R)), 
then u ∈ L2(�; L∞(0, T ; H3(R))) for all T > 0.

The mild solutions of Theorem 2.1 satisfy uniform bounds in L2(R). More precisely, using a stopping time argument, Ito’s 
lemma, and Burkholder–Davis–Gundy’s inequality, we can show that under the assumptions of Theorem 2.1, there exists a 
sequence of constants {Ck}k≥1 depending on f , �, and λ such that

sup
t≥0

E

[
‖u(t)‖2k

L2

]
≤ Ck(λ,�)

(
E

[
‖u0‖2k

L2

]
+ 1

)
(6)

holds for all k ∈ N for which E 
[
‖u0‖2k

L2

]
< ∞. Furthermore, using the second invariant of the deterministic KdV equation 

I(v) = ∫
R

(
(∂x v(x))2 − v(x)3/3

)
dx [15], we obtain the existence of a constant C > 0 such that

sup
t≥0

E

[
‖∂xu(t)‖2k

L2

]
≤ C

(
E

[
‖u0‖2k

H1 + ‖u0‖4k
L2

]
+ 1

)
, k = 1,2. (7)

Let u0 ∈ H1(R) be a deterministic initial condition, and let u be the corresponding solution to (3). For all B ∈ B(H1(R)), 
we define the transition probabilities of the equation by Pt(u0, B) = P(ut ∈ B). Also, for any function ξ ∈ Cb(H1; R) and 
t ≥ 0, denote

Ptξ(u0) = E [ξ(ut)] =
∫

H1

ξ(u)Pt(u0,du). (8)

The following statement is our main result on the stochastic damped KdV equation.
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Theorem 2.2. Suppose λ > 0, and assume that f and � verify (4) and (5). Then there exists an invariant measure for the damped 
stochastic KdV equation (3).

Here we outline the main steps; for complete details, cf. [6]. First, we establish that the transition semigroup satisfies 
the Feller property, i.e. the following statement holds.

Lemma 2.3 (Feller Property). Under the assumptions of Theorem 2.1, the semigroup Pt is Feller on H1(R). Namely, for ξ ∈ Cb(H1, R)

and with u1
0, u

2
0, . . . ∈ H1(R) satisfying ‖un

0 − u0‖H1 → 0 as n → ∞, where u0 ∈ H1(R), the convergence Ptξ(un
0) → Ptξ(u0) as 

n → ∞ holds for all t ≥ 0.

The next goal is to prove the tightness of averages originating from the initial datum u0 = 0. More precisely, we have 
the following statement.

Lemma 2.4 (Tightness). Under the assumptions of Theorem 2.1, the family of measures μn is tight on H1(R), where μn is given by

μn(·) = 1

n

n∫

0

Pt(0, ·)dt, n = 1,2, . . . (9)

The main tool in establishing the tightness is the asymptotic compactness property of the semi-group; a precise state-
ment of this property is given by the next statement.

Lemma 2.5. For any sequence of deterministic initial conditions un
0 satisfying R = supn

{
‖un

0‖2
H1

}
< ∞ and a sequence of nonnegative 

numbers t1, t2, . . . such that limn→∞ tn = ∞, the set of probabilities {Ptn(un
0, ·) : n ∈N} is tight in H1.

Proof of Lemma 2.5. We assume without loss of generality that t1 < t2 < . . . . The proof is divided into several steps. In 
Step 1, we let {un

0}∞n=1 be a sequence of initial conditions as above, and we denote by {un(t)}∞n=1 the respective solu-
tions of (3). We intend to show that there exists a subsequence of {un

tn
} that converges in distribution in H1. By the 

uniform bounds stated above, we have the estimate supn E[‖un(tn)‖2
H1 ] ≤ C(R). Using this bound, the fact that bounded 

sets in H1(R) are relatively compact in L2
loc(R), and Prokhorov’s theorem in L2

loc(R), we conclude that there exists 
an L2

loc(R) valued random variable ξ (possibly defined on another probability space) and a subsequence of {un
tn

} such 
that un

tn
→ ξ in distribution in L2

loc(R) as n → ∞. Now using the Monotone Convergence theorem, we show that ξ is 
H1(R)-valued.

In Step 2, we establish convergence in distribution in L2. In order to prove this, we use

lim
n

E[‖un
tn

‖2
L2 ] = E[‖ξ‖2

L2 ]. (10)

The proof of this fact is technical and relies in particular on the energy method [14]. For details on the proof of (10), see 
[6,7].

By Prokhorov’s theorem and the uniform bounds on the solutions, which imply the uniform integrability of ‖un
tn

‖2
L2 , we 

obtain the tightness in distribution in L2 of measures of {un
tn

}. Note that any limiting measure can only be the measure of ξ . 
Thus un

tn
→ ξ in distribution in L2. With similar arguments, due to the fundamental fact that E[I(ξ)] = limn E[I(un

tn
)] (see 

[6] for the proof), we have un
tn

→ ξ in distribution in H1. �
Note that if K is a compact subset of H1(R), the set of measures on H1(R) given by {P s(v, ·) : s ∈ [0, 1], v ∈ K } is tight 

(cf. [6]). We are now ready to provide a sketch of the proof of Lemma 2.4.

Proof of Lemma 2.4. Fix ε > 0. The asymptotic compactness of the equation implies that the set of probabilities {Pn(0, ·) :
n ≥ 0} on H1(R) is tight. We choose a compact set Kε ⊆ H1(R) such that supn Pn(0, K c

ε) ≤ ε/2. Additionally, since the set 
of probabilities {P s(v, ·) : s ∈ [0, 1], v ∈ Kε} defined on H1(R) is tight, we may pick another compact Aε ⊆ H1(R) such that 
sups∈[0,1], v∈Kε

P s(v, Ac
ε) ≤ ε/2. By a direct computation, we obtain μn(Ac

ε) ≤ ε (cf. [6,7] for details). �
3. The stochastic Schrödinger equation

In this section, we state the result establishing the existence of invariant measures for the stochastic damped Schrödinger 
equation

du + (λu + i�u + iα|u|2σ u)dt = �dWt (11)
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where λ > 0, α = 1, or α = −1 and � ∈ H S(L2(Rd); H1(Rd)). We assume 0 ≤ σ < 2/(d − 2) if d ≥ 3 and σ ≥ 0 if d = 1, 2. 
Under these assumptions, we have by [4] the following: for every G0 measurable, H1(Rn)-valued random variable u0, there 
exists an H1(Rd)-valued and continuous solution {ut}t≥0 of (11) with the initial condition u0. The following statement is 
the main result addressing the damped nonlinear Schrödinger equation.

Theorem 3.1. Under the assumptions above, there exists an invariant measure for the stochastic damped nonlinear Schrödinger equa-
tion.

The main difficulties in the proof are the lack of smoothing and compactness properties of the solution operator in finite 
time. Kim [12] obtained the existence of an invariant measure for the defocussing (α = 1) Schrödinger equation in L2 for 
a restricted range of exponents σ < 2/d. His proof is based on the existence of two invariants that give uniform bounds 
in both L2 and H1. Therefore, using the Feller property, the existence of invariant measures follows. In the case σ > 2/d, 
one needs to work in the phase space H1 where solutions exist globally; however, the lack of an invariant in H2 makes the 
proof of existence of invariant measure difficult.

In order to overcome these difficulties, we follow a similar approach to that of the KdV equation presented above, and 
we establish an asymptotic compactness property of the solution operator. Namely, we prove that for every sequence of 
solutions resulting from H1-bounded initial conditions and for every sequence of times diverging to ∞, there exists a 
subsequence of solutions and a sequence of times such that the marginals of these solutions at these times converge in 
distribution in H1. For this purpose, we employ the conserved quantities used classically for the deterministic analog of the 
equations [9,14]. We also use the energy equation approach. For details, cf. [7].
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