Homological algebra/Algebraic geometry

Kimura-finiteness of quadric fibrations over smooth curves

Finitude à la Kimura de fibrations en quadriques sur des courbes lisses

Gonçalo Tabuada ${ }^{\text {a,b,c, }} 1$
${ }^{\text {a }}$ Department of Mathematics, MIT, Cambridge, MA 02139, USA
${ }^{\text {b }}$ Departamento de Matemática, FCT, UNL, Portugal
${ }^{\text {c }}$ Centro de Matemática e Aplicações (CMA), FCT, UNL, Portugal

ARTICLE INFO

Article history:

Received 8 December 2016
Accepted after revision 24 May 2017
Available online 5 June 2017
Presented by Christophe Soulé

Abstract

Making use of the recent theory of noncommutative mixed motives, we prove that the Voevodsky's mixed motive of a quadric fibration over a smooth curve is Kimura-finite.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Ré S U M É

Utilisant la théorie récente des motifs non commutatifs, nous prouvons que le motif mixte de Voevodsky d'une fibration en quadriques sur une courbe lisse est fini au sens de Kimura.
© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let $(\mathcal{C}, \otimes, \mathbf{1})$ be a \mathbb{Q}-linear, idempotent complete, symmetric monoidal category. Given a partition λ of an integer $n \geq 1$, consider the corresponding irreducible \mathbb{Q}-linear representation V_{λ} of the symmetric group \mathfrak{S}_{n} and the associated idempotent $e_{\lambda} \in \mathbb{Q}\left[\mathfrak{S}_{n}\right]$. Under these notations, the Schur-functor $S_{\lambda}: \mathcal{C} \rightarrow \mathcal{C}$ sends an object a to the direct summand of $a^{\otimes n}$ determined by e_{λ}. In the particular case of the partition $\lambda=(1, \ldots, 1)$, resp. $\lambda=(n)$, the associated Schur-functor $\wedge^{n}:=S_{(1, \ldots, 1)}$, resp. $\operatorname{Sym}^{n}:=S_{(n)}$, is called the nth wedge product, resp. the nth symmetric product. Following Kimura [11], an object $a \in \mathcal{C}$ is called even-dimensional, resp. odd-dimensional, if $\wedge^{n}(a)$, resp. Sym ${ }^{n}(a)=0$, for some $n \gg 0$. The biggest integer $\operatorname{kim}_{+}(a)$, resp. $\operatorname{kim}_{-}(a)$, for which $\wedge^{\operatorname{kim}_{+}(a)} \neq 0$, resp. Sym $^{\operatorname{kim}_{-}(a)}(a) \neq 0$, is called the even, resp. odd, Kimura-dimension of a. An object $a \in \mathcal{C}$ is called Kimura-finite if $a \simeq a_{+} \oplus a_{-}$, with a_{+}even-dimensional and a_{-}odd-dimensional. The integer $\operatorname{kim}(a)=\operatorname{kim}_{+}\left(a_{+}\right)+\operatorname{kim}_{-}\left(a_{-}\right)$is called the Kimura-dimension of a.

Voevodsky introduced in [20] an important triangulated category of geometric mixed motives $\mathrm{DM}_{\mathrm{gm}}(k)_{\mathbb{Q}}$ (over a perfect base field k). By construction, this category is \mathbb{Q}-linear, idempotent complete, rigid symmetric monoidal, and comes equipped with a symmetric monoidal functor $M(-)_{\mathbb{Q}}: \operatorname{Sm}(k) \rightarrow \mathrm{DM}_{\mathrm{gm}}(k)_{\mathbb{Q}}$, defined on smooth k-schemes. An important

[^0]http://dx.doi.org/10.1016/j.crma.2017.05.006
1631-073X/© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
open problem ${ }^{2}$ is the classification of all the Kimura-finite mixed motives and the computation of the corresponding Kimura-dimensions. On the negative side, O'Sullivan constructed a certain smooth surface S whose mixed motive $M(S)_{\mathbb{Q}}$ is not Kimura-finite; consult [14, §5.1] for details. On the positive side, Guletskii [7] and Mazza [14] proved, independently, that the mixed motive $M(C)_{\mathbb{Q}}$ of every smooth curve C is Kimura-finite.

The following result bootstraps Kimura-finiteness from smooth curves to quadric fibrations.

Theorem 1.1. Let k be a field, C a smooth k-curve, and $q: Q \rightarrow C$ a flat quadric fibration of relative dimension $d-2$. Assume that Q is smooth and that q has only simple degenerations, i.e. that all the fibers of q have corank ≤ 1. Under these assumptions, the following holds:
(i) when d is even, the mixed motive $M(Q)_{\mathbb{Q}}$ is Kimura-finite. Moreover, we have the following equality, $\operatorname{kim}\left(M(Q)_{\mathbb{Q}}\right)=$ $\operatorname{kim}\left(M(\widetilde{C})_{\mathbb{Q}}\right)+(d-2) \operatorname{kim}(M(C) \mathbb{Q})$, where $D \hookrightarrow C$ stands for the finite set of critical values of q and \widetilde{C} for the discriminant double cover of C (ramified over D);
(ii) when d is odd, k is algebraically closed, and $1 / 2 \in k$, the mixed motive $M(Q)_{\mathbb{Q}}$ is Kimura-finite. Moreover, we have the following equality $\operatorname{kim}\left(M(Q)_{\mathbb{Q}}\right)=\# D+(d-1) \operatorname{kim}\left(M(C)_{\mathbb{Q}}\right)$.

To the best of the author's knowledge, Theorem 1.1 is new in the literature. It not only provides new examples of Kimura-finite mixed motives, but also computes the corresponding Kimura dimensions.

Remark 1. In the particular case where k is algebraically closed and Q, C are moreover projective, Vial proved in [19, Cor. 4.4] that the Chow motive $\mathfrak{h}(\mathbb{Q})_{\mathbb{Q}}$ is Kimura-finite. Since the category of Chow motives embeds fully-faithfully into $\mathrm{DM}_{\mathrm{gm}}(k)_{\mathbb{Q}}$ (see $\left.[20, \S 4]\right)$, we then obtain in this particular case an alternative "geometric" proof of the Kimura-finiteness of $M(Q)_{\mathbb{Q}}$. Moreover, when $k=\mathbb{C}$ and d is odd, Bouali refined Vial's work by showing that $\mathfrak{h}(Q)_{\mathbb{Q}} \simeq \mathbb{Q}\left(-\frac{d-1}{2}\right)^{\oplus \# D} \oplus$ $\bigoplus_{i=0}^{d-2} \mathfrak{h}(C)_{\mathbb{Q}}(-i)$; see [4, Rk. 1.10(i)]. In this particular case, this leads to an alternative "geometric" computation of the Kimura-dimension of $M(Q)_{\mathbb{Q}}$.

2. Preliminaries

Throughout the article, k denotes a base field of arbitrary characteristic.
Dg categories. For a survey on dg categories, consult Keller's ICM talk [9]. In what follows, we write dgcat(k) for the category of (essentially small) dg categories and dg functors. Every (dg) k-algebra gives naturally rise to a dg category with a single object. Another source of examples is provided by schemes/stacks, since the category of perfect complexes perf (X) of every k-scheme X (or, more generally, algebraic stack \mathcal{X}) admits a canonical dg enhancement perf ${ }_{\mathrm{dg}}(X)$; consult [9 , §4.6][13] for details.

Noncommutative mixed motives. For a book, resp. survey, on noncommutative motives, consult [15], resp. [16]. Recall from [15, §8.5.1] the construction of Kontsevich's triangulated category of noncommutative mixed motives NMot(k); denoted by $\operatorname{NMot}_{l o c}^{\mathbb{A}^{1}}(k)$ in loc. cit. By construction, this category is idempotent complete, closed symmetric monoidal, and comes equipped with a symmetric monoidal functor $U: \operatorname{dgcat}(k) \rightarrow \operatorname{NMot}(k)$. In what follows, given a k-scheme X, we write $U(X)$ instead of $U\left(\operatorname{perf}_{\mathrm{dg}}(X)\right)$.

Root stacks. Let X be a k-scheme, \mathcal{L} a line bundle on $X, \sigma \in \Gamma(X, \mathcal{L})$ a global section, and $r>0$ an integer. In what follows, we write $D \hookrightarrow X$ for the zero locus of σ. Recall from [5, Def. 2.2.1] (see also [1, Appendix B]) that the associated root stack is defined as the following fiber-product of algebraic stacks

where θ_{r} stands for the morphism induced by the r th power maps on \mathbb{A}^{1} and \mathbb{G}_{m}.

Proposition 2.1. We have $U(\sqrt[r]{(\mathcal{L}, \sigma) / X}) \simeq U(D)^{\oplus(r-1)} \oplus U(X)$ whenever X and D are k-smooth.

[^1]Proof. By construction, the root stack comes equipped with a forgetful morphism $f: \sqrt[r]{(\mathcal{L}, \sigma) / X} \rightarrow X$. As proved by IshiiUeda in [8, Thm. 1.6], the pull-back functor f^{*} is fully-faithful. Moreover, we have the following semi-orthogonal decomposition

$$
\operatorname{perf}(\mathcal{X})=\left\langle\operatorname{perf}(D)_{r-1}, \ldots, \operatorname{perf}(D)_{1}, f^{*}(\operatorname{perf}(X))\right\rangle
$$

where all the categories $\operatorname{perf}(D)_{i}$ are equivalent (via a Fourier-Mukai-type functor) to perf (D). Consequently, the proof follows from the fact that the functor U sends semi-orthogonal decomposition to direct sums (see [15, §8.4.1 and §8.4.5]).

Orbit categories. Let $(\mathcal{C}, \otimes, \mathbf{1})$ be an \mathbb{Q}-linear symmetric monoidal additive category and $\mathcal{O} \in \mathcal{C}$ a \otimes-invertible object. Following [6,10], the orbit category $\mathcal{C} /-\otimes \mathcal{O}$ has the same objects as \mathcal{C} and morphisms $\operatorname{Hom}_{\mathcal{C} /-\otimes \mathcal{O}}(a, b):=\bigoplus_{n \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{C}}(a, b \otimes$ $\left.\mathcal{O}^{\otimes n}\right)$. Given objects a, b, c and morphisms $\mathrm{f}=\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ and $\mathrm{g}=\left\{g_{n}\right\}_{n \in \mathbb{Z}}$, the i th-component of $\mathrm{g} \circ \mathrm{f}$ is defined as $\sum_{n}\left(g_{i-n} \otimes\right.$ $\left.\mathcal{O}^{\otimes n}\right) \circ f_{n}$. The functor $\pi: \mathcal{C} \rightarrow \mathcal{C} /-\otimes \mathcal{O}$, given by $a \mapsto a$ and $f \mapsto \mathrm{f}=\left\{f_{n}\right\}_{n \in \mathbb{Z}}$, where $f_{0}:=f$ and $f_{n}:=0$ if $n \neq 0$, is endowed with an isomorphism $\pi \circ(-\otimes \mathcal{O}) \Rightarrow \pi$ and is 2-universal among all such functors. Finally, the category $\mathcal{C} /-\otimes \mathcal{O}$ is \mathbb{Q}-linear, additive, and inherits from \mathcal{C} a symmetric monoidal structure making π symmetric monoidal.

3. Proof of Theorem 1.1

Following Kuznetsov [12, §3] (see also Auel-Bernardara-Bolognesi [3, §1.2]), let E be a vector bundle of rank d on C, $p: \mathbb{P}(E) \rightarrow C$ the projectivization of E on $C, \mathcal{O}_{\mathbb{P}(E)}(1)$ the Grothendieck line bundle on $\mathbb{P}(E), \mathcal{L}$ a line bundle on C, and finally $\rho \in \Gamma\left(C, S^{2}\left(E^{\vee}\right) \otimes \mathcal{L}^{\vee}\right)=\Gamma\left(\mathbb{P}(E), \mathcal{O}_{\mathbb{P}(E)}(2) \otimes \mathcal{L}^{\vee}\right)$ a global section. Given this data, $Q \subset \mathbb{P}(E)$ is defined as the zero locus of ρ on $\mathbb{P}(E)$ and $q: Q \rightarrow C$ as the restriction of p to Q; the relative dimension of q is equal to $d-2$. Consider also the discriminant global section $\operatorname{disc}(q) \in \Gamma\left(C, \operatorname{det}\left(E^{\vee}\right)^{\otimes 2} \otimes\left(\mathcal{L}^{\vee}\right)^{\otimes d}\right)$ and the associated zero locus $D \hookrightarrow C$. Note that D agrees with the finite set of critical values of q. Recall from [12, §3.5] (see also [3, §1.6]) that when d is even, we can consider the discriminant double cover \widetilde{C} of C. By construction, \widetilde{C} is ramified over D. Since by hypothesis q has only simple degenerations, \widetilde{C} is, moreover, k-smooth. Finally, recall from [12, §3.6] (see also [3, §1.7]) that when d is odd and $1 / 2 \in k$, we can consider the root stack $\mathcal{X}:=\sqrt[2]{\left(\operatorname{det}\left(E^{\vee}\right)^{\otimes 2} \otimes\left(\mathcal{L}^{\vee}\right)^{\otimes d}, \operatorname{disc}(q)\right) / C}$.

Under the above notations, we have the following computation.

Proposition 3.1. Let $q: Q \rightarrow C$ be a flat quadric fibration as above.
(a) When d is even, we have an isomorphism $U(Q)_{\mathbb{Z}[1 / 2]} \simeq U(\widetilde{C})_{\mathbb{Z}[1 / 2]} \oplus U(C)_{\mathbb{Z}[1 / 2]}^{\oplus(d-2)}$.
(b) When d is odd, k is algebraically closed, and $1 / 2 \in k$, we have $U(Q) \simeq U(D) \oplus U(C)^{\oplus(d-1)}$.

Proof. Recall from [12, §3] (see also [3, §1.5]) the construction of the sheaf \mathcal{C}_{0} of even parts of the Clifford algebra associated with q. As proved in [12, Thm. 4.2] (see also [3, Thm. 2.2.1]), we have the following semi-orthogonal decomposition

$$
\operatorname{perf}(Q)=\left\langle\operatorname{perf}\left(C ; \mathcal{C}_{0}\right), \operatorname{perf}(C)_{1}, \ldots, \operatorname{perf}(C)_{d-2}\right\rangle
$$

where $\operatorname{perf}\left(C ; \mathcal{C}_{0}\right)$ stands for the category of perfect \mathcal{C}_{0}-modules and $\operatorname{perf}(C)_{i}:=q^{*}(\operatorname{perf}(C)) \otimes \mathcal{O}_{Q / C}(i)$. Note that all the categories $\operatorname{perf}(C)_{i}$ are equivalent (via a Fourier-Mukai-type functor) to perf(C). Since U sends semi-orthogonal decompositions to direct sums, we then obtain a direct sum decomposition

$$
\begin{equation*}
U(Q) \simeq U\left(\operatorname{perf}^{\mathrm{dg}}\left(C ; \mathcal{C}_{0}\right)\right) \oplus U(C)^{\oplus(d-2)} \tag{1}
\end{equation*}
$$

where perf ${ }^{\mathrm{dg}}\left(C ; \mathcal{C}_{0}\right)$ stands for the dg enhancement of $\operatorname{perf}\left(C ; \mathcal{C}_{0}\right)$ induced from $\operatorname{perf}_{\mathrm{dg}}(Q)$. As explained in [12, Prop. 4.9] (see also [3, §2.2]), the inclusion of categories $\operatorname{perf}\left(C ; \mathcal{C}_{0}\right) \hookrightarrow \operatorname{perf}(Q)$ is of Fourier-Mukai type. Therefore, the associated kernel leads to a Fourier-Mukai Morita equivalence between perf ${ }^{\mathrm{dg}}\left(C ; \mathcal{C}_{0}\right)$ and $\operatorname{perf}_{\mathrm{dg}}\left(C ; \mathcal{C}_{0}\right)$. Consequently, we can replace $\operatorname{perf}^{\mathrm{dg}}\left(C, \mathcal{C}_{0}\right)$ by $\operatorname{perf}_{\mathrm{dg}}\left(C ; \mathcal{C}_{0}\right)$ in decomposition (1).

Item (a). As explained in [12, §3.5] (see also [3, §1.6]), the category $\operatorname{perf}\left(C ; \mathcal{C}_{0}\right)$ is equivalent (via a Fourier-Mukai-type functor) to $\operatorname{perf}\left(\widetilde{C} ; \mathcal{B}_{0}\right)$, where \mathcal{B}_{0} is a certain sheaf of Azumaya algebras over \widetilde{C} of rank $2^{(d / 2)-1}$. Therefore, the associated kernel leads to a Fourier-Mukai Morita equivalence between $\operatorname{perf}_{\mathrm{dg}}\left(\mathcal{C} ; \mathcal{C}_{0}\right)$ and $\operatorname{perf}_{\mathrm{dg}}\left(\widetilde{C} ; \mathcal{B}_{0}\right)$. As proved in [18, Thm. 2.1], since \mathcal{B}_{0} is a sheaf of Azumaya algebras of rank $2^{(d / 2)-1}$, the noncommutative mixed motive $U\left(\operatorname{perf}_{\mathrm{dg}}\left(\widetilde{C} ; \mathcal{B}_{0}\right)\right)_{\mathbb{Z}[1 / 2]}$ is isomorphic to $U(\widetilde{C})_{\mathbb{Z}[1 / 2]}$. Consequently, the $\mathbb{Z}[1 / 2]$-linearization of the right-hand side of (1) reduces to $U(\widetilde{C})_{\mathbb{Z}[1 / 2]} \oplus$ $U(C)_{\mathbb{Z}[1 / 2]}^{\oplus(d-2)}$.

Item (b). As explained in [12, Cor. 3.16] (see also [3, §1.7]), since k is algebraically closed and $1 / 2 \in k$, the category $\operatorname{perf}\left(C ; \mathcal{C}_{0}\right)$ is equivalent (via a Fourier-Mukai-type functor) to $\operatorname{perf}(\mathcal{X})$. This implies that the dg category $\operatorname{perf}_{\mathrm{dg}}\left(C ; \mathcal{C}_{0}\right)$ is Morita equivalent to $\operatorname{perf}_{\mathrm{dg}}(\mathcal{X})$. Consequently, since C and D are k-smooth, we conclude from Proposition 2.1 that the right-hand side of (1) reduces to $U(D) \oplus U(C)^{\oplus(d-1)}$.

We now have all the ingredients necessary to conclude the proof of Theorem 1.1.
Item (i). As proved in [17, Thm. 2.8], there exists a \mathbb{Q}-linear, fully-faithful, symmetric monoidal functor Φ making the following diagram commute

where $\operatorname{Hom}(-,-)$ stands for the internal Hom of the closed symmetric monoidal structure on $\operatorname{NMot}(k)_{\mathbb{Q}}$ and $\mathbb{Q}(1)$ [2] for the Tate mixed motive. Since the functor π, resp. Φ, is additive, resp. fully-faithful and additive, we conclude from the combination of Proposition 3.1 with the commutative diagram (2) that

$$
\begin{equation*}
\pi\left(M(Q)_{\mathbb{Q}}\right) \simeq \pi\left(M(\widetilde{C})_{\mathbb{Q}} \oplus M(C)_{\mathbb{Q}}^{\oplus(d-2)}\right) \tag{3}
\end{equation*}
$$

By definition of the orbit category, there exist then morphisms

$$
\begin{aligned}
\mathrm{f} & =\left\{f_{n}\right\}_{n \in \mathbb{Z}} \in \operatorname{Hom}_{\mathrm{DM}_{\mathrm{gm}}(k)_{\mathbb{Q}}}\left(M(\mathbb{Q})_{\mathbb{Q}},\left(M(\widetilde{C})_{\mathbb{Q}} \oplus M(C)_{\mathbb{Q}}^{\oplus(d-1)}\right)(n)[2 n]\right), \\
\mathrm{g} & =\left\{g_{n}\right\}_{n \in \mathbb{Z}} \in \operatorname{Hom}_{\mathrm{DMgm}_{\mathrm{gm}}(k)_{\mathbb{Q}}}\left(M(\widetilde{C})_{\mathbb{Q}} \oplus M(C)_{\mathbb{Q}}^{\oplus(d-1)}, M(\mathbb{Q})_{\mathbb{Q}}(n)[2 n]\right)
\end{aligned}
$$

verifying the equalities $\mathrm{g} \circ \mathrm{f}=\mathrm{id}=\mathrm{f} \circ \mathrm{g}$; in order to simplify the exposition, we write $-(n)[2 n]$ instead of $-\otimes \mathbb{Q}(1)[2]^{\otimes n}$. Moreover, only finitely many of these morphisms are non-zero. Let us choose an integer $N \gg 0$ such that $f_{n}=g_{n}=0$ for every $|n|>N$. The sets $\left\{f_{n} \mid-N \leq n \leq N\right\}$ and $\left\{g_{-n}(n) \mid-N \leq n \leq N\right\}$ give then rise to the following morphisms between mixed motives:

$$
\begin{aligned}
& \alpha: M(Q)_{\mathbb{Q}} \longrightarrow \bigoplus_{n=-N}^{N}\left(M(\widetilde{C})_{\mathbb{Q}} \oplus M(C)_{\mathbb{Q}}^{\oplus(d-1)}\right)(n)[2 n], \\
& \beta: \bigoplus_{n=-N}^{N}\left(M(\widetilde{C})_{\mathbb{Q}} \oplus M(C)_{\mathbb{Q}}^{\oplus(d-1)}\right)(n)[2 n] \longrightarrow M(Q)_{\mathbb{Q}} .
\end{aligned}
$$

The composition $\beta \circ \alpha$ agrees with the 0 th component of $g \circ f=i d$, i.e. with the identity of $M(Q)_{\mathbb{Q}}$. Consequently, $M(Q)_{\mathbb{Q}}$ is a direct summand of the direct sum $\bigoplus_{n=-N}^{N}\left(M(\widetilde{C})_{\mathbb{Q}} \oplus M(C)_{\mathbb{Q}}^{\oplus(d-1)}\right)(n)[2 n]$. Using the fact that $M(\widetilde{C})_{\mathbb{Q}}$ and $M(C)_{\mathbb{Q}}$ are both Kimura-finite, that $\wedge^{2}(\mathbb{Q}(1)[2])=0$, and that Kimura-finiteness is stable under direct sums, direct summands, and tensor products, we hence conclude that the mixed motive $M(Q)_{\mathbb{Q}}$ is also Kimura-finite. This finishes the proof of the first claim.

Let us now prove the second claim. Let X be a smooth k-scheme such that $M(X)_{\mathbb{Q}}$ is Kimura-finite. Note that since the functor π is symmetric monoidal and additive, the object $\pi\left(M(X)_{\mathbb{Q}}\right)$ of the orbit category $\mathrm{DM}_{\mathrm{gm}}(k)_{\mathbb{Q}} /-\otimes \mathbb{Q}(1)[2]$ is also Kimura-finite. As explained in [2, §3], we have the following equality $\operatorname{kim}\left(M(X)_{\mathbb{Q}}\right)=\chi\left(M(X)_{\mathbb{Q},+}\right)-\chi\left(M(X)_{\mathbb{Q},-}\right)$, where χ stands for the Euler characteristic computed in the rigid symmetric monoidal category $\mathrm{DM}_{\mathrm{gm}}(k)_{\mathbb{Q}}$. Therefore, since the functor π is moreover faithful, we observe that $\operatorname{kim}\left(M(X)_{\mathbb{Q}}\right)=\operatorname{kim}\left(\pi\left(M(X)_{\mathbb{Q}}\right)\right)$. This leads to the following equalities:

$$
\begin{equation*}
\operatorname{kim}\left(M(?)_{\mathbb{Q}}\right)=\operatorname{kim}\left(\pi\left(M(?)_{\mathbb{Q}}\right)\right) \quad ? \in\{Q, \widetilde{C}, C\} \tag{4}
\end{equation*}
$$

The Kimura-dimension of a direct sum of Kimura-finite objects is equal to the sum of the Kimura-dimension of each one of the objects. Hence, using the above computation (3) and the fact that the functor π is additive, we conclude that

$$
\begin{equation*}
\operatorname{kim}\left(\pi\left(M(Q)_{\mathbb{Q}}\right)\right)=\operatorname{kim}\left(\pi\left(M(\widetilde{C})_{\mathbb{Q}}\right)\right)+(d-1) \operatorname{kim}\left(\pi\left(M(C)_{\mathbb{Q}}\right)\right) \tag{5}
\end{equation*}
$$

The proof of the second claim follows now from the combination of the above equalities (4)-(5).
Item (ii). The proof is similar to the one of item (i): simply replace \widetilde{C} by $D,(d-1)$ by $(d-2)$, and use the fact that $\operatorname{kim}\left(M(D)_{\mathbb{Q}}\right)=\# D$.

Acknowledgement

The author thanks Michel Van den Bergh for his interest in these results/arguments.

References

[1] D. Abramovich, T. Graber, A. Vistoli, Gromov-Witten theory of Deligne-Mumford stacks, Amer. J. Math. 130 (5) (2008) 1337-1398.
[2] Y. André, Motifs de dimension finie (d’après S.-I. Kimura, P. O’Sullivan), in: Séminaire Bourbaki, vol. 2003/2004, in: Astérisque, vol. 299, 2005, pp. 115-145, Exp. No. 929.
[3] A. Auel, M. Bernardara, M. Bolognesi, Fibrations in complete intersections of quadrics, Clifford algebras, derived categories, and rationality problems, J. Math. Pures Appl. (9) 102 (1) (2014) 249-291.
[4] J. Bouali, Motives of quadric bundles, Manuscr. Math. 149 (3-4) (2016) 347-368.
[5] C. Cadman, Using stacks to impose tangency conditions on curves, Amer. J. Math. 129 (2) (2007) 405-427.
[6] C. Cibils, E. Marcos, Skew category, Galois covering and smash product of a k-category, Proc. Amer. Math. Soc. 134 (1) (2005) 39-50.
[7] V. Guletskii, Finite-dimensional objects in distinguished triangles, J. Number Theory 119 (1) (2006) 99-127.
[8] A. Ishii, K. Ueda, The special McKay correspondence and exceptional collections, Tohoku Math. J. (2) 67 (4) (2015) 585-609.
[9] B. Keller, On differential graded categories, in: International Congress of Mathematicians, vol. II, Madrid, Eur. Math. Soc., Zürich, 2006, pp. 151-190.
[10] B. Keller, On triangulated orbit categories, Doc. Math. 10 (2005) 551-581.
[11] S.-I. Kimura, Chow groups are finite dimensional, in some sense, Math. Ann. 331 (1) (2005) 173-201.
[12] A. Kuznetsov, Derived categories of quadric fibrations and intersections of quadrics, Adv. Math. 218 (5) (2008) 1340-1369.
[13] V. Lunts, D. Orlov, Uniqueness of enhancement for triangulated categories, J. Amer. Math. Soc. 23 (2010) 853-908.
[14] C. Mazza, Schur functors and motives, K-Theory 33 (2) (2004) 89-106.
[15] G. Tabuada, Noncommutative Motives, with a preface by Yuri I. Manin, University Lecture Series, vol. 63, American Mathematical Society, Providence, RI, 2015.
[16] G. Tabuada, Recent developments on noncommutative motives, arXiv:1611.05439.
[17] G. Tabuada, Voevodsky's mixed motives versus Kontsevich's noncommutative mixed motives, Adv. Math. 264 (2014) 506-545.
[18] G. Tabuada, M. Van den Bergh, Noncommutative motives of Azumaya algebras, J. Inst. Math. Jussieu 14 (2) (2015) 379-403.
[19] C. Vial, Algebraic cycles and fibrations, Doc. Math. 18 (2013) 1521-1553.
[20] V. Voevodsky, Triangulated categories of motives over a field, in: Cycles, Transfers, and Motivic Homology Theories, in: Ann. of Math. Stud., vol. 143, Princeton Univ. Press, NJ, USA, 2000, pp. 188-238.

[^0]: 1 The author was partially supported by the National Science Foundation CAREER Award \#1350472 and by the Portuguese Foundation for Science and Technology grant PEst-OE/MAT/UIO297/2014.

[^1]: 2 Among other consequences, Kimura-finiteness implies rationality of the motivic zeta function.

