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RESUME

Utilisant la théorie récente des motifs non commutatifs, nous prouvons que le motif mixte
de Voevodsky d'une fibration en quadriques sur une courbe lisse est fini au sens de Kimura.
© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let (C,®,1) be a Q-linear, idempotent complete, symmetric monoidal category. Given a partition A of an integer n > 1,
consider the corresponding irreducible Q-linear representation V, of the symmetric group &, and the associated idem-
potent e; € Q[S,]. Under these notations, the Schur-functor S,:C — C sends an object a to the direct summand of
a®" determined by ey. In the particular case of the partition A = (1,...,1), resp. A = (n), the associated Schur-functor
A" :=S@,... 1), resp. Sym" := S, is called the nth wedge product, resp. the nth symmetric product. Following Kimura [11], an
object a € C is called even-dimensional, resp. odd-dimensional, if A"(a), resp. Sym"(a) = 0, for some n > 0. The biggest inte-
ger kim, (), resp. kim_(a), for which AK™+@ 0, resp. SymKi™-@ (q) =£ 0, is called the even, resp. odd, Kimura-dimension
of a. An object a € C is called Kimura-finite if a >~ a; @ a_, with a; even-dimensional and a_ odd-dimensional. The integer
kim(a) = kim4 (a4) + kim_(a_) is called the Kimura-dimension of a.

Voevodsky introduced in [20] an important triangulated category of geometric mixed motives DMgm (k)g (over a per-
fect base field k). By construction, this category is Q-linear, idempotent complete, rigid symmetric monoidal, and comes
equipped with a symmetric monoidal functor M(—)g:Sm(k) — DMgn (k)g, defined on smooth k-schemes. An important
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open problem? is the classification of all the Kimura-finite mixed motives and the computation of the corresponding
Kimura-dimensions. On the negative side, O’'Sullivan constructed a certain smooth surface S whose mixed motive M(S)q is
not Kimura-finite; consult [14, §5.1] for details. On the positive side, Guletskii [7] and Mazza [14] proved, independently,
that the mixed motive M(C)g of every smooth curve C is Kimura-finite.

The following result bootstraps Kimura-finiteness from smooth curves to quadric fibrations.

Theorem 1.1. Let k be a field, C a smooth k-curve, and q: Q — C a flat quadric fibration of relative dimension d — 2. Assume that Q is
smooth and that q has only simple degenerations, i.e. that all the fibers of q have corank < 1. Under these assumptions, the following
holds:

(i) when d is even, the mixed motive M(Q)q is Kimura-finite. Moreover, we have the following equality, kim(M(Q)q) =
klm(M(C)Q) + (d — 2)kim(M(C)q), where D — C stands for the finite set of critical values of q and ¢ for the discriminant
double cover of C (ramified over D);

(ii) when d is odd, k is algebraically closed, and 1/2 € k, the mixed motive M(Q )q is Kimura-finite. Moreover, we have the following
equality kim(M(Q)q) = #D + (d — Dkim(M(C)q).

To the best of the author’s knowledge, Theorem 1.1 is new in the literature. It not only provides new examples of
Kimura-finite mixed motives, but also computes the corresponding Kimura dimensions.

Remark 1. In the particular case where k is algebraically closed and Q, C are moreover projective, Vial proved in [19,
Cor. 4.4] that the Chow motive h(Q)g is Kimura-finite. Since the category of Chow motives embeds fully-faithfully into
DMgnm (k)@ (see [20, §4]), we then obtain in this particular case an alternative “geometric” proof of the Kimura-finiteness
of M(Q)g. Moreover, when k =C and d is odd, Bouali refined Vial's work by showing that h(Q)g =~ Q(—d%l)@*‘”J ®

@;1:—02 h(C)g(—i); see [4, Rk. 1.10(i)]. In this particular case, this leads to an alternative “geometric” computation of the
Kimura-dimension of M(Q)g.

2. Preliminaries

Throughout the article, k denotes a base field of arbitrary characteristic.

Dg categories. For a survey on dg categories, consult Keller's ICM talk [9]. In what follows, we write dgcat(k) for the
category of (essentially small) dg categories and dg functors. Every (dg) k-algebra gives naturally rise to a dg category with
a single object. Another source of examples is provided by schemes/stacks, since the category of perfect complexes perf(X)
of every k-scheme X (or, more generally, algebraic stack ') admits a canonical dg enhancement perfyy(X); consult [9,
§4.6][13] for details.

Noncommutative mixed motives. For a book, resp. survey, on noncommutative motives, consult [15], resp. [16]. Recall
from [15, §8.5.1] the construction of Kontsevich’s triangulated category of noncommutative mixed motives NMot(k); denoted
by NMotfﬁlc(k) in loc. cit. By construction, this category is idempotent complete, closed symmetric monoidal, and comes
equipped with a symmetric monoidal functor U:dgcat(k) — NMot(k). In what follows, given a k-scheme X, we write U(X)
instead of U (perfyg(X)).

Root stacks. Let X be a k-scheme, £ a line bundle on X, o € I'(X, £) a global section, and r > 0 an integer. In what
follows, we write D < X for the zero locus of o. Recall from [5, Def. 2.2.1] (see also [1, Appendix B]|) that the associated
root stack is defined as the following fiber-product of algebraic stacks

/(L,0)]X ——=[A!/Gn]

T

1
X W [AY/Gm],
where 6, stands for the morphism induced by the rth power maps on A! and Gy,.

Proposition 2.1. We have U (J/(L, 0)/X) ~ U(D)®"=1 @ U (X) whenever X and D are k-smooth.

2 Among other consequences, Kimura-finiteness implies rationality of the motivic zeta function.
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Proof. By construction, the root stack comes equipped with a forgetful morphism f:./(£,0)/X — X. As proved by Ishii-
Ueda in [8, Thm. 1.6], the pull-back functor f* is fully-faithful. Moreover, we have the following semi-orthogonal decompo-
sition

perf(X) = (perf(D)r_1, ..., perf(D)1, f*(perf(X))),

where all the categories perf(D); are equivalent (via a Fourier-Mukai-type functor) to perf(D). Consequently, the proof fol-
lows from the fact that the functor U sends semi-orthogonal decomposition to direct sums (see [15, §8.4.1 and §8.4.5]). O

Orbit categories. Let (C,®,1) be an Q-linear symmetric monoidal additive category and O € C a ®-invertible object.
Following [6,10], the orbit category C/_go has the same objects as C and morphisms Hom¢,__, (a, b) := ), ., Home(a, b ®
O®M). Given objects a, b, ¢ and morphisms f= {fy}nez and g = {gn}nez, the ith-component of gof is defined as }_,(gi—n ®
O® o f,. The functor ©:C — C/_go, given by ar> a and f > = {fy}nez, where fo:= f and f; :=0if n #0, is endowed
with an isomorphism o (— ® O) = = and is 2-universal among all such functors. Finally, the category C/_go is Q-linear,
additive, and inherits from C a symmetric monoidal structure making © symmetric monoidal.

3. Proof of Theorem 1.1

Following Kuznetsov [12, §3] (see also Auel-Bernardara-Bolognesi [3, §1.2]), let E be a vector bundle of rank d on C,
p:P(E) — C the projectivization of E on C, Op)(1) the Grothendieck line bundle on P(E), £ a line bundle on C, and
finally p € ['(C, S2(EY) ® LY) = [ (P(E), Op)(2) ® L) a global section. Given this data, Q  P(E) is defined as the zero
locus of p on P(E) and q: Q — C as the restriction of p to Q; the relative dimension of q is equal to d — 2. Consider
also the discriminant global section disc(q) € I'(C, det(E¥)®? ® (£¥)®?) and the associated zero locus D <> C. Note that
D agrees with the finite set of critical values of g. Recall from [12, §3.5] (see also [3, §1.6]) that when d is even, we can
consider the discriminant double cover C of C. By construction, C is ramified over D. Since by hypothesis g has only simple
degenerations, C is, moreover, k-smooth. Finally, recall from [12, §3.6] (see also [3, §1.7]) that when d is odd and 1/2 €k,
we can consider the root stack X' := \2/(det(EV)®2 ® (LV)®d, disc(q))/C.

Under the above notations, we have the following computation.

Proposition 3.1. Let q: Q — C be a flat quadric fibration as above.

(a) When d is even, we have an isomorphism U(Q)z[1,2) = U(C)Z[UZ] ® U(C)g[f/ﬁ)

(b) When d is odd, k is algebraically closed, and 1/2 € k, we have U(Q) ~ U(D) & U (C)®@-D,

Proof. Recall from [12, §3] (see also [3, §1.5]) the construction of the sheaf Cy of even parts of the Clifford algebra associated
with g. As proved in [12, Thm. 4.2] (see also [3, Thm. 2.2.1]), we have the following semi-orthogonal decomposition

perf(Q) = (perf(C; Co), perf(C)1, ..., perf(C)a—z) ,

where perf(C; Co) stands for the category of perfect Co-modules and perf(C); := q*(perf(C)) ® Oqc(i). Note that all the
categories perf(C); are equivalent (via a Fourier-Mukai-type functor) to perf(C). Since U sends semi-orthogonal decomposi-
tions to direct sums, we then obtain a direct sum decomposition

U(Q) ~ U(perf®(C; Cp)) ® U(C)®@2) (1)

where perfdg(C ; Co) stands for the dg enhancement of perf(C; Cp) induced from perfys(Q). As explained in [12, Prop. 4.9]
(see also [3, §2.2]), the inclusion of categories perf(C; Co) < perf(Q) is of Fourier-Mukai type. Therefore, the associated
kernel leads to a Fourier-Mukai Morita equivalence between perfdg(C ; Co) and perfys (C; Co). Consequently, we can replace
pertdg(C Co) by perfyy(C; Co) in decomposition (1).

Item (a). As explamed in [12, §3.5] (see also [3, §1.6]), the category perf(C; Co) is equivalent (via a Fourier-Mukai-type
functor) to perf(C; By), where By is a certain sheaf of Azumaya algebras over C of rank 2@2=1, Therefore, the associated
kernel leads to a Fourier-Mukai Morita equivalence between perfyg(C; Co) and perfdg(C Bp). As proved in [18, Thm. 2.1],
since By is a sheaf of Azumaya algebras of rank 2@/2~1  the noncommutative mixed motive U (perfdg(C Bo))ziij2) s
isomorphic to U(C)Z“/z] Consequently, the Z[1/2]- lmearlzatlon of the right-hand side of (1) reduces to U(C)Zn/z] @
U(C)%ﬂ?.

Item (b). As explained in [12, Cor. 3.16] (see also [3, §1.7]), since k is algebraically closed and 1/2 € k, the category
perf(C; Co) is equivalent (via a Fourier-Mukai-type functor) to perf(X). This implies that the dg category perfys(C; Co) is
Morita equivalent to perfgy (). Consequently, since C and D are k-smooth, we conclude from Proposition 2.1 that the
right-hand side of (1) reduces to U(D) @ U(C)®¢-D. g
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We now have all the ingredients necessary to conclude the proof of Theorem 1.1.

Item (i). As proved in [17, Thm. 2.8], there exists a Q-linear, fully-faithful, symmetric monoidal functor & making the
following diagram commute

smk) X perfegu) dgcat(k) )
M(-)q U(-)g
DMgm (k)g NMot(k)g
T J/Hom(—,U(k)@)
DMgm (K)@/-g0)12] S NMot(k)q,
where Hom(—, —) stands for the internal Hom of the closed symmetric monoidal structure on NMot(k)g and Q(1)[2] for

the Tate mixed motive. Since the functor w, resp. ®, is additive, resp. fully-faithful and additive, we conclude from the
combination of Proposition 3.1 with the commutative diagram (2) that

n(M(Q)g) ~m(M(©C)g & MCO)F). (3)

By definition of the orbit category, there exist then morphisms

f = {falnez € Hompity, doo (M(Q)g. (M(©)g & MOF™ ) m)[2n),
g = {gnlnez € Hompy,,, 1o M(©)g & MO)F™ . M(Q)gm)(2n])

verifying the equalities go f=id =fo g; in order to simplify the exposition, we write —(n)[2n] instead of — ® Q(1)[2]®".
Moreover, only finitely many of these morphisms are non-zero. Let us choose an integer N > 0 such that f, =g, =0 for
every |n| > N. The sets {f,| — N <n <N} and {g_,(n)| — N <n < N} give then rise to the following morphisms between
mixed motives:

N
@:M(Q)g— P MOgeMOF)m2n],
n=—N
N
~ de
B: P MOgeMOF)mi2n — MQ)g.
n=—N

The composition B o« agrees with the Oth component of gof=id, i.e. with the identity of M(Q )g. Consequently, M(Q)q is
a direct summand of the direct sum EB;V:_N(M(E)Q ® M(C)g(d_n)(n)[Zn]. Using the fact that M(E)Q and M(C)q are both

Kimura-finite, that A2(Q(1)[2]) =0, and that Kimura-finiteness is stable under direct sums, direct summands, and tensor
products, we hence conclude that the mixed motive M(Q )q is also Kimura-finite. This finishes the proof of the first claim.
Let us now prove the second claim. Let X be a smooth k-scheme such that M(X)q is Kimura-finite. Note that since
the functor 7 is symmetric monoidal and additive, the object (M (X)g) of the orbit category DMgm (k)q/-gq)[2; is also
Kimura-finite. As explained in [2, §3], we have the following equality kim(M(X)g) = x (M(X)q,+) — X (M(X)qg,-), where
x stands for the Euler characteristic computed in the rigid symmetric monoidal category DMgm (k)q. Therefore, since the
functor © is moreover faithful, we observe that kim(M(X)qg) = kim(n(M(X)g)). This leads to the following equalities:

kim(M(?)g) = kim(n(M(?)g))  ?€{Q,C,C}. (4)

The Kimura-dimension of a direct sum of Kimura-finite objects is equal to the sum of the Kimura-dimension of each one of
the objects. Hence, using the above computation (3) and the fact that the functor & is additive, we conclude that

kim((M(Q)qg)) = kim(m(M(C)g)) + (d — DKim(m(M(C)g)) . (5)
The proof of the second claim follows now from the combination of the above equalities (4)-(5).

Item (ii). The proof is similar to the one of item (i): simply replace ¢ by D, (d — 1) by (d — 2), and use the fact that
kim(M(D)g) = #D.
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