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Making use of the recent theory of noncommutative mixed motives, we prove that the 
Voevodsky’s mixed motive of a quadric fibration over a smooth curve is Kimura-finite.
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r é s u m é

Utilisant la théorie récente des motifs non commutatifs, nous prouvons que le motif mixte 
de Voevodsky d’une fibration en quadriques sur une courbe lisse est fini au sens de Kimura.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let (C, ⊗, 1) be a Q-linear, idempotent complete, symmetric monoidal category. Given a partition λ of an integer n ≥ 1, 
consider the corresponding irreducible Q-linear representation Vλ of the symmetric group Sn and the associated idem-
potent eλ ∈ Q[Sn]. Under these notations, the Schur-functor Sλ: C → C sends an object a to the direct summand of 
a⊗n determined by eλ . In the particular case of the partition λ = (1, . . . , 1), resp. λ = (n), the associated Schur-functor 
∧n := S(1,...,1) , resp. Symn := S(n) , is called the nth wedge product, resp. the nth symmetric product. Following Kimura [11], an 
object a ∈ C is called even-dimensional, resp. odd-dimensional, if ∧n(a), resp. Symn(a) = 0, for some n � 0. The biggest inte-
ger kim+(a), resp. kim−(a), for which ∧kim+(a) �= 0, resp. Symkim−(a)(a) �= 0, is called the even, resp. odd, Kimura-dimension 
of a. An object a ∈ C is called Kimura-finite if a 	 a+ ⊕ a− , with a+ even-dimensional and a− odd-dimensional. The integer 
kim(a) = kim+(a+) + kim−(a−) is called the Kimura-dimension of a.

Voevodsky introduced in [20] an important triangulated category of geometric mixed motives DMgm(k)Q (over a per-
fect base field k). By construction, this category is Q-linear, idempotent complete, rigid symmetric monoidal, and comes 
equipped with a symmetric monoidal functor M(−)Q: Sm(k) → DMgm(k)Q , defined on smooth k-schemes. An important 
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open problem2 is the classification of all the Kimura-finite mixed motives and the computation of the corresponding 
Kimura-dimensions. On the negative side, O’Sullivan constructed a certain smooth surface S whose mixed motive M(S)Q is 
not Kimura-finite; consult [14, §5.1] for details. On the positive side, Guletskii [7] and Mazza [14] proved, independently, 
that the mixed motive M(C)Q of every smooth curve C is Kimura-finite.

The following result bootstraps Kimura-finiteness from smooth curves to quadric fibrations.

Theorem 1.1. Let k be a field, C a smooth k-curve, and q: Q → C a flat quadric fibration of relative dimension d − 2. Assume that Q is 
smooth and that q has only simple degenerations, i.e. that all the fibers of q have corank ≤ 1. Under these assumptions, the following 
holds:

(i) when d is even, the mixed motive M(Q )Q is Kimura-finite. Moreover, we have the following equality, kim(M(Q )Q) =
kim(M(C̃)Q) + (d − 2)kim(M(C)Q), where D ↪→ C stands for the finite set of critical values of q and C̃ for the discriminant 
double cover of C (ramified over D);

(ii) when d is odd, k is algebraically closed, and 1/2 ∈ k, the mixed motive M(Q )Q is Kimura-finite. Moreover, we have the following 
equality kim(M(Q )Q) = #D + (d − 1)kim(M(C)Q).

To the best of the author’s knowledge, Theorem 1.1 is new in the literature. It not only provides new examples of 
Kimura-finite mixed motives, but also computes the corresponding Kimura dimensions.

Remark 1. In the particular case where k is algebraically closed and Q , C are moreover projective, Vial proved in [19, 
Cor. 4.4] that the Chow motive h(Q )Q is Kimura-finite. Since the category of Chow motives embeds fully-faithfully into 
DMgm(k)Q (see [20, §4]), we then obtain in this particular case an alternative “geometric” proof of the Kimura-finiteness 
of M(Q )Q . Moreover, when k = C and d is odd, Bouali refined Vial’s work by showing that h(Q )Q 	 Q(− d−1

2 )⊕#D ⊕⊕d−2
i=0 h(C)Q(−i); see [4, Rk. 1.10(i)]. In this particular case, this leads to an alternative “geometric” computation of the 

Kimura-dimension of M(Q )Q .

2. Preliminaries

Throughout the article, k denotes a base field of arbitrary characteristic.
Dg categories. For a survey on dg categories, consult Keller’s ICM talk [9]. In what follows, we write dgcat(k) for the 

category of (essentially small) dg categories and dg functors. Every (dg) k-algebra gives naturally rise to a dg category with 
a single object. Another source of examples is provided by schemes/stacks, since the category of perfect complexes perf(X)

of every k-scheme X (or, more generally, algebraic stack X ) admits a canonical dg enhancement perfdg(X); consult [9, 
§4.6][13] for details.

Noncommutative mixed motives. For a book, resp. survey, on noncommutative motives, consult [15], resp. [16]. Recall 
from [15, §8.5.1] the construction of Kontsevich’s triangulated category of noncommutative mixed motives NMot(k); denoted 
by NMotA

1

loc(k) in loc. cit. By construction, this category is idempotent complete, closed symmetric monoidal, and comes 
equipped with a symmetric monoidal functor U : dgcat(k) → NMot(k). In what follows, given a k-scheme X , we write U (X)

instead of U (perfdg(X)).

Root stacks. Let X be a k-scheme, L a line bundle on X , σ ∈ �(X, L) a global section, and r > 0 an integer. In what 
follows, we write D ↪→ X for the zero locus of σ . Recall from [5, Def. 2.2.1] (see also [1, Appendix B]) that the associated 
root stack is defined as the following fiber-product of algebraic stacks

r
√

(L,σ )/X [A1/Gm]
θr

X
(L,σ )

[A1/Gm] ,

where θr stands for the morphism induced by the rth power maps on A1 and Gm .

Proposition 2.1. We have U ( r
√

(L, σ )/X) 	 U (D)⊕(r−1) ⊕ U (X) whenever X and D are k-smooth.

2 Among other consequences, Kimura-finiteness implies rationality of the motivic zeta function.
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Proof. By construction, the root stack comes equipped with a forgetful morphism f : r
√

(L, σ )/X → X . As proved by Ishii–
Ueda in [8, Thm. 1.6], the pull-back functor f ∗ is fully-faithful. Moreover, we have the following semi-orthogonal decompo-
sition

perf(X ) = 〈perf(D)r−1, . . . ,perf(D)1, f ∗(perf(X))〉 ,

where all the categories perf(D)i are equivalent (via a Fourier–Mukai-type functor) to perf(D). Consequently, the proof fol-
lows from the fact that the functor U sends semi-orthogonal decomposition to direct sums (see [15, §8.4.1 and §8.4.5]). �

Orbit categories. Let (C, ⊗, 1) be an Q-linear symmetric monoidal additive category and O ∈ C a ⊗-invertible object. 
Following [6,10], the orbit category C/−⊗O has the same objects as C and morphisms HomC/−⊗O (a, b) := ⊕

n∈Z HomC(a, b ⊗
O⊗n). Given objects a, b, c and morphisms f = { fn}n∈Z and g = {gn}n∈Z , the ith-component of g ◦ f is defined as 

∑
n(gi−n ⊗

O⊗n) ◦ fn . The functor π: C → C/−⊗O , given by a �→ a and f �→ f = { fn}n∈Z , where f0 := f and fn := 0 if n �= 0, is endowed 
with an isomorphism π ◦ (− ⊗O) ⇒ π and is 2-universal among all such functors. Finally, the category C/−⊗O is Q-linear, 
additive, and inherits from C a symmetric monoidal structure making π symmetric monoidal.

3. Proof of Theorem 1.1

Following Kuznetsov [12, §3] (see also Auel–Bernardara–Bolognesi [3, §1.2]), let E be a vector bundle of rank d on C , 
p: P(E) → C the projectivization of E on C , OP(E)(1) the Grothendieck line bundle on P(E), L a line bundle on C , and 
finally ρ ∈ �(C, S2(E∨) ⊗ L∨) = �(P(E), OP(E)(2) ⊗ L∨) a global section. Given this data, Q ⊂ P(E) is defined as the zero 
locus of ρ on P(E) and q: Q → C as the restriction of p to Q ; the relative dimension of q is equal to d − 2. Consider 
also the discriminant global section disc(q) ∈ �(C, det(E∨)⊗2 ⊗ (L∨)⊗d) and the associated zero locus D ↪→ C . Note that 
D agrees with the finite set of critical values of q. Recall from [12, §3.5] (see also [3, §1.6]) that when d is even, we can 
consider the discriminant double cover C̃ of C . By construction, C̃ is ramified over D . Since by hypothesis q has only simple 
degenerations, C̃ is, moreover, k-smooth. Finally, recall from [12, §3.6] (see also [3, §1.7]) that when d is odd and 1/2 ∈ k, 
we can consider the root stack X := 2

√
(det(E∨)⊗2 ⊗ (L∨)⊗d,disc(q))/C .

Under the above notations, we have the following computation.

Proposition 3.1. Let q: Q → C be a flat quadric fibration as above.

(a) When d is even, we have an isomorphism U (Q )Z[1/2] 	 U (C̃)Z[1/2] ⊕ U (C)
⊕(d−2)
Z[1/2] .

(b) When d is odd, k is algebraically closed, and 1/2 ∈ k, we have U (Q ) 	 U (D) ⊕ U (C)⊕(d−1) .

Proof. Recall from [12, §3] (see also [3, §1.5]) the construction of the sheaf C0 of even parts of the Clifford algebra associated 
with q. As proved in [12, Thm. 4.2] (see also [3, Thm. 2.2.1]), we have the following semi-orthogonal decomposition

perf(Q ) = 〈perf(C;C0),perf(C)1, . . . ,perf(C)d−2〉 ,

where perf(C; C0) stands for the category of perfect C0-modules and perf(C)i := q∗(perf(C)) ⊗ OQ /C (i). Note that all the 
categories perf(C)i are equivalent (via a Fourier–Mukai-type functor) to perf(C). Since U sends semi-orthogonal decomposi-
tions to direct sums, we then obtain a direct sum decomposition

U (Q ) 	 U (perfdg(C;C0)) ⊕ U (C)⊕(d−2) , (1)

where perfdg(C; C0) stands for the dg enhancement of perf(C; C0) induced from perfdg(Q ). As explained in [12, Prop. 4.9]
(see also [3, §2.2]), the inclusion of categories perf(C; C0) ↪→ perf(Q ) is of Fourier–Mukai type. Therefore, the associated 
kernel leads to a Fourier–Mukai Morita equivalence between perfdg(C; C0) and perfdg(C; C0). Consequently, we can replace 
perfdg(C, C0) by perfdg(C; C0) in decomposition (1).

Item (a). As explained in [12, §3.5] (see also [3, §1.6]), the category perf(C; C0) is equivalent (via a Fourier–Mukai-type 
functor) to perf(C̃; B0), where B0 is a certain sheaf of Azumaya algebras over C̃ of rank 2(d/2)−1. Therefore, the associated 
kernel leads to a Fourier–Mukai Morita equivalence between perfdg(C; C0) and perfdg (̃C; B0). As proved in [18, Thm. 2.1], 
since B0 is a sheaf of Azumaya algebras of rank 2(d/2)−1, the noncommutative mixed motive U (perfdg (̃C; B0))Z[1/2] is 
isomorphic to U (C̃)Z[1/2] . Consequently, the Z[1/2]-linearization of the right-hand side of (1) reduces to U (C̃)Z[1/2] ⊕
U (C)

⊕(d−2)
Z[1/2] .

Item (b). As explained in [12, Cor. 3.16] (see also [3, §1.7]), since k is algebraically closed and 1/2 ∈ k, the category 
perf(C; C0) is equivalent (via a Fourier–Mukai-type functor) to perf(X ). This implies that the dg category perfdg(C; C0) is 
Morita equivalent to perfdg(X ). Consequently, since C and D are k-smooth, we conclude from Proposition 2.1 that the 
right-hand side of (1) reduces to U (D) ⊕ U (C)⊕(d−1) . �
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We now have all the ingredients necessary to conclude the proof of Theorem 1.1.

Item (i). As proved in [17, Thm. 2.8], there exists a Q-linear, fully-faithful, symmetric monoidal functor � making the 
following diagram commute

Sm(k)
X �→perfdg(X)

M(−)Q

dgcat(k)

U (−)Q

DMgm(k)Q

π

NMot(k)Q

Hom(−,U (k)Q)

DMgm(k)Q/−⊗Q(1)[2] �
NMot(k)Q ,

(2)

where Hom(−, −) stands for the internal Hom of the closed symmetric monoidal structure on NMot(k)Q and Q(1)[2] for 
the Tate mixed motive. Since the functor π, resp. �, is additive, resp. fully-faithful and additive, we conclude from the 
combination of Proposition 3.1 with the commutative diagram (2) that

π(M(Q )Q) 	 π(M (̃C)Q ⊕ M(C)
⊕(d−2)
Q

) . (3)

By definition of the orbit category, there exist then morphisms

f = { fn}n∈Z ∈ HomDMgm(k)Q(M(Q )Q, (M (̃C)Q ⊕ M(C)
⊕(d−1)
Q

)(n)[2n]),
g = {gn}n∈Z ∈ HomDMgm(k)Q(M (̃C)Q ⊕ M(C)

⊕(d−1)
Q

, M(Q )Q(n)[2n])
verifying the equalities g ◦ f = id = f ◦ g; in order to simplify the exposition, we write −(n)[2n] instead of − ⊗ Q(1)[2]⊗n . 
Moreover, only finitely many of these morphisms are non-zero. Let us choose an integer N � 0 such that fn = gn = 0 for 
every |n| > N . The sets { fn | − N ≤ n ≤ N} and {g−n(n) | − N ≤ n ≤ N} give then rise to the following morphisms between 
mixed motives:

α : M(Q )Q −→
N⊕

n=−N

(M (̃C)Q ⊕ M(C)
⊕(d−1)
Q

)(n)[2n],

β :
N⊕

n=−N

(M (̃C)Q ⊕ M(C)
⊕(d−1)
Q

)(n)[2n] −→ M(Q )Q .

The composition β ◦α agrees with the 0th component of g ◦ f = id, i.e. with the identity of M(Q )Q . Consequently, M(Q )Q is 
a direct summand of the direct sum 

⊕N
n=−N (M(C̃)Q ⊕ M(C)

⊕(d−1)
Q

)(n)[2n]. Using the fact that M(C̃)Q and M(C)Q are both 
Kimura-finite, that ∧2(Q(1)[2]) = 0, and that Kimura-finiteness is stable under direct sums, direct summands, and tensor 
products, we hence conclude that the mixed motive M(Q )Q is also Kimura-finite. This finishes the proof of the first claim.

Let us now prove the second claim. Let X be a smooth k-scheme such that M(X)Q is Kimura-finite. Note that since 
the functor π is symmetric monoidal and additive, the object π(M(X)Q) of the orbit category DMgm(k)Q/−⊗Q(1)[2] is also 
Kimura-finite. As explained in [2, §3], we have the following equality kim(M(X)Q) = χ(M(X)Q,+) − χ(M(X)Q,−), where 
χ stands for the Euler characteristic computed in the rigid symmetric monoidal category DMgm(k)Q . Therefore, since the 
functor π is moreover faithful, we observe that kim(M(X)Q) = kim(π(M(X)Q)). This leads to the following equalities:

kim(M(?)Q) = kim(π(M(?)Q)) ? ∈ {Q , C̃, C} . (4)

The Kimura-dimension of a direct sum of Kimura-finite objects is equal to the sum of the Kimura-dimension of each one of 
the objects. Hence, using the above computation (3) and the fact that the functor π is additive, we conclude that

kim(π(M(Q )Q)) = kim(π(M (̃C)Q)) + (d − 1)kim(π(M(C)Q)) . (5)

The proof of the second claim follows now from the combination of the above equalities (4)–(5).

Item (ii). The proof is similar to the one of item (i): simply replace C̃ by D , (d − 1) by (d − 2), and use the fact that 
kim(M(D)Q) = #D .
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