

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Lie algebras/Partial differential equations

Compatible Hamiltonian operators for the Krichever-Novikov equation

Opérateurs hamiltoniens compatibles pour l'équation de Krichever–Novikov

Sylvain Carpentier

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

ARTICLE INFO

Article history: Received 12 May 2017 Accepted after revision 30 May 2017 Available online 12 June 2017

Presented by Michèle Vergne

ABSTRACT

It has been proved by Sokolov that Krichever-Novikov equation's hierarchy is hamiltonian for the Hamiltonian operator $H_0 = u_x \partial^{-1} u_x$ and possesses two weakly non-local recursion operators of degrees 4 and 6, L_4 and L_6 . We show here that H_0 , L_4H_0 and L_6H_0 are compatible Hamiltonians operators for which the Krichever-Novikov equation's hierarchy is hamiltonian.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Il a été démontré par Sokolov que la hiérarchie de l'équation de Krichever-Novikov est hamiltonienne pour l'opérateur hamiltonien $H_0 = u_x \partial^{-1} u_x$ et possède deux opérateurs de récursion faiblement non locaux de degrés 4 et 6, L_4 et L_6 . Nous montrons ici que H_0 , L_4H_0 et L_6H_0 sont des opérateurs hamiltoniens compatibles pour lesquels la hiérarchie de l'équation de Krichever-Novikov est hamiltonienne.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

In the study of finite-gap solutions of KP, an integrable (1 + 1)-dimensional PDE was discovered, the Krichever–Novikov equation. One of its forms (equivalent to the original one in [7]) is

$$\frac{du}{dt} = u_3 - \frac{3}{2}\frac{u_2^2}{u_1} + \frac{P(u)}{u_1},\tag{1}$$

where u = u(t, x), $u_n = (\frac{d}{dx})^n(u)$, and *P* is a polynomial of degree at most 4. Let $\mathcal{V} = \mathbb{C}[u, u_1^{\pm}, u_2, ...]$ and \mathcal{K} be the fraction field of \mathcal{V} . Let us denote $\frac{d}{dx}$ by ∂ . The *differential order* d_F of a function $F \in \mathcal{V}$ is the highest integer *n* such that $\frac{\partial F}{\partial u_n} \neq 0$. One of the attributes of equation (1) is to be part of an infinite hierarchy of compatible evolution PDEs of odd differential

orders

http://dx.doi.org/10.1016/j.crma.2017.05.009

E-mail address: syl_car@mit.edu.

¹⁶³¹⁻⁰⁷³X/© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

$$\frac{\mathrm{d}u}{\mathrm{d}t_i} = G_i \in \mathcal{V}, i \ge 0,\tag{2}$$

where G_i has differential order (2i + 1). One says that $F, G \in \mathcal{V}$ are *compatible*, or *symmetries* of one another, if

$$\{F, G\} := X_F(G) - X_G(F) = 0, \tag{3}$$

where X_F denotes the derivation of \mathcal{V} induced by the evolution equation $u_t = F$, that is

$$X_F = \sum_{n \ge 0} F^{(n)} \frac{\partial}{\partial u_n}.$$
(4)

(3) endows \mathcal{V} with a Lie algebra bracket, and the G_i 's span an infinite-dimensional abelian subalgebra of $(\mathcal{V}, \{.,.\})$, which we will denote by \mathcal{S} . The first four equations in the hierarchy are:

$$G_{0} = u_{1},$$

$$G_{1} = u_{3} - \frac{3}{2} \frac{u_{2}^{2}}{u_{1}} + \frac{P(u)}{u_{1}},$$

$$G_{2} = u^{(5)} - 5 \frac{u_{4}u_{2}}{u_{1}} - \frac{5}{2} \frac{u_{3}^{2}}{u_{1}} + \frac{25}{2} \frac{u_{3}u_{2}^{2}}{u_{1}^{2}} - \frac{45}{8} \frac{u_{2}^{4}}{u_{1}^{3}} - \frac{5}{3}P \frac{u_{3}}{u_{1}^{2}} + \frac{25}{6}P \frac{u_{2}^{2}}{u_{1}^{3}} - \frac{5}{3}P_{u} \frac{u_{2}}{u_{1}} - \frac{5}{18} \frac{P^{2}}{u_{1}^{3}} + \frac{5}{9}u_{1}P_{uu},$$

$$G_{3} = u_{7} - 7\frac{u_{2}u_{6}}{u_{1}} - \frac{7}{6} \frac{u_{5}}{u_{1}^{2}}(2P + 12u_{3}u_{1} - 27u_{2}^{2}) - \frac{21}{2} \frac{u_{4}^{2}}{u_{1}} + \frac{21}{2} \frac{u_{4}}{u_{1}}(2P - 11u_{2}^{2}) - \frac{7}{3} \frac{u_{4}}{u_{1}^{2}}(2P uu_{1} - 51u_{2}u_{3}) + \frac{49}{2} \frac{u_{3}^{3}}{u_{1}^{2}} + \frac{7}{12} \frac{u_{3}^{2}}{u_{1}^{3}}(22P - 417u_{2}^{2}) + \frac{2499}{8} \frac{u_{4}^{2}}{u_{1}^{4}}u_{3} - \frac{91}{8} \frac{u_{2}^{2}}{u_{1}^{4}}u_{3} - \frac{35}{18} \frac{u_{3}}{u_{1}^{4}}(2P_{uu}u_{1}^{4} - P^{2}) - \frac{1575}{16} \frac{u_{5}^{6}}{u_{5}^{5}} + \frac{1813}{24} \frac{u_{2}^{4}}{u_{1}^{5}}P - \frac{203}{6} \frac{u_{3}^{2}}{u_{1}^{3}}P_{u} + \frac{49}{36} \frac{u_{2}^{2}}{u_{1}^{5}}(6P_{uu}u_{1}^{4} - 5P^{2}) - \frac{7}{9} \frac{u_{2}}{u_{1}^{3}}(2P_{uuu}u_{1}^{4} - 5PP_{u}) + \frac{7}{54} \frac{P^{3}}{u_{1}^{5}} - \frac{7}{9}P_{uu}\frac{P}{u_{1}} + \frac{7}{9}P_{uuuu}u_{1}^{3} - \frac{7}{18} \frac{P^{2}}{u_{1}^{2}}.$$
(6)

It is known ([6,10]) that all integrable hierarchies admit a pseudodifferential operator $L \in \mathcal{V}((\partial^{-1}))$ satisfying

$$X_F(L) = [D_F, L] \tag{7}$$

for all F in the hierarchy, where D_F denotes the Fréchet derivative of F:

$$D_F = \sum_{n} \frac{\partial F}{\partial u_n} \partial^n \in \mathcal{V}[\partial].$$
(8)

A pseudodifferential operator satisfying (7) is called a *recursion operator* (for *F*). In [3], two rational recursions operators for (1) were found, of orders 4 and 6:

$$L_4 = H_1 H_0^{-1}, \quad L_6 = H_2 H_0^{-1}, \tag{9}$$

where

$$\begin{aligned} H_{0} &= u_{1}\partial^{-1}u_{1}, \\ H_{1} &= \frac{1}{2}(u_{1}^{2}\partial^{3} + \partial^{3}u_{1}^{2}) + (2u_{3}u_{1} - \frac{9}{2}u_{2}^{2} - \frac{2}{3}P)\partial + \partial(2u_{3}u_{1} - \frac{9}{2}u_{2}^{2} - \frac{2}{3}P) \\ &+ G_{1}\partial^{-1}G_{1} + u_{1}\partial^{-1}G_{2} + G_{2}\partial^{-1}u_{1}, \\ H_{2} &= \frac{1}{2}(u_{1}^{2}\partial^{5} + \partial^{5}u_{1}^{2}) + (3u_{3}u_{1} - \frac{19}{2}u_{2}^{2} - P)\partial^{3} + \partial^{3}(3u_{3}u_{1} - \frac{19}{2}u_{2}^{2} - P) \\ &+ (u_{5}u_{1} - 9u_{3}u_{2} + \frac{19}{2}u_{3}^{2} - \frac{2}{3}\frac{u_{3}}{u_{1}}(5P - 39u_{2}^{2}) + \frac{u_{2}^{2}}{u_{1}^{2}}(5P - 9u_{2}^{2}) + \frac{2}{3}\frac{P^{2}}{u_{1}^{2}} + u_{1}^{2}P_{uu})\partial \\ &+ \partial(u_{5}u_{1} - 9u_{3}u_{2} + \frac{19}{2}u_{3}^{2} - \frac{2}{3}\frac{u_{3}}{u_{1}}(5P - 39u_{2}^{2}) + \frac{u_{2}^{2}}{u_{1}^{2}}(5P - 9u_{2}^{2}) + \frac{2}{3}\frac{P^{2}}{u_{1}^{2}} + u_{1}^{2}P_{uu})\partial \\ &+ \partial(u_{5}u_{1} - 9u_{3}u_{2} + \frac{19}{2}u_{3}^{2} - \frac{2}{3}\frac{u_{3}}{u_{1}}(5P - 39u_{2}^{2}) + \frac{u_{2}^{2}}{u_{1}^{2}}(5P - 9u_{2}^{2}) + \frac{2}{3}\frac{P^{2}}{u_{1}^{2}} + u_{1}^{2}P_{uu})\partial \\ &+ \partial(u_{5}u_{1} - 9u_{3}u_{2} + \frac{19}{2}u_{3}^{2} - \frac{2}{3}\frac{u_{3}}{u_{1}}(5P - 39u_{2}^{2}) + \frac{u_{2}^{2}}{u_{1}^{2}}(5P - 9u_{2}^{2}) + \frac{2}{3}\frac{P^{2}}{u_{1}^{2}} + u_{1}^{2}P_{uu})\partial \\ &+ \partial(u_{5}u_{1} - 9u_{3}u_{2} + \frac{19}{2}u_{3}^{2} - \frac{2}{3}\frac{u_{3}}{u_{1}}(5P - 39u_{2}^{2}) + \frac{u_{2}^{2}}{u_{1}^{2}}(5P - 9u_{2}^{2}) + \frac{2}{3}\frac{P^{2}}{u_{1}^{2}} + u_{1}^{2}P_{uu})\partial \\ &+ \partial(u_{5}u_{1} - 9u_{3}u_{2} + \frac{19}{2}u_{3}^{2} - \frac{2}{3}\frac{u_{3}}{u_{1}}(5P - 39u_{2}^{2}) + \frac{u_{2}^{2}}{u_{1}^{2}}(5P - 9u_{2}^{2}) + \frac{2}{3}\frac{P^{2}}{u_{1}^{2}} + u_{1}^{2}P_{uu})\partial \\ &+ \partial(u_{5}u_{1} - 9u_{5}u_{2} + G_{2}\partial^{-1}G_{1} + u_{1}\partial^{-1}G_{3} + G_{3}\partial^{-1}u_{1}. \end{aligned}$$

Moreover, L_4 and L_6 are both weakly non-local, i.e. of the form

$$E(\partial) \in \mathcal{V}[\partial] + \sum_{i} p_i \partial^{-1} \frac{\delta \rho_i}{\delta u},\tag{11}$$

where the ρ_i 's are conserved densities of (1). Recall that the variational derivative $\frac{\delta}{\delta u}$ is defined as follows:

$$\frac{\delta F}{\delta u} = D_F^*(1) = \sum_n (-\partial)^n (\frac{\partial F}{\partial u_n}).$$
(12)

In [11], Sokolov showed that the space of symmetries of (1), S, is preserved by L_4 . The same argument applies to L_6 , which was found later. He also establishes that the hierarchy of the Krichever–Novikov equation is *hamiltonian* for H_0 : there exists a sequence $\phi_i \in \mathcal{V}$ such that

$$G_i = H_0(\frac{\delta\phi_i}{\delta u}) \text{ for all } i \ge 0.$$
(13)

A Hamiltonian operator $H = AB^{-1} \in \mathcal{V}(\partial)$ with A and B right coprime is a skewadjoint rational differential operator inducing a non-local Poisson lambda bracket, which is equivalent to the following identity (see equation (6.13) in [4])

$$A^{*}(D_{B(F)}(A(G)) + D^{*}_{A(G)}(B(F)) - D_{B(G)}(A(F)) + D^{*}_{B(G)}(A(F)))$$

$$= B^{*}(D_{A(G)}(A(F)) - D_{A(F)}(A(G)))$$
(14)

for all $F, G \in \mathcal{V}$.

Lemma 1. Let $L \in \mathcal{V}(\partial)$ be a skewadjoint rational operator. If there exists an infinite-dimensional (over \mathbb{C}) subspace $\mathcal{W} \subset \mathcal{V}$ such that $B(W) \subset \frac{\delta}{\delta u} \mathcal{V}$ and such that for all $G \in \mathcal{W}$, E = A(G) satisfies

$$X_E(L) = D_E L + L D_E^*, \tag{15}$$

then *L* is a Hamiltonian operator. Conversely, if *L* is a Hamiltonian operator and $G \in \mathcal{V}$, then $D_{B(G)} = D^*_{B(G)}$ if and only if A(G) satisfies equation (15).

Proof. Let us first give an equivalent form of (15) involving only differential operators.

$$(1.15) \iff X_E(A) - D_E A = AB^{-1}(X_E(B) + D_E^*B)$$

$$\iff X_E(A) - D_E A = -B^{*-1}A^*(X_E(B) + D_E^*B)$$

$$\iff A^*(X_E(B) + D_E^*B) = B^*(D_E A - X_E(A))$$

$$\iff A^*(X_E + D_E^*)B = B^*(D_E - X_E)A.$$

$$\iff A^*(D_{B(F)}(E) + D_E^*(B(F))) = B^*(D_E(A(F)) - D_{A(F)}(E)) \quad \forall F \in \mathcal{V}.$$
(16)

Comparing the last line of (16) with (14), it is clear that if *H* is Hamiltonian, then E = A(G) satisfies equation (15) is and only if $D_{B(G)}$ is self-adjoint. It is also clear that if A(G) satisfies (15) and $D_{B(G)}$ is self-adjoint, then (F, G) satisfies (14) for any $F \in \mathcal{V}$. Therefore, if we consider $\mathcal{W} \subset \mathcal{V}$ infinite-dimensional subspace of \mathcal{V} such that $A(\mathcal{W})$ satisfies (15) and $B(\mathcal{W}) \subset \frac{\delta}{\delta u} \mathcal{V}$, we deduce that (14) is satisfied for any $(F, G) \in \mathcal{V} \times \mathcal{W}$. To conclude, we note that (14) can be rewritten as an identity of bidifferential operator, i.e. it amounts to say that some expression of the form $\sum m_{ij} F^{(i)}G^{(j)}$, where $m_{ij} \in \mathcal{V}$ is trivial, i.e. $m_{ij} = 0$ for all *i*, *j*. Namely, (14) is equivalent to

$$A^{*}(X_{A(G)}(B)(F) - X_{A(F)}(B)(G) + (D_{A})^{*}_{G}(B(F)) + (D_{B})^{*}_{G}(A(F))) = B^{*}(X_{A(F)}(A)(G) - X_{A(G)}(A)(F)),$$
(17)

where given a differential operator P, an element $F \in \mathcal{V}$, the differential operator $(D_P)_F$ is defined by

$$(D_P)_F(G) = X_G(P)(F) \quad \forall G \in \mathcal{V}.$$
(18)

If a bidifferential operator vanishes on $\mathcal{V} \times \mathcal{W}$, it must be identically 0, since \mathcal{W} is infinite dimensional. Hence, *L* is an Hamiltonian operator. \Box

Lemma 2. Let $L = CD^{-1}$ be a rational operator and $(F_n)_{n\geq 0}$ a sequence spanning an infinite-dimensional subspace of \mathcal{K} satisfying $C(F_n) = D(F_{n+1}) \in \mathcal{V}$ for all $n \geq 0$. Assume that L is recursion for all the $D(F_n)$'s and that the $D(F_n)$'s are hamiltonian for some Hamiltonian operator $H \in \mathcal{V}(\partial)$. Then, provided LH is skew-adjoint, LH is a Hamiltonian operator for which all the $D(F_n)$'s are hamiltonian $(n \geq 1)$.

Proof. By Lemma 1, *H* satisfies equation (15) for all $D(F_n)$, $n \ge 0$, hence so does *LH* (*L* is recursion for $D(F_n)$ for all $n \ge 0$). To conclude using Lemma 1, one needs to check that $D(F_n) = LH(\frac{\delta\rho_n}{\delta u})$ for some $\rho_n \in \mathcal{V}$ for all $n \ge 1$. Let $P, Q \in \mathcal{V}[\partial]$ be right coprime differential operators such that $LH = PQ^{-1}$. Let *A*, *B* be right coprime differential operators such that $H = AB^{-1}$. $D(F_n)$ is hamiltonian for *H* for all $n \ge 0$, meaning that there exist two sequences in \mathcal{V} , $(\phi_n)_{n\ge 0}$ and $(\rho_n)_{n\ge 0}$, such that $\frac{\delta\rho_n}{\delta u} = B(\phi_n)$ and $D(F_n) = A(\phi_n)$ for all $n \ge 0$. In the language of [2], $\frac{\delta\rho_n}{\delta u}$ and $C(F_n)$ are $CD^{-1}AB^{-1}$ associated, hence (quote result) there exists ψ_n such that $C(F_n) = P(\psi_n)$ and $Q(\psi_n) = \frac{\delta\rho_n}{\delta u}$ for all $n \ge 0$. Therefore, by Lemma 1.1, *LH* is a Hamiltonian operator for which $(C(F_n))_{n>0}$ are hamiltonian. \Box

Theorem. H_0 , H_1 and H_2 are compatible Hamiltonian operators.

Proof. Let $\alpha, \beta, \gamma \in \mathbb{C}$ and let $L_{\alpha,\beta,\gamma} = (\alpha H_0 + \beta H_1 + \gamma H_2)H_0^{-1}$. $L_{\alpha,\beta,\gamma}$ is a recursion operator for the whole Krichever-Novikov hierarchy S. Moreover, it maps S to itself as was proved in [11], meaning that if $L_{\alpha,\beta,\gamma} = AB^{-1}$ with A, B right coprime and $G \in S$, then G = B(F) for some $F \in \mathcal{K}$ and $A(F) \in S$. The theorem follows from Lemma 2. \Box

Remark 3. It follows from Lemma 1 that $H = H_2 H_1^{-1} H_0$ is a Hamiltonian operator of degree 1. However, it is not weakly non-local. More generally, all the $(H_2 H_1^{-1})^n H_0$, for $n \in \mathbb{Z}$ are pairwise compatible Hamiltonian operators. It is known since the work of Magri ([8], see also [5]) that from a pair of compatible Hamiltonian operators, one can construct infinitely many.

Remark 4. Every Hamiltonian operator $K = AB^{-1}$ over \mathcal{V} , where A and B are right coprime induces a Lie algebra bracket on the space of functionals $\mathcal{F}(K) := \{\int f \in \mathcal{V}/\partial \mathcal{V} | \frac{\delta f}{\delta u} \in ImB\}$, (well-)defined by $\{\int f, \int g\} = \int \frac{\delta f}{\delta u} AB^{-1}(\frac{\delta g}{\delta u})$ (see section 7.2 in [4]). Note that $\mathcal{F}(H_0) = \mathcal{V}/\partial \mathcal{V}$ but that $\mathcal{F}(H_1)$ and $\mathcal{F}(H_2)$ consist only of the conserved densities of the Krichever–Novikov equation.

We recall that if a rational differential operator $L = AB^{-1}$, with $A, B \in \mathcal{V}[\partial]$ right coprime generates an infinite dimensional abelian subspace of $(\mathcal{V}, \{.,.\})$, in the sense that there exist $(F_n)_{n\geq 0} \in \mathcal{K}$ such that $A(F_n) = B(F_{n+1})$ for all $n \geq 0$ and such that the $B(F_n)$'s span an infinite-dimensional abelian subspace of $(\mathcal{V}, \{.,.\})$, then for all $\lambda \in \mathbb{C}$, $Im(A + \lambda B)$ must be a sub Lie algebra of $(\mathcal{V}, \{.,.\})$ (see [1]). The recursion operators $L_{\alpha,\beta,\gamma}$ satisfy this condition.

Note that weakly non-local Hamiltonian operators were introduced in [9], where the authors study the complete set of weakly non-local Hamiltonian operators for both the KdV and the NLS hierarchies.

The author thanks Vladimir Sokolov for useful discussions, and Victor Kac for his interest in this work.

References

- [1] S. Carpentier, A sufficient condition for a rational differential operator to generate an integrable system, Jpn. J. Math. 12 (2017) 33-89.
- [2] S. Carpentier, A. De Sole, V. Kac, Singular degree of a rational matrix pseudodifferential operator, Int. Math. Res. Not. 2015 (13) (2015) 5162–5195.
- [3] D.K. Demskoi, V.V. Sokolov, On recursion operators for elliptic models, Nonlinearity 21 (6) (2008) 1253–1264.
- [4] A. De Sole, V.G. Kac, Non-local Hamiltonian structures and applications to the theory of integrable systems, Jpn. J. Math. 8 (2) (2013) 233-347.
- [5] B. Enriquez, A. Orlov, V. Rubtsov, Higher Hamiltonian structures (the sl2 case), JETP Lett. 58 (8) (1993) 658-664.
- [6] N.Kh. Ibragimov, A.B. Shabat, Evolution equations with nontrivial Lie–Bäcklund group, Funkc. Anal. Prilozh. 14 (1) (1980) 25–36.
- [7] J.M. Krichever, S.P. Novikov, Holomorphic bundles over algebraic curves and non-linear equations, Russ. Math. Surv. 35 (6) (1980) 53-79.
- [8] F. Magri, Lecture Notes in Physics, vol. 120, Springer-Verlag, Berlin, 1980, p. 233.
- [9] A.Ya. Maltsev, S.P. Novikov, On the local systems Hamiltonian in the weakly non-local Poisson brackets, Physica D 156 (2001) 53-80.
- [10] A.V. Mikhailov, V.V. Sokolov, Symmetries of differential equations and the problem of integrability, in: A.V. Mikhailov (Ed.), Integrability, in: Lecture Notes in Physics, vol. 767, Springer, 2008.
- [11] V.V. Sokolov, On the hamiltonian property of the Krichever-Novikov equation, Sov. Math. Dokl. 30 (1) (1984).