Lie algebras/Partial differential equations

Compatible Hamiltonian operators for the Krichever-Novikov equation

Opérateurs hamiltoniens compatibles pour l'équation de Krichever-Novikov

Sylvain Carpentier
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

ARTICLE INFO

Article history:

Received 12 May 2017
Accepted after revision 30 May 2017
Available online 12 June 2017
Presented by Michèle Vergne

Abstract

It has been proved by Sokolov that Krichever-Novikov equation's hierarchy is hamiltonian for the Hamiltonian operator $H_{0}=u_{x} \partial^{-1} u_{x}$ and possesses two weakly non-local recursion operators of degrees 4 and $6, L_{4}$ and L_{6}. We show here that $H_{0}, L_{4} H_{0}$ and $L_{6} H_{0}$ are compatible Hamiltonians operators for which the Krichever-Novikov equation's hierarchy is hamiltonian.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Ré S U M É

Il a été démontré par Sokolov que la hiérarchie de l'équation de Krichever-Novikov est hamiltonienne pour l'opérateur hamiltonien $H_{0}=u_{x} \partial^{-1} u_{x}$ et possède deux opérateurs de récursion faiblement non locaux de degrés 4 et $6, L_{4}$ et L_{6}. Nous montrons ici que H_{0}, $L_{4} H_{0}$ et $L_{6} H_{0}$ sont des opérateurs hamiltoniens compatibles pour lesquels la hiérarchie de l'équation de Krichever-Novikov est hamiltonienne.
© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

In the study of finite-gap solutions of KP, an integrable $(1+1)$-dimensional PDE was discovered, the Krichever-Novikov equation. One of its forms (equivalent to the original one in [7]) is

$$
\begin{equation*}
\frac{\mathrm{d} u}{\mathrm{~d} t}=u_{3}-\frac{3}{2} \frac{u_{2}^{2}}{u_{1}}+\frac{P(u)}{u_{1}} \tag{1}
\end{equation*}
$$

where $u=u(t, x), u_{n}=\left(\frac{\mathrm{d}}{\mathrm{d} x}\right)^{n}(u)$, and P is a polynomial of degree at most 4 . Let $\mathcal{V}=\mathbb{C}\left[u, u_{1}^{ \pm}, u_{2}, \ldots\right]$ and \mathcal{K} be the fraction field of \mathcal{V}. Let us denote $\frac{\mathrm{d}}{\mathrm{d} x}$ by ∂. The differential order d_{F} of a function $F \in \mathcal{V}$ is the highest integer n such that $\frac{\partial F}{\partial u_{n}} \neq 0$.

One of the attributes of equation (1) is to be part of an infinite hierarchy of compatible evolution PDEs of odd differential orders

[^0]\[

$$
\begin{equation*}
\frac{\mathrm{d} u}{\mathrm{~d} t_{i}}=G_{i} \in \mathcal{V}, i \geq 0 \tag{2}
\end{equation*}
$$

\]

where G_{i} has differential order $(2 i+1)$. One says that $F, G \in \mathcal{V}$ are compatible, or symmetries of one another, if

$$
\begin{equation*}
\{F, G\}:=X_{F}(G)-X_{G}(F)=0 \tag{3}
\end{equation*}
$$

where X_{F} denotes the derivation of \mathcal{V} induced by the evolution equation $u_{t}=F$, that is

$$
\begin{equation*}
X_{F}=\sum_{n \geq 0} F^{(n)} \frac{\partial}{\partial u_{n}} \tag{4}
\end{equation*}
$$

(3) endows \mathcal{V} with a Lie algebra bracket, and the G_{i} 's span an infinite-dimensional abelian subalgebra of $(\mathcal{V},\{.,\}$.$) , which$ we will denote by \mathcal{S}. The first four equations in the hierarchy are:

$$
\begin{align*}
G_{0}= & u_{1}, \\
G_{1}= & u_{3}-\frac{3}{2} \frac{u_{2}^{2}}{u_{1}}+\frac{P(u)}{u_{1}}, \tag{5}\\
G_{2}= & u^{(5)}-5 \frac{u_{4} u_{2}}{u_{1}}-\frac{5}{2} \frac{u_{3}^{2}}{u_{1}}+\frac{25}{2} \frac{u_{3} u_{2}^{2}}{u_{1}^{2}}-\frac{45}{8} \frac{u_{2}^{4}}{u_{1}^{3}}-\frac{5}{3} P \frac{u_{3}}{u_{1}^{2}}+\frac{25}{6} P \frac{u_{2}^{2}}{u_{1}^{3}}-\frac{5}{3} P_{u} \frac{u_{2}}{u_{1}}-\frac{5}{18} \frac{P^{2}}{u_{1}^{3}}+\frac{5}{9} u_{1} P_{u u}, \\
G_{3}= & u_{7}-7 \frac{u_{2} u_{6}}{u_{1}}-\frac{7}{6} \frac{u_{5}}{u_{1}^{2}}\left(2 P+12 u_{3} u_{1}-27 u_{2}^{2}\right)-\frac{21}{2} \frac{u_{4}^{2}}{u_{1}}+\frac{21}{2} \frac{u_{4}}{u_{1}^{3}}\left(2 P-11 u_{2}^{2}\right) \\
& -\frac{7}{3} \frac{u_{4}}{u_{1}^{2}}\left(2 P_{u} u_{1}-51 u_{2} u_{3}\right)+\frac{49}{2} \frac{u_{3}^{3}}{u_{1}^{2}}+\frac{7}{12} \frac{u_{3}^{2}}{u_{1}^{3}}\left(22 P-417 u_{2}^{2}\right)+\frac{2499}{8} \frac{u_{2}^{4}}{u_{1}^{4}} u_{3} \\
& \frac{91}{3} P_{u} \frac{u_{2}}{u_{1}^{2}} u_{3}-\frac{595}{6} P \frac{u_{2}^{2}}{u_{1}^{4}} u_{3}-\frac{35}{18} \frac{u_{3}}{u_{1}^{4}}\left(2 P_{u u} u_{1}^{4}-P^{2}\right)-\frac{1575}{16} \frac{u_{2}^{6}}{u_{1}^{5}}+\frac{1813}{24} \frac{u_{2}^{4}}{u_{1}^{5}} P \tag{6}\\
& -\frac{203}{6} \frac{u_{2}^{3}}{u_{1}^{3}} P_{u}+\frac{49}{36} \frac{u_{2}^{2}}{u_{1}^{5}}\left(6 P_{u u} u_{1}^{4}-5 P^{2}\right)-\frac{7}{9} \frac{u_{2}}{u_{1}^{3}}\left(2 P_{u u u} u_{1}^{4}-5 P P_{u}\right)+\frac{7}{54} \frac{P^{3}}{u_{1}^{5}} \\
& -\frac{7}{9} P_{u u} \frac{P}{u_{1}}+\frac{7}{9} P_{u u u u} u_{1}^{3}-\frac{7}{18} \frac{P_{u}^{2}}{u_{1}} .
\end{align*}
$$

It is known $([6,10])$ that all integrable hierarchies admit a pseudodifferential operator $L \in \mathcal{V}\left(\left(\partial^{-1}\right)\right)$ satisfying

$$
\begin{equation*}
X_{F}(L)=\left[D_{F}, L\right] \tag{7}
\end{equation*}
$$

for all F in the hierarchy, where D_{F} denotes the Fréchet derivative of F :

$$
\begin{equation*}
D_{F}=\sum_{n} \frac{\partial F}{\partial u_{n}} \partial^{n} \in \mathcal{V}[\partial] \tag{8}
\end{equation*}
$$

A pseudodifferential operator satisfying (7) is called a recursion operator (for F). In [3], two rational recursions operators for (1) were found, of orders 4 and 6:

$$
\begin{equation*}
L_{4}=H_{1} H_{0}^{-1}, \quad L_{6}=H_{2} H_{0}^{-1} \tag{9}
\end{equation*}
$$

where

$$
\begin{align*}
H_{0}= & u_{1} \partial^{-1} u_{1}, \\
H_{1}= & \frac{1}{2}\left(u_{1}^{2} \partial^{3}+\partial^{3} u_{1}^{2}\right)+\left(2 u_{3} u_{1}-\frac{9}{2} u_{2}^{2}-\frac{2}{3} P\right) \partial+\partial\left(2 u_{3} u_{1}-\frac{9}{2} u_{2}^{2}-\frac{2}{3} P\right) \\
& +G_{1} \partial^{-1} G_{1}+u_{1} \partial^{-1} G_{2}+G_{2} \partial^{-1} u_{1}, \\
H_{2}= & \frac{1}{2}\left(u_{1}^{2} \partial^{5}+\partial^{5} u_{1}^{2}\right)+\left(3 u_{3} u_{1}-\frac{19}{2} u_{2}^{2}-P\right) \partial^{3}+\partial^{3}\left(3 u_{3} u_{1}-\frac{19}{2} u_{2}^{2}-P\right) \tag{10}\\
& +\left(u_{5} u_{1}-9 u_{3} u_{2}+\frac{19}{2} u_{3}^{2}-\frac{2}{3} \frac{u_{3}}{u_{1}}\left(5 P-39 u_{2}^{2}\right)+\frac{u_{2}^{2}}{u_{1}^{2}}\left(5 P-9 u_{2}^{2}\right)+\frac{2}{3} \frac{P^{2}}{u_{1}^{2}}+u_{1}^{2} P_{u u}\right) \partial \\
& +\partial\left(u_{5} u_{1}-9 u_{3} u_{2}+\frac{19}{2} u_{3}^{2}-\frac{2}{3} \frac{u_{3}}{u_{1}}\left(5 P-39 u_{2}^{2}\right)+\frac{u_{2}^{2}}{u_{1}^{2}}\left(5 P-9 u_{2}^{2}\right)+\frac{2}{3} \frac{P^{2}}{u_{1}^{2}}+u_{1}^{2} P_{u u}\right) \\
& +G_{1} \partial^{-1} G_{2}+G_{2} \partial^{-1} G_{1}+u_{1} \partial^{-1} G_{3}+G_{3} \partial^{-1} u_{1} .
\end{align*}
$$

Moreover, L_{4} and L_{6} are both weakly non-local, i.e. of the form

$$
\begin{equation*}
E(\partial) \in \mathcal{V}[\partial]+\sum_{i} p_{i} \partial^{-1} \frac{\delta \rho_{i}}{\delta u} \tag{11}
\end{equation*}
$$

where the ρ_{i} 's are conserved densities of (1). Recall that the variational derivative $\frac{\delta}{\delta u}$ is defined as follows:

$$
\begin{equation*}
\frac{\delta F}{\delta u}=D_{F}^{*}(1)=\sum_{n}(-\partial)^{n}\left(\frac{\partial F}{\partial u_{n}}\right) \tag{12}
\end{equation*}
$$

In [11], Sokolov showed that the space of symmetries of $(1), \mathcal{S}$, is preserved by L_{4}. The same argument applies to L_{6}, which was found later. He also establishes that the hierarchy of the Krichever-Novikov equation is hamiltonian for H_{0} : there exists a sequence $\phi_{i} \in \mathcal{V}$ such that

$$
\begin{equation*}
G_{i}=H_{0}\left(\frac{\delta \phi_{i}}{\delta u}\right) \text { for all } i \geq 0 \tag{13}
\end{equation*}
$$

A Hamiltonian operator $H=A B^{-1} \in \mathcal{V}(\partial)$ with A and B right coprime is a skewadjoint rational differential operator inducing a non-local Poisson lambda bracket, which is equivalent to the following identity (see equation (6.13) in [4])

$$
\begin{align*}
& A^{*}\left(D_{B(F)}(A(G))+D_{A(G)}^{*}(B(F))-D_{B(G)}(A(F))+D_{B(G)}^{*}(A(F))\right) \tag{14}\\
& =B^{*}\left(D_{A(G)}(A(F))-D_{A(F)}(A(G))\right)
\end{align*}
$$

for all $F, G \in \mathcal{V}$.
Lemma 1. Let $L \in \mathcal{V}(\partial)$ be a skewadjoint rational operator. If there exists an infinite-dimensional (over \mathbb{C}) subspace $\mathcal{W} \subset \mathcal{V}$ such that $B(W) \subset \frac{\delta}{\delta u} \mathcal{V}$ and such that for all $G \in \mathcal{W}, E=A(G)$ satisfies

$$
\begin{equation*}
X_{E}(L)=D_{E} L+L D_{E}^{*} \tag{15}
\end{equation*}
$$

then L is a Hamiltonian operator. Conversely, if L is a Hamiltonian operator and $G \in \mathcal{V}$, then $D_{B(G)}=D_{B(G)}^{*}$ if and only if $A(G)$ satisfies equation (15).

Proof. Let us first give an equivalent form of (15) involving only differential operators.

$$
\begin{align*}
& \Longleftrightarrow X_{E}(A)-D_{E} A=A B^{-1}\left(X_{E}(B)+D_{E}^{*} B\right) \tag{1.15}\\
& \Longleftrightarrow X_{E}(A)-D_{E} A=-B^{*-1} A^{*}\left(X_{E}(B)+D_{E}^{*} B\right) \\
& \Longleftrightarrow A^{*}\left(X_{E}(B)+D_{E}^{*} B\right)=B^{*}\left(D_{E} A-X_{E}(A)\right) \tag{16}\\
& \Longleftrightarrow A^{*}\left(X_{E}+D_{E}^{*}\right) B=B^{*}\left(D_{E}-X_{E}\right) A . \\
& \Longleftrightarrow A^{*}\left(D_{B(F)}(E)+D_{E}^{*}(B(F))\right)=B^{*}\left(D_{E}(A(F))-D_{A(F)}(E)\right) \quad \forall F \in \mathcal{V} .
\end{align*}
$$

Comparing the last line of (16) with (14), it is clear that if H is Hamiltonian, then $E=A(G)$ satisfies equation (15) is and only if $D_{B(G)}$ is self-adjoint. It is also clear that if $A(G)$ satisfies (15) and $D_{B(G)}$ is self-adjoint, then (F, G) satisfies (14) for any $F \in \mathcal{V}$. Therefore, if we consider $\mathcal{W} \subset \mathcal{V}$ infinite-dimensional subspace of \mathcal{V} such that $A(\mathcal{W})$ satisfies (15) and $B(\mathcal{W}) \subset \frac{\delta}{\delta u} \mathcal{V}$, we deduce that (14) is satisfied for any $(F, G) \in \mathcal{V} \times \mathcal{W}$. To conclude, we note that (14) can be rewritten as an identity of bidifferential operator, i.e. it amounts to say that some expression of the form $\sum m_{i j} F^{(i)} G^{(j)}$, where $m_{i j} \in \mathcal{V}$ is trivial, i.e. $m_{i j}=0$ for all i, j. Namely, (14) is equivalent to

$$
\begin{align*}
& A^{*}\left(X_{A(G)}(B)(F)-X_{A(F)}(B)(G)+\left(D_{A}\right)_{G}^{*}(B(F))+\left(D_{B}\right)_{G}^{*}(A(F))\right) \\
& =B^{*}\left(X_{A(F)}(A)(G)-X_{A(G)}(A)(F)\right) \tag{17}
\end{align*}
$$

where given a differential operator P, an element $F \in \mathcal{V}$, the differential operator $\left(D_{P}\right)_{F}$ is defined by

$$
\begin{equation*}
\left(D_{P}\right)_{F}(G)=X_{G}(P)(F) \quad \forall G \in \mathcal{V} \tag{18}
\end{equation*}
$$

If a bidifferential operator vanishes on $\mathcal{V} \times \mathcal{W}$, it must be identically 0 , since \mathcal{W} is infinite dimensional. Hence, L is an Hamiltonian operator.

Lemma 2. Let $L=C D^{-1}$ be a rational operator and $\left(F_{n}\right)_{n \geq 0}$ a sequence spanning an infinite-dimensional subspace of \mathcal{K} satisfying $C\left(F_{n}\right)=D\left(F_{n+1}\right) \in \mathcal{V}$ for all $n \geq 0$. Assume that L is recursion for all the $D\left(F_{n}\right)$'s and that the $D\left(F_{n}\right)$'s are hamiltonian for some Hamiltonian operator $H \in \mathcal{V}(\partial)$. Then, provided LH is skew-adjoint, LH is a Hamiltonian operator for which all the $D\left(F_{n}\right)$'s are hamiltonian ($n \geq 1$).

Proof. By Lemma 1, H satisfies equation (15) for all $D\left(F_{n}\right), n \geq 0$, hence so does $L H$ (L is recursion for $D\left(F_{n}\right)$ for all $n \geq 0$). To conclude using Lemma 1, one needs to check that $D\left(F_{n}\right)=L H\left(\frac{\delta \rho_{n}}{\delta u}\right)$ for some $\rho_{n} \in \mathcal{V}$ for all $n \geq 1$. Let $P, Q \in \overline{\mathcal{V}}[\partial]$ be right coprime differential operators such that $L H=P Q^{-1}$. Let A, B be right coprime differential operators such that $H=A B^{-1} . D\left(F_{n}\right)$ is hamiltonian for H for all $n \geq 0$, meaning that there exist two sequences in $\mathcal{V},\left(\phi_{n}\right)_{n \geq 0}$ and $\left(\rho_{n}\right)_{n \geq 0}$, such that $\frac{\delta \rho_{n}}{\delta u}=B\left(\phi_{n}\right)$ and $D\left(F_{n}\right)=A\left(\phi_{n}\right)$ for all $n \geq 0$. In the language of [2], $\frac{\delta \rho_{n}}{\delta u}$ and $C\left(F_{n}\right)$ are $C D^{-1} A B^{-1}$ associated, hence (quote result) there exists ψ_{n} such that $C\left(F_{n}\right)=P\left(\psi_{n}\right)$ and $Q\left(\psi_{n}\right)=\frac{\delta \rho_{n}}{\delta u}$ for all $n \geq 0$. Therefore, by Lemma 1.1, LH is a Hamiltonian operator for which $\left(C\left(F_{n}\right)\right)_{n \geq 0}$ are hamiltonian.

Theorem. H_{0}, H_{1} and H_{2} are compatible Hamiltonian operators.
Proof. Let $\alpha, \beta, \gamma \in \mathbb{C}$ and let $L_{\alpha, \beta, \gamma}=\left(\alpha H_{0}+\beta H_{1}+\gamma H_{2}\right) H_{0}^{-1}$. $L_{\alpha, \beta, \gamma}$ is a recursion operator for the whole KricheverNovikov hierarchy \mathcal{S}. Moreover, it maps \mathcal{S} to itself as was proved in [11], meaning that if $L_{\alpha, \beta, \gamma}=A B^{-1}$ with A, B right coprime and $G \in \mathcal{S}$, then $G=B(F)$ for some $F \in \mathcal{K}$ and $A(F) \in \mathcal{S}$. The theorem follows from Lemma 2 .

Remark 3. It follows from Lemma 1 that $H=H_{2} H_{1}^{-1} H_{0}$ is a Hamiltonian operator of degree 1. However, it is not weakly non-local. More generally, all the $\left(H_{2} H_{1}^{-1}\right)^{n} H_{0}$, for $n \in \mathbb{Z}$ are pairwise compatible Hamiltonian operators. It is known since the work of Magri ([8], see also [5]) that from a pair of compatible Hamiltonian operators, one can construct infinitely many.

Remark 4. Every Hamiltonian operator $K=A B^{-1}$ over \mathcal{V}, where A and B are right coprime induces a Lie algebra bracket on the space of functionals $\mathcal{F}(K):=\left\{\int f \in \mathcal{V} / \partial \mathcal{V} \left\lvert\, \frac{\delta f}{\delta u} \in \operatorname{Im} B\right.\right\}$, (well-)defined by $\left\{\int f, \int g\right\}=\int \frac{\delta f}{\delta u} A B^{-1}\left(\frac{\delta g}{\delta u}\right)$ (see section 7.2 in [4]). Note that $\mathcal{F}\left(H_{0}\right)=\mathcal{V} / \partial \mathcal{V}$ but that $\mathcal{F}\left(H_{1}\right)$ and $\mathcal{F}\left(H_{2}\right)$ consist only of the conserved densities of the Krichever-Novikov equation.

We recall that if a rational differential operator $L=A B^{-1}$, with $A, B \in \mathcal{V}[\partial]$ right coprime generates an infinite dimensional abelian subspace of $(\mathcal{V},\{.,\}$.$) , in the sense that there exist \left(F_{n}\right)_{n \geq 0} \in \mathcal{K}$ such that $A\left(F_{n}\right)=B\left(F_{n+1}\right)$ for all $n \geq 0$ and such that the $B\left(F_{n}\right)$'s span an infinite-dimensional abelian subspace of $(\mathcal{V},\{.\}$,$) , then for all \lambda \in \mathbb{C}, \operatorname{Im}(A+\lambda B)$ must be a sub Lie algebra of $(\mathcal{V},\{.,\}$.$) (see [1]). The recursion operators L_{\alpha, \beta, \gamma}$ satisfy this condition.

Note that weakly non-local Hamiltonian operators were introduced in [9], where the authors study the complete set of weakly non-local Hamiltonian operators for both the KdV and the NLS hierarchies.

The author thanks Vladimir Sokolov for useful discussions, and Victor Kac for his interest in this work.

References

[1] S. Carpentier, A sufficient condition for a rational differential operator to generate an integrable system, Jpn. J. Math. 12 (2017) 33-89.
[2] S. Carpentier, A. De Sole, V. Kac, Singular degree of a rational matrix pseudodifferential operator, Int. Math. Res. Not. 2015 (13) (2015) $5162-5195$.
[3] D.K. Demskoi, V.V. Sokolov, On recursion operators for elliptic models, Nonlinearity 21 (6) (2008) 1253-1264.
[4] A. De Sole, V.G. Kac, Non-local Hamiltonian structures and applications to the theory of integrable systems, Jpn. J. Math. 8 (2) (2013) $233-347$.
[5] B. Enriquez, A. Orlov, V. Rubtsov, Higher Hamiltonian structures (the sl2 case), JETP Lett. 58 (8) (1993) 658-664.
[6] N.Kh. Ibragimov, A.B. Shabat, Evolution equations with nontrivial Lie-Bäcklund group, Funkc. Anal. Prilozh. 14 (1) (1980) 25-36.
[7] J.M. Krichever, S.P. Novikov, Holomorphic bundles over algebraic curves and non-linear equations, Russ. Math. Surv. 35 (6) (1980) 53-79.
[8] F. Magri, Lecture Notes in Physics, vol. 120, Springer-Verlag, Berlin, 1980, p. 233.
[9] A.Ya. Maltsev, S.P. Novikov, On the local systems Hamiltonian in the weakly non-local Poisson brackets, Physica D 156 (2001) 53-80.
[10] A.V. Mikhailov, V.V. Sokolov, Symmetries of differential equations and the problem of integrability, in: A.V. Mikhailov (Ed.), Integrability, in: Lecture Notes in Physics, vol. 767, Springer, 2008.
[11] V.V. Sokolov, On the hamiltonian property of the Krichever-Novikov equation, Sov. Math. Dokl. 30 (1) (1984).

[^0]: E-mail address: syl_car@mit.edu.
 http://dx.doi.org/10.1016/j.crma.2017.05.009
 1631-073X/© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

