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For a real x ∈ (0, 1) \Q, let x = [a1(x), a2(x), · · · ] be its continued fraction expansion. Denote 
by

Tn(x) := max{ak(x) : 1 ≤ k ≤ n}

the maximum partial quotient up to n. For any real α ∈ (0, ∞), γ ∈ (0, ∞), let

F (γ , α) := {x ∈ (0, 1) \Q : limn→∞ Tn(x)
enγ = α}.

For a set E ⊂ (0, 1) \Q, let dimH E be its Hausdorff dimension. Recently, Lingmin Liao and 
Michal Rams showed that

dimH F (γ , α) =
{

1 i f γ ∈ (0,1/2)

1/2 i f γ ∈ (1/2,∞)

for any α ∈ (0, ∞). In this paper, we show that dimH F (1/2, α) = 1/2 for any α ∈ (0, ∞)

following Liao and Rams’ method, which supplements their result.
© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Étant donné un réel x ∈ (0, 1) \Q, soit x = [a1(x), a2(x), · · · ] son développement en fraction 
continue. Soit

Tn(x) := max{ak(x) : 1 ≤ k ≤ n}

le plus grand quotient partiel jusqu’à n. Pour tout α ∈ (0, ∞), γ ∈ (0, ∞), soit

E-mail address: maliangang000@163.com.
1 The author appreciates Dr Liao and Prof Rams’ explanation of their results and helpful comments on the manuscript, as well as Dr Alexandre DeZotti’s 

linguistic help in French greatly. Thanks is also given to the anonymous reviewer, who kindly helps to enhance the precision and readability of the work.
http://dx.doi.org/10.1016/j.crma.2017.05.012
1631-073X/© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

http://dx.doi.org/10.1016/j.crma.2017.05.012
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:maliangang000@163.com
http://dx.doi.org/10.1016/j.crma.2017.05.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crma.2017.05.012&domain=pdf


L. Ma / C. R. Acad. Sci. Paris, Ser. I 355 (2017) 734–737 735
F (γ , α) := {x ∈ (0, 1) \Q : limn→∞ Tn(x)
enγ = α}.

Pour un ensemble E ⊂ (0, 1) \ Q, soit dimH E sa dimension de Hausdorff. Récemment, 
Lingmin Liao et Michal Rams ont montré que

dimH F (γ , α) =
{

1 si γ ∈ (0,1/2)

1/2 si γ ∈ (1/2,∞)

pour tout α ∈ (0, ∞). Dans cet article, nous montrons que dimH F (1/2, α) = 1/2 pour tout 
α ∈ (0, ∞) en suivant la méthode de Liao et Rams, ce qui complète leur résultat.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

For a real x ∈ (0, 1) \Q, let x = [a1(x), a2(x), · · · ] be its regular continued fraction expansion. Denote by

Tn(x) := max{ak(x) : 1 ≤ k ≤ n}
the maximum partial quotient up to n. Let Sn(x) = ∑n

k=1 ak(x). We mainly focus on the limit behaviour of Tn(x) in this 
paper, more precise, on the Hausdorff dimensions of sets under some limit behaviour. Erdös had ever conjectured that 
lim infn→∞ Tn(x)

(n/ log log n)
= 1 almost everywhere, but later W. Philipp [7] showed that

lim inf
n→∞

Tn(x)

(n/ log logn)
= 1

log 2
(1.1)

almost everywhere. Some explicit examples of reals x satisfying (1.1) are given in [6] by T. Okano. For a set E ⊂ (0, 1) \Q, let 
dimH E be its Hausdorff dimension. In 2008, Wu and Xu [8] first considered Hausdorff dimensions of some sets determined 
by some limit behaviour of Tn(x). They showed that

dimH {x ∈ (0, 1) : limn→∞ Tn(x)
φ(n)

= α} = 1

for any α ≥ 0 and any monotone increasing sequence {φ(n)}∞n=1 with limn→∞ φ(n) = ∞ and limn→∞ log φ(n)
log n < ∞. In the 

case of some faster growing speed {φ(n)}∞n=1, let

F (γ , α) := {x ∈ (0, 1) \Q : limn→∞ Tn(x)
enγ = α}, 0 < α, γ < ∞.

Recently Liao and Rams [5] showed that

dimH F (γ ,α) =
{

1 if γ ∈ (0,1/2)

1/2 if γ ∈ (1/2,∞)
(1.2)

for any α ∈ (0, ∞). In their proof, the case of γ ∈ (0, 1/2) follows from [9, Section 4]. In the case of γ ∈ (1/2, ∞), the lower 
bound is obtained by constructing a large subset of F (γ , α) with H-dimension 1/2 (see [5, Lemma 2.3] and [2, Lemma 
3.2]). The argument applies to all γ ∈ (0, 1) in fact. The upper bound 1/2 is obtained by transferring the situation to the 
distribution of Sn(x), as

F (γ ,α) ⊂ {x : α(1 − ε)enγ ≤ Sn(x) ≤ α(1 + ε)enγ } (1.3)

for any ε > 0. This relates closely the distribution of the two terms Tn(x) and Sn(x) in continued fractions. We will not 
discuss the dimensions of level sets determined by Sn(x) here, but we will recommend [1,4,5,9,10] to interested readers. 
The jump of dimensions in (1.2) is interesting, we will deal with the case γ = 1/2 in this paper. We follow Liao and Rams’ 
method to show the following theorem.

1.1. Theorem. For any real α > 0, we have dimH F (1/2, α) ≤ 1/2.

Considering the results mentioned before, this will force the following theorem.

1.2. Theorem. For any real α > 0, we have dimH F (1/2, α) = 1/2.

For dimensions of the set {x ∈ (0, 1) : limn→∞ Tn(x)
φ(n)

= α} with doubly exponential increasing rate {φ(n)}∞n=1, see [3]. There 
are more introductions of metric results on the sets related with Tn in [3].
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2. The proof of Theorem 1.1

We follow Liao and Rams’ notations [5] throughout the proof. We only prove

dimH F (1/2, 1) ≤ 1/2,

as one can show the theorem for any α ∈R+ := (0, ∞) by the same process. In order to do this, we first show that

2.1. Lemma. Let L ∈ R+ be a constant. Let nk := [( k
L )2] (the integer part of ( k

L )2), k ∈ N. Then for any x ∈ F (1/2, 1) and k large 
enough, there exists an integer jk, nk−1 < jk ≤ nk, such that

Tnk (x) = a jk (x).

Proof. We prove this by reduction to absurdity. Suppose that there exist infinitely many integers ki, jki , i ∈N, ki > ki−1, jki ≤
nki−1, such that

Tnki
(x) = a jki

(x)

for some x ∈ F (1/2, 1). Note that, in this case, we have

Tnki−1 (x) = a jki
(x).

Then, for the sequence {nk1−1, nk2−1, · · · }, we have

limi→∞
Tnki−1 (x)

e
n1/2

ki−1

= limi→∞
Tnki

(x)

e[(ki−1)2/L2]1/2 = limi→∞
Tnki

(x)

e
n1/2

ki

e[k2
i /L2]1/2

e[(ki−1)2/L2]1/2 = 1 · e1/L �= 1,

which contradicts the fact that

limk→∞ Tk(x)

ek1/2 = 1

as x ∈ F (1/2, 1). So our conclusion holds for any sufficiently large k. �
In the following, we will omit the integer notation [ ] for simplicity, as the results will not be affected. By Lemma 2.1,

2.2. Corollary. For x ∈ F (1/2, 1) and nk := ( k
L )2 , we have

(1 − ε)ek/L ≤ Snk (x) − Snk−1 (x) ≤ (1 + ε)( k
L )2ek/L

for a small ε ∈ R+ and any k large enough.

The rest of the work goes similarly as the estimation of the upper bound for Eϕ when γ > 1/2 in [5, Proof of Theo-
rem 1.1]. For the length of the rank-n fundamental interval

In(a1, · · · , an) := {x ∈ (0, 1) \Q : a1(x) = a1, · · · , an(x) = an},

we have

∏n
i=1

1
(ai+1)2 ≤ |In(a1, · · · , an)| ≤ ∏n

i=1
1

a2
i

.

Let

A(m, n) := {(i1, · · · , in) ∈ {1, · · · , m}n : ∑n
j=1 i j = m}.

Let ζ(·) be the Riemann zeta function. We quote [5, Lemma 2.1] as following.

2.3. Lemma (Liao and Rams). For s ∈ (1/2, 1) and m ≥ n, we have

∑
(i1,··· ,in)∈A(m,n)

∏n
j=1

1

i2s
≤ (

9

2
(2 + ζ(2s)))n 1

m2s
.

j
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Now we are in a position to bound the Hausdorff dimension of F (1/2, 1) above.

Proof of Theorem 1.1. Let Dl be the integers in the interval [(1 − ε)el/L, (1 + ε)( l
L )2el/L], l > L. Let B(1/2, N) be the union 

of the intervals {Ink (a1, a2, · · · , ank )}k≥N such that the quotients satisfy

∑nl
j=nl−1+1 a j = m with m ∈ Dl

for any N ≤ l ≤ k. By Corollary 2.2, one can see that

F (1/2, 1) ⊂ ∪∞
N=1 B(1/2, N).

Now we show that dimH B(1/2, 1) ≤ 1/2. A similar method implies dimH B(1/2, N) ≤ 1/2 for any N ∈ N, which is enough 
to prove our Theorem 1.1. By Lemma 2.3,

∑
Ink ⊂B(1/2,1) |Ink |s ≤ ∏k

l=1
∑

m∈Dl
(

9

2
(2 + ζ(2s)))nl−nl−1

1

m2s
.

Note that |Dl| ≤ (1 + ε)( k
L )2ek/L, m > (1 − ε)ek/L , so

∑
Ink ⊂B(1/2,1) |Ink |s

≤ ∏k
l=1(1 + ε)(1 − ε)2s(l/L)2e(1−2s)l/L(

9

2
(2 + ζ(2s)))

2l−1
L2

≤ ∏k
l=1

((
(1 + ε)(1 − ε)2s(l/L)2

)1/l
e(1−2s)/L(

9

2
(2 + ζ(2s)))3/L2

)l
.

Solve the equation

9

2
(2 + ζ(2s)) = 1

2
e

2s−1
3 L

regarding the main terms, we get a unique solution sL ∈ (1/2, 1) when L is large enough. sL → 1/2 as L → ∞ since 
ζ(2 · 1

2 ) = ζ(1) = ∞. Then 
∑

Ink ⊂B(1/2,1) |Ink |s < ∞, which forces dimH B(1/2, 1) ≤ 1/2. �
Remark. Our Corollary 2.2 sharpens the estimation on Snk (x) − Snk−1 (x) in [5, Proof of Theorem 1.3] for x ∈ F (1/2, 1). In 
fact, we can do similar estimations for any x ∈ F (γ , α), γ ∈ R+, α ∈ R+, nk = k1/γ . This enables us to give better estimation 
on 

∑
Ink ⊂B(γ ,N) |Ink |s , γ ∈ [1/2, 1). By virtue of it, when estimating the upper bound in [5, Proof of Theorem 1.3] for the 

H-dimension of F (γ , α), γ ∈ (1/2, 1), we can simply take nk = k1/γ instead of k1/γ (log k)1/γ 2
.
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