Number theory/Dynamical systems

Dynamical covering problems on the triadic Cantor set
 Problèmes de recouvrement dynamique sur les ensembles de Cantor triadiques

CrossMark

Bao-Wei Wang, Jun Wu, Jian Xu
School of Mathematics and Statistics, Huazhong University of Science and Technology, 430074 Wuhan, China

ARTICLE INFO

Article history:

Received 27 November 2016
Accepted after revision 31 May 2017
Available online 28 June 2017
Presented by the Editorial Board

Abstract

In this note, we consider the metric theory of the dynamical covering problems on the triadic Cantor set \mathcal{K}. More precisely, let $T x=3 x(\bmod 1)$ be the natural map on \mathcal{K}, μ the standard Cantor measure and $x_{0} \in \mathcal{K}$ a given point. We consider the size of the set of points in \mathcal{K} which can be well approximated by the orbit $\left\{T^{n} x_{0}\right\}_{n \geq 1}$ of x_{0}, namely the set

$$
\mathcal{D}\left(x_{0}, \varphi\right):=\left\{y \in \mathcal{K}:\left|T^{n} x_{0}-y\right|<\varphi(n) \text { for infinitely many } n \in \mathbb{N}\right\}
$$

where φ is a positive function defined on \mathbb{N}. It is shown that for μ almost all $x_{0} \in \mathcal{K}$, the Hausdorff measure of $\mathcal{D}\left(x_{0}, \varphi\right)$ is either zero or full depending upon the convergence or divergence of a certain series. Among the proof, as a byproduct, we obtain an inhomogeneous counterpart of Levesley, Salp and Velani's work on a Mahler's question about the Diophantine approximation on the Cantor set \mathcal{K}.
© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Ré S U M É

Nous considérons dans cette Note la théorie métrique des recouvrements dynamiques dans l'ensemble de Cantor triadique \mathcal{K}. Plus précisément, soit $T x=3 x(\bmod 1)$ l'application naturelle sur \mathcal{K}, μ la mesure de Cantor standard et $x_{0} \in \mathcal{K}$ un point donné. Nous considérons la mesure de l'ensemble des points de \mathcal{K} qui peuvent être bien approchés par l'orbite $\left\{T^{n} x_{0}\right\}_{n \geq 1}$ de x_{0}, c'est-à-dire l'ensemble

$$
\mathcal{D}\left(x_{0}, \varphi\right):=\left\{y \in \mathcal{K}:\left|T^{n} x_{0}-y\right|<\varphi(n) \text { pour une infinité de } n \in \mathbb{N}\right\},
$$

où φ est une fonction positive définie sur \mathbb{N}. Nous montrons que pour μ-presque tout $x_{0} \in \mathcal{K}$ la mesure de Hausdorff de $\mathcal{D}\left(x_{0}, \varphi\right)$ est soit zéro, soit pleine, selon la convergence ou la divergence d'une certaine série. Notre démonstration fournit en passant une contre-

[^0]partie inhomogène au travail de Levesley, Salp et Velani sur une question de Mahler relative à l'approximation rationnelle des points de l'ensemble de Cantor.
© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Assume that (X, d) is a complete metric space. Let $\left\{x_{n}\right\}_{n \geq 1}$ be a sequence of points in X and $\left\{\ell_{n}\right\}_{n \geq 1}$ be a sequence of positive numbers. The covering problem concerns the limsup set

$$
\mathcal{D}:=\left\{y \in X: d\left(x_{n}, y\right)<\ell_{n}, \text { i.m. } n \in \mathbb{N}\right\}
$$

i.e. the set of points that can be covered by the balls $B\left(x_{n}, \ell_{n}\right)$ for infinitely many times. Here we use i.m. for infinitely many.

The well-known Borel-Cantelli lemma can be viewed as the first principle on the size of \mathcal{D} in the sense of measure. The size of \mathcal{D} was extensively studied when $\left\{x_{n}\right\}$ is a sequence of independent and identically distributed random variables. One is referred to $[7,11,16]$ for the history and $[9,10]$ for recent progress.

Instead of a sequence of random variables, recently Fan, Schmeling and Troubetzkoy [8] introduced the question when $\left\{x_{n}\right\}_{n \geq 1}$ is the orbit of a given point driven by a dynamical system. More precisely, let (X, T) be a dynamical system and x_{0} be a given point, they considered the limsup set

$$
\begin{equation*}
\left\{y \in X: y \in B\left(T^{n} x_{0}, \ell_{n}\right), \text { i.m. } n \in \mathbb{N}\right\} \tag{1.1}
\end{equation*}
$$

This is called the dynamical covering problem for its analogy with the classic covering problem. In [8], Fan, Schmeling and Troubetzkoy studied the set (1.1) defined by the doubling map on the unit interval. By using a general principle presented in [1], Liao and Seuret successfully enlarged the setting to finite expanding Markov systems [13].

It should be mentioned that the works $[8,13]$ required that the phase space X is the whole unit interval. So, instead of the whole interval, in this note, we consider the same question in the simplest fractal: the triadic Cantor set \mathcal{K}. More precisely, let $T x=3 x(\bmod 1)$ and $\varphi: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a positive function with $\varphi(n) \rightarrow 0$ as $n \rightarrow \infty$. We consider the size of the set

$$
\mathcal{D}\left(x_{0}, \varphi\right):=\left\{y \in \mathcal{K}:\left|T^{n} x_{0}-y\right|<\varphi(n), \text { i.m. } n \in \mathbb{N}\right\}
$$

i.e. the set of points in \mathcal{K} which can be well approximated by the orbit of x_{0}.

This can be viewed as a dynamical counterpart to a Mahler's question [14] about the Diophantine approximation on the Cantor set \mathcal{K} : how well can the points in \mathcal{K} be approximated by rationals? See [4,5,12] for partial progress on Mahler's question.

In this note, we give a complete characterization of the size of $\mathcal{D}\left(x_{0}, \varphi\right)$ for almost all x_{0} with respect to the standard Cantor measure μ. Before the statement of our main result, we fix some notation:

- dimension function: an increasing continuous function $f:(0, \infty) \rightarrow(0, \infty)$ such that $\lim _{x \rightarrow 0} f(x)=0$;
- $\mathcal{H}^{f}: f$-Hausdorff measure for a dimension function f;
- $\gamma=\log 2 / \log 3$: the Hausdorff dimension of the Cantor set \mathcal{K}.

Theorem 1.1. Let $\varphi: \mathbb{N} \rightarrow \mathbb{R}^{+}$. For μ-almost all $x_{0} \in \mathcal{K}$,

$$
\mu\left(\mathcal{D}\left(x_{0}, \varphi\right)\right)= \begin{cases}0, & \text { if } \sum_{n \geq 1} \varphi^{\gamma}(n)<\infty \\ 1, & \text { if } \sum_{n \geq 1} \varphi^{\gamma}(n)=\infty\end{cases}
$$

Theorem 1.2. Let f be a dimension function with $f(x) / x^{\gamma}$ being increasing as $x \rightarrow 0$. For μ-almost all $x_{0} \in \mathcal{K}$, the Hausdorff measure of the set $\mathcal{D}\left(\varphi, x_{0}\right)$ satisfies a dichotomy law

$$
\mathcal{H}^{f}\left(\mathcal{D}\left(x_{0}, \varphi\right)\right)= \begin{cases}0, & \text { if } \sum_{n \geq 1} f(\varphi(n))<\infty \\ \mathcal{H}^{f}(\mathcal{K}), & \text { if } \sum_{n \geq 1} f(\varphi(n))=\infty\end{cases}
$$

Consequently, the dimension of $\mathcal{D}\left(x_{0}, \varphi\right)$ is given by the convergence exponent of φ, i.e.

$$
\inf \left\{s \geq 0: \sum_{n \geq 1} \varphi(n)^{s}<\infty\right\}
$$

Among the proof, as a byproduct, we can obtain an inhomogeneous counterpart of Levesley, Salp and Velani's work [12] on the above-mentioned Mahler's question about the Diophantine approximation on \mathcal{K} (see Theorem 3.3 below).

It should also be mentioned that in [8,13], they considered multifractal measures, while in this work, we only pay attention to a monofractal measure μ.

2. Preliminaries

In this section, we cite two known results, one for the measure of a limsup set, the other for the Hausdorff measure of a shrunk limsup set, which is often referred to as the "mass transference principle".

2.1. Measure of a limsup set

Let (X, \mathcal{B}, μ) be a measure space. Let $\left\{A_{n}\right\}_{n \geq 1}$ be a sequence of measurable sets. Define the limsup set

$$
E=\limsup _{n \rightarrow \infty} A_{n}=\left\{x \in X: x \in A_{n}, \text { i.m. } n \in \mathbb{N}\right\}
$$

The following is a widely used result to determine the measure of E from below (see [17, Lemma 5]).

Lemma 2.1. Assume that $\sum_{n \geq 1} \mu\left(A_{n}\right)=\infty$. Then

$$
\mu(E) \geq \limsup _{N \rightarrow \infty} \frac{\left(\sum_{n=1}^{N} \mu\left(A_{n}\right)\right)^{2}}{\sum_{1 \leq m, n \leq N} \mu\left(A_{m} \cap A_{n}\right)}
$$

2.2. Mass transference principle

The mass transference principle, developed by Beresnevich \& Velani [3] (see also [2]), is a very powerful tool to determine the Hausdorff measure and dimension of a limsup set. In principle, it says that a full measure statement for a limsup set will imply a full Hausdorff measure theoretic statement for the shrunk limsup set.

Let (X, d) be a locally compact metric space. Let g be a doubling dimension function, i.e. there exists $\lambda \geq 1$ such that, for all small r,

$$
\begin{equation*}
g(2 r) \leq \lambda g(r) \tag{2.1}
\end{equation*}
$$

Suppose that there exist $0<c_{1} \leq c_{2}<\infty$ and $r_{0}>0$ such that, for all $x \in X$ and $0<r<r_{0}$,

$$
\begin{equation*}
c_{1} g(r) \leq \mathcal{H}^{g}(B(x, r)) \leq c_{2} g(r) \tag{2.2}
\end{equation*}
$$

Write $B^{f}(x, r)$ for the ball $B\left(x, g^{-1} \circ f(r)\right)$.

Theorem 2.2 (Mass transference principle [3]). Let (X, d) and g be as above and let $\left\{B_{i}\right\}_{i \in \mathbb{N}}$ be a sequence of balls in X with $r\left(B_{i}\right) \rightarrow 0$ as $i \rightarrow \infty$. Let f be a dimension function such that $f(x) / g(x)$ is monotonically increasing as $x \rightarrow 0$. Suppose that, for any ball B in X,

$$
\begin{equation*}
\mathcal{H}^{g}\left(B \cap \limsup _{i \rightarrow \infty} B_{i}^{f}\right)=\mathcal{H}^{g}(B) \tag{2.3}
\end{equation*}
$$

Then, for any ball B in X,

$$
\mathcal{H}^{f}\left(B \cap \limsup _{i \rightarrow \infty} B_{i}\right)=\mathcal{H}^{f}(B)
$$

In the latter application, we will take X to be the Cantor set \mathcal{K} and the doubling dimension function $g(x)=x^{\gamma}$. The Cantor measure μ on \mathcal{K} is the same as $\left.\mathcal{H}^{g}\right|_{\mathcal{K}}$. So, the formula (2.2) is fulfilled, i.e.

$$
\begin{equation*}
\mu(B(x, r)) \approx r^{\gamma} \tag{2.4}
\end{equation*}
$$

The condition (2.3) just says that $\lim \sup _{i \rightarrow \infty} B_{i}^{f}$ is full in the sense of $\left.\mathcal{H}^{g}\right|_{\mathcal{K}}$, so to apply Theorem 2.2, we are required to determine the μ-measure of $\lim \sup _{i \rightarrow \infty} B_{i}^{f}$. This is the task of the next section.

3. A dynamical Borel-Cantelli lemma on \mathcal{K}

The proof of our result is just a combination of a dynamical Borel-Cantelli lemma, analogous to the one proved by Philipp [15] for b-adic expansion, and the mass transference principle (Theorem 2.2). In this section, we show this Borel-Cantelli lemma. For general results about dynamical Borel-Cantelli lemmas, one is referred to Chernov \& Kleinbock [6] and references therein.

For each $y \in \mathcal{K}$, let

$$
\mathcal{S}(y, \varphi)=\left\{x \in \mathcal{K}:\left|T^{n} x-y\right|<\varphi(n), \text { i.m. } n \in \mathbb{N}\right\}
$$

Proposition 3.1. Let $\varphi: \mathbb{N} \rightarrow \mathbb{R}^{+}$and $y \in \mathcal{K}$. Then

$$
\mu(\mathcal{S}(y, \varphi))= \begin{cases}0, & \text { if } \sum_{n \geq 1} \varphi^{\gamma}(n)<\infty \\ 1, & \text { if } \sum_{n \geq 1} \varphi^{\gamma}(n)=\infty\end{cases}
$$

Before the proof, we begin with a lemma.
Lemma 3.2. Let E be an interval and F a measurable set. For any $n \geq 1$,

$$
\mu\left(E \cap T^{-n} F\right)=\mu(E) \cdot \mu(F)+\mu(F) O\left(2^{-n}\right)
$$

where the constant implied in O can be taken to be 2 .
Proof. It suffices to consider the case when $E=[0, t]$. We define the cylinder set. For each $\left(\epsilon_{1}, \cdots, \epsilon_{n}\right) \in\{0,2\}^{n}$, call

$$
I_{n}\left(\epsilon_{1}, \cdots, \epsilon_{n}\right)=\left\{x \in[0,1]: x \text { has a triadic expansion beginning with }\left(\epsilon_{1}, \cdots, \epsilon_{n}\right)\right\}
$$

a cylinder of order n (with respect to the Cantor set \mathcal{K}), which is of μ-measure 2^{-n}.
Let $\left\{I_{n}^{(i)}: 1 \leq i \leq \ell+1\right\}$ be the cylinders of order n with non-empty intersections with E. If we arrange them in increasing order, we have that

$$
\bigcup_{i=1}^{\ell} I_{n}^{(i)} \cap \mathcal{K} \subset(E \cap \mathcal{K}), \text { and }(E \cap \mathcal{K}) \subset \bigcup_{i=1}^{\ell+1} I_{n}^{(i)}
$$

Then it follows that

$$
\begin{aligned}
\frac{\ell}{2^{n}} & \leq \mu(E) \leq \frac{\ell+1}{2^{n}} \\
\mu\left(E \cap T^{-n} F\right) & \leq \sum_{i=1}^{\ell+1} \mu\left(T^{-n} F \cap I_{n}^{(i)}\right)=\frac{\ell+1}{2^{n}} \mu(F) \\
\mu\left(E \cap T^{-n} F\right) & \geq \sum_{i=1}^{\ell} \mu\left(T^{-n} F \cap I_{n}^{(i)}\right)=\frac{\ell}{2^{n}} \mu(F)
\end{aligned}
$$

Substituting the measure of E into the estimation on $\mu\left(E \cap T^{-n} F\right)$, we have that

$$
\left|\mu\left(E \cap T^{-n} F\right)-\mu(E) \mu(F)\right| \leq \frac{1}{2^{n}} \mu(F)
$$

Proof of Proposition 3.1. Equipped with the fast decaying of correlations (Lemma 3.2), Proposition 3.1 can be inferred from the general principle in [6]. Here we include a proof for its easiness.

For each $n \geq 1$, let $A_{n}=T^{-n} B(y, \varphi(n)) \cap \mathcal{K}$. Then

$$
\mathcal{S}(y, \varphi)=\limsup _{n \rightarrow \infty} A_{n}
$$

By the invariance of μ with respect to T and (2.4),

$$
\sum_{n=1}^{\infty} \mu\left(T^{-n} B(y, \varphi(n)) \cap \mathcal{K}\right)=\sum_{n=1}^{\infty} \mu(B(y, \varphi(n))) \approx \sum_{n=1}^{\infty} \varphi^{\gamma}(n)
$$

The convergence case follows from the convergence part of the Borel-Cantelli lemma. For the divergence part, we apply Lemma 2.1. So, we estimate the summation:

$$
\sum_{1 \leq m, n \leq N} \mu\left(A_{m} \cap A_{n}\right)=2 \sum_{n=1}^{N} \sum_{m=1}^{n-1} \mu\left(A_{m} \cap A_{n}\right)+\sum_{n=1}^{N} \mu\left(A_{n}\right)
$$

By Lemma 3.2, it follows that, for $n>m$,

$$
\begin{aligned}
\mu\left(A_{m} \cap A_{n}\right) & =\mu\left(B(y, \varphi(m)) \cap T^{-(n-m)} B(y, \varphi(n))\right) \\
& =\mu\left(A_{m}\right) \mu\left(A_{n}\right)+O\left(2^{-n+m}\right) \mu\left(A_{n}\right),
\end{aligned}
$$

where the invariance of μ with respect to T is used twice. Thus

$$
\begin{aligned}
2 \sum_{n=1}^{N} \sum_{m=1}^{n-1} \mu\left(A_{m} \cap A_{n}\right) & =2 \sum_{n=1}^{N} \sum_{m=1}^{n-1}\left(\mu\left(A_{m}\right) \mu\left(A_{n}\right)+O\left(\frac{1}{2^{n-m}}\right) \mu\left(A_{n}\right)\right) \\
& \leq\left(\sum_{n=1}^{N} \mu\left(A_{n}\right)\right)^{2}+O(1) \sum_{n=1}^{N} \mu\left(A_{n}\right)
\end{aligned}
$$

So, it follows by Lemma 2.1 that

$$
\mu(\mathcal{S}(y, \varphi)) \geq 1
$$

In [12], as an attempt on Mahler's question on \mathcal{K}, Levesley, Salp and Velani proved a $0-1$ law on the size of the set

$$
W(\varphi):=\left\{x \in \mathcal{K}:\left|x-p / 3^{n}\right|<\varphi(n), \text { i.m. } n \in \mathbb{N}\right\}
$$

This set is the same as $\mathcal{S}(0, \varphi)$. So, Proposition 3.1 gives an inhomogeneous counterpart of Levesley, Salp and Velani's work. Combining Proposition 3.1 and the mass transference principle, we obtain the following theorem.

Theorem 3.3. Let f be a dimension function with $f(x) / x^{\gamma}$ being increasing as $x \rightarrow 0$. For any $y \in \mathcal{K}$, we have that

$$
\mathcal{H}^{f}(\mathcal{S}(y, \varphi))= \begin{cases}0, & \text { if } \sum_{n \geq 1} f(\varphi(n))<\infty \\ \mathcal{H}^{f}(\mathcal{K}), & \text { if } \sum_{n \geq 1} f(\varphi(n))=\infty\end{cases}
$$

4. Proofs of the main results

Proof of Theorem 1.1. The convergence part is clear since

$$
\begin{equation*}
\mathcal{D}\left(x_{0}, \varphi\right)=\bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} B\left(T^{n} x_{0}, \varphi(n)\right) \cap K \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n \geq 1} \mu\left(B\left(T^{n} x_{0}, \varphi(n)\right)\right) \approx \sum_{n \geq 1} \varphi^{\gamma}(n) \tag{4.2}
\end{equation*}
$$

For the divergence case, we apply Fubini's theorem. At first $\mathcal{S}(y, \varphi)$ is of full μ-measure for any $y \in \mathcal{K}$. Thus

$$
\left\{(x, y) \in \mathcal{K}^{2}:\left|T^{n} x-y\right|<\varphi(n), \text { i.m. } n \in \mathbb{N}\right\}
$$

is full for the measure $\mu \times \mu$. Thus Fubini's theorem is applied to conclude that, for almost all $x_{0} \in \mathcal{K}$,

$$
\mathcal{D}\left(x_{0}, \varphi\right)=\left\{y \in \mathcal{K}:\left|T^{n} x_{0}-y\right|<\varphi(n), \text { i.m. } n \in \mathbb{N}\right\}
$$

is of full μ-measure.
Proof of Theorem 1.2. For the convergence part, from (4.1), the f-Hausdorff measure of $\mathcal{D}\left(x_{0}, \varphi\right)$ can be estimated as

$$
\mathcal{H}^{f}\left(\mathcal{D}\left(x_{0}, \varphi\right)\right) \leq \liminf _{N \rightarrow \infty} \sum_{n \geq N} f(\varphi(n))=0
$$

For the divergence part, let $B_{n}=B\left(T^{n} x_{0}, \varphi(n)\right)$. Then

$$
B_{n}^{f}=B\left(T^{n} x_{0}, g^{-1} \circ f(\varphi(n))\right)
$$

where $g(x)=x^{\gamma}$. By Theorem 1.1, we have shown that for almost all $x_{0} \in \mathcal{K}$,

$$
\mu\left(\limsup _{n \rightarrow \infty} B_{n}^{f}\right)=1
$$

since

$$
\sum_{n \geq 1}\left(g^{-1} \circ f(\varphi(n))\right)^{\gamma}=\sum_{n \geq 1} f(\varphi(n))=\infty
$$

Then an application of the mass transference principle (Theorem 2.2) yields that

$$
\mathcal{H}^{f}\left(\mathcal{D}\left(x_{0}, \varphi\right)\right)=\mathcal{H}^{f}(\mathcal{K})
$$

Acknowledgements

This work is supported by NSFC (grant Nos. 11225101, 11471130, 11571127) and NCET-13-0236.

References

[1] J. Barral, S. Seuret, Heterogeneous ubiquitous systems in \mathbb{R}^{d} and Hausdorff dimension, Bull. Braz. Math. Soc. 38 (3) (2007) 467-515.
[2] V. Beresnevich, D. Dickinson, S. Velani, Measure Theoretic Laws for Lim Sup Sets, Memoirs of the AMS, vol. 179, 2006, No. 846, x+91 pp.
[3] V. Beresnevich, S. Velani, A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures, Ann. Math. (2) 164 (3) (2006) 971-992.
[4] Y. Bugeaud, Diophantine approximation and Cantor sets, Math. Ann. 341 (2008) 677-684.
[5] Y. Bugeaud, A. Durand, Metric Diophantine approximation on the middle-third Cantor set, J. Eur. Math. Soc. 18 (2016) 1233-1272.
[6] N. Chernov, D. Kleinbock, Dynamical Borel-Cantelli lemmas for Gibbs measures, Isr. J. Math. 122 (2001) 1-27.
[7] A. Dvoretzky, On covering a circle by randomly placed arcs, Proc. Natl. Acad. Sci. USA 42 (1956) 199-203.
[8] A. Fan, J. Schemling, S. Troubetzkoy, A multifractal mass transference principle for Gibbs measures with applications to dynamical Diophantine approximation, Proc. Lond. Math. Soc. 107 (5) (2013) 1173-1219.
[9] D. Feng, E. Järvenpää, M. Järvenpää, V. Suomala, Dimensions of random covering sets in Riemann manifolds, arXiv:1508.07881, 2015.
[10] E. Järvenpää, M. Järvenpää, B. Li, O. Stenflo, Random affine code tree fractals and Falcorner-Sloan condition, Ergod. Theory Dyn. Syst. 36 (5) (2016) 1516-1533.
[11] J.P. Kahane, Some Random Series of Functions, Cambridge University Press, Cambridge, UK, 1985.
[12] J. Levesley, C. Salp, S. Velani, On a problem of K. Mahler: Diophantine approximation and Cantor sets, Math. Ann. 338 (2007) 97-118.
[13] L. Liao, S. Seuret, Diophantine approximation of orbits in expanding Markov systems, Ergod. Theory Dyn. Syst. 33 (2) (2013) $585-608$.
[14] K. Mahler, Some suggestions for further research, Bull. Aust. Math. Soc. 29 (1984) 101-108.
[15] W. Philipp, Some metrical theorems in number theory, Pac. J. Math. 20 (1967) 109-127.
[16] L. Shepp, Covering the circle with random arcs, Isr. J. Math. 11 (1972) 328-345.
[17] V.G. Sprindžuk, Metric Theory of Diophantine Approximation, V.H. Winston \& Sons, Washington, DC, 1979, translated by R.A. Silverman.

[^0]: E-mail addresses: bwei_wang@hust.edu.cn (B.-W. Wang), jun.wu@mail.hust.edu.cn (J. Wu), arielxj@hotmail.com (J. Xu).
 http://dx.doi.org/10.1016/j.crma.2017.05.014
 1631-073X/© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

