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We prove, under some assumptions, the existence of correctors for the stochastic 
homogenization of “viscous” possibly degenerate Hamilton–Jacobi equations in stationary 
ergodic media. The general claim is that, assuming knowledge of homogenization in 
probability, correctors exist for all extreme points of the convex hull of the sublevel 
sets of the effective Hamiltonian. Even when homogenization is not a priori known, the 
arguments imply the existence of correctors and, hence, homogenization in some new 
settings. These include positively homogeneous Hamiltonians and, hence, geometric-type 
equations including motion by mean curvature, in radially symmetric environments and for 
all directions. Correctors also exist and, hence, homogenization holds for many directions 
for nonconvex Hamiltonians and general stationary ergodic media.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Nous démontrons l’existence, sous certaines conditions, de correcteurs en homogénéisation 
stochastique d’équations de Hamilton–Jacobi et d’équations de Hamilton–Jacobi visqueuses. 
L’énoncé général est que, si l’on sait qu’il y a homogénéisation en probabilité, un correcteur 
existe pour toute direction étant un point extrémal de l’enveloppe convexe d’un ensemble 
de niveau du Hamiltonien effectif. Même lorsque que l’homogénéisation n’est pas connue 
a priori, les arguments développés dans cette note montrent l’existence d’un correcteur, 
et donc l’homogénéisation, dans certains contextes. Cela inclut les équations de type 
géométrique dans des environnements dont la loi est à symmétrie radiale. Dans le cas 
général stationnaire ergodique et sans hypothèse de convexité sur le hamiltonien, on 
montre que des correcteurs existent pour plusieurs directions.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 
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1. Introduction

The aim of this note is to show the existence of correctors for the stochastic homogenization of “viscous” Hamilton–Jacobi 
equations of the form

uε
t − ε tr

(
A

(
Duε,

x

ε
,ω

)
D2uε

)
+ H

(
Duε,

x

ε
,ω

)
= 0 in Rd × (0,∞). (1.1)

Here ε > 0 is a small parameter that tends to zero, H = H(p, y, ω) is the Hamiltonian and A = A(p, y, ω) is a (possibly) 
degenerate diffusion matrix. Both A and H depend on a parameter ω ∈ �, where (�, F, P) is a probability space. We assume 
that P is stationary ergodic with respect to translations on Rd and that A and H are stationary.

The basic question in the stochastic homogenization of (1.1) is the existence of a deterministic effective Hamiltonian H
such that the solutions uε to (1.1) converge, as ε → 0, locally uniformly and with probability one, to the solution to the 
effective equation

ut + H(Du) = 0 in Rd × (0,∞). (1.2)

When H is convex with respect to the p variable and coercive, this was first proved independently by Souganidis [17] and 
Rezakhanlou and Tarver [16] for first-order Hamilton–Jacobi equations, and later extended to the viscous setting by Lions 
and Souganidis [14] and Kosygina, Rezakhanlou and Varadhan [10]. See also Armstrong and Souganidis [1,2] and Armstrong 
and Tran [4] for generalizations and alternative arguments.

In periodic homogenization, convergence and, hence, homogenization rely on the existence of correctors (see Lions, 
Papanicolaou and Varadhan [12]). The random setting is, however, fundamentally different.

Following Lions and Souganidis [13], a corrector associated with a direction p ∈ Rd is a solution χ to the corrector 
equation

−tr(A(Dχ(x) + p, x,ω)D2χ(x)) + H(Dχ(x) + p, x,ω) = H(p) in Rd (1.3)

which has a sublinear growth at infinity, that is, with probability one,

lim|x|→+∞
χ(x,ω)

|x| = 0. (1.4)

It was shown in [13] that in general such solutions do not exist; see also the discussion by Davini and Siconolfi [8] in 
the 1-d case. Note that the main point is the existence of solutions satisfying (1.4).

Not knowing how to find correctors is the main reason that the theory of homogenization in random media is rather 
complicated and required the development of new arguments. General qualitative results in the references cited earlier 
required the quasiconvexity assumption. A more direct approach to prove homogenization (always in the convex setting), 
which is based on weak convergence methods and yields only convergence in probability, was put forward by Lions and 
Souganidis [15]. Our approach here is close in spirit to the one of [15]. With the exception of a case with Hamiltonians of 
a very special form (see Armstrong, Tran and Yu [3,5]), the main results known in nonconvex settings are quantitative. That 
is it is necessary to make some strong assumptions on the environment (finite-range dependence) and to use sophisticated 
concentration inequalities to prove directly that the solutions to the oscillatory problems converge; see, for example, Arm-
strong and Cardaliaguet [3] and Feldman and Souganidis [9]. It should be noted that the counterexamples of Ziliotto [18]
and [9] yield that in the setting of nonconvex homogenization in random media is not possible to prove the existence of 
correctors for all directions.

Our main result states that a corrector in the direction p exists provided p is an extreme point of the convex hull of the 
sub-level set {q ∈ Rd : H(q) ≤ H(p)}. For instance, this is the case if the law of the pair (A, H) under P is radially symmetric, 
and A, H satisfy some structure conditions.

This kind of result is already known in the context of first-passage percolation, where the correctors are known as 
Buseman function; see, for example, Licea and Newman [11]. The techniques we use here are strongly inspired by the 
arguments of Damron and Hanson [7]. There the authors build a type of weak solutions and prove that, when the time 
function is strictly convex, they are actually genuine Buseman functions.

2. The assumptions and the main result

The underlying probability space is denoted by (�, F, P), where � is a Polish space, F is the Borel σ -field on �, 
and P is a Borel probability measure. We assume that there exists a one-parameter group (τx)x∈Rd of measure preserving 
transformations on �, that is τx : � → � preserves the measure P for any x ∈ Rd and τx+y = τx ◦ τy for x, y ∈Rd . The maps 
A : (Rd\{0}) × Rd × � → Sd,+ , the set of d × d real symmetric and nonnegative matrices, and H : Rd × Rd × � → R are 
supposed to be continuous in all variables and stationary, that is, for all p ∈ Rd\{0}, x, z ∈ Rd and ω ∈ �,

(A, H)(p, x, τzω) = (A, H)(p, x + z,ω).
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We also remark that the equations below, unless otherwise specified, are understood in the Crandall–Lions viscosity 
sense.

To avoid any unnecessary assumptions, in what follows we state a general condition, which we call assumption (H), on 
the support of P.
Assumption (H): We assume that, for any p ∈ Rd , the approximate corrector equation

δvδ,p − tr(A(D vδ,p + p, x,ω)D2 vδ,p) + H(D vδ,p + p, x,ω) = 0 in Rd, (2.1)

has a comparison principle, and that, for any R > 0, there exists C R > 0 such that, if |p| ≤ R , then the unique solution vδ,p

to (2.1) satisfies

‖δvδ,p‖∞ + ‖D vδ,p‖∞ ≤ C R .

The conditions ensuring the comparison principle are well documented; see, for instance, the Crandall, Ishii, Lions “User’s 
Guide” [6]. Given the comparison principle, it is well known that

‖vδ,p(·,ω)‖∞ ≤ sup
x∈Rd

|H(0, x,ω)|/δ,

so that the L∞-assumption on δvδ is not very restrictive. The Lipschitz bound, however, is more subtle and relies in general 
on a coercivity condition on the Hamiltonian. Such a structure condition is discussed, in particular, in [14].

Our main result is stated next.

Theorem 2.1. Assume (H) and, in addition, suppose that homogenization holds in probability, that is, for any p ∈ Rd, the family 
(δvδ,p(0, ·))δ>0 converges, as δ → 0, in probability to some constant −H(p), where H : Rd → R is a continuous and coercive map. 
Let p ∈ Rd be an extreme point of the convex hull of the sub level-set {q ∈ Rd : H(q) ≤ H(p)}. Then, for P-a.e. ω ∈ �, there exists a 
corrector χ :Rd × � → Rd associated with p and ω, which is a Lipschitz continuous solution to (1.3) satisfying (1.4).

Some observations and remarks are in order here.
We begin noting that we do not know if the corrector χ has stationary increment, and we do not expect this to be 

true in general. Note that the corrector is not necessary unique, even up to an additive constant. However, by a measurable 
selection argument, we can assume that χ depends on ω in a measurable way.

The existence of a corrector yields that, in fact, the δvδ,p(0, ω)’s converge to −H(p) for P-a.e. ω ∈ �; see Proposition 1.2 
in [13]. In the rest of the paper, we will use this fact repeatedly. Note also that convexity plays absolutely no role here.

Our result readily applies to the case where (H) holds, the law of the pair (A, H) under P is radially symmetric, and 
A = A(p, x, ω) and H = H(p, x, ω) are homogeneous in p of degrees 0 and 1, respectively; this is stated in Corollary 3.9. 
Moreover, since H(p) = c|p| for some positive c, Theorem 2.1 implies the existence of a corrector for any direction p. Note 
that this case covers the homogenization of equations of mean curvature type and the result is new. Other known results 
for such equations are quantitative.

This result also extends to the case where H satisfies, for all p, x ∈ Rd , ω ∈ � and λ ∈ [0, 1],
0 ≤ H(λp, x,ω) ≤ λH(p, x,ω).

Then there exists a corrector for any direction p such that H(p) is positive. Indeed, following Corollary 3.9, homogenization 
holds in probability for any direction p and H(p) = c(|p|) for some map c which is increasing when positive.

If H is convex in p and A is independent of p, our proof implies that, for any p ∈ Rd , the limit limδ→9 δvδ,p(0, ·) exists 
in probability; see Proposition 3.10. This result and its the proof are very much in the favor of [15].

Finally, we note that our arguments also yield the existence of a corrector in some directions and, thus, homogenization, 
for nonconvex Hamiltonians and p-dependent A. More precisely, for any direction p, there exists a constant c such that p
belongs to the convex hull of directions p′ for which a corrector exists with an associated homogenized constant equal to c; 
see Corollary 3.8.

3. The Proof of Theorem 2.1

Throughout the section, we assume that condition (H) is satisfied, but do not suppose that homogenization holds (even 
in probability): this condition is added only at the very end of the section.

Fix R > 0, let C R be as in (H) and define the metric space


 :=
{
θ ∈ C0,1(Rd) : θ(0) = 0 and ‖Dθ‖∞ ≤ C R

}
with distance, for all θ1, θ2 ∈ 
,

d(θ1, θ2) := sup
x∈Rd

|θ1(x) − θ2(x)|
1 + |x|2 .

It is immediate that 
 is a compact.
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Next we enlarge the probability space to �̃ := � × 
 × [−C R , C R ], which is endowed with the one-parameter group of 
transformations τ̃x : �̃ → �̃ defined, for x ∈ Rd , by

τ̃x(ω, θ, s) = (τxω,θ(· + x) − θ(x), s);
below, by an abuse of notation, we write τ̃x(θ) = θ(· + x) − θ(x).

Fix p ∈Rd with |p| ≤ R , let vδ,p be the solution to (2.1), define the map �δ,p : � → �̃ by

�δ,p(ω) = (ω, vδ,p(·,ω) − vδ,p(0,ω),−δvδ,p(0,ω)),

which is clearly measurable, and consider the push-forward measure

μδ,p = �δ,p
P,

which is a Borel probability measure on �̃.
Note that, since the first marginal of μδ,p is P and � is a Polish space while 
 × [−C R , C R ] is compact, the family of 

measures (μδ,p)δ>0 is tight.
Let μ be a limit, up to a subsequence δn → 0, of the μδn,p ’s.

Lemma 3.1. For each x ∈Rd, the transformation ̃τx preserves the measure μ.

Proof. Fix a continuous and bounded map ξ : �̃ → R. Since the map ω̃ → ξ(τx(ω̃)) is continuous and bounded and μδn ,p

converges weakly to μ, we have∫
�̃

ξ(ω̃)τx
μ(dω̃) =
∫
�̃

ξ(τx(ω̃))μ(dω̃) = lim
n

∫
�̃

ξ(τx(ω̃))μδn,p(dω̃).

In view of the definition of τ̃ and μδn , we get∫
�̃

ξ(τx(ω̃))μδn,p(dω̃) =
∫
�

ξ(τxω, vδn,p(x + ·,ω) − vδn,p(x,ω),−δn vδn,p(0,ω))dP(ω)

=
∫
�

ξ(τxω, vδn,p(·, τxω) − vδn,p(0, τxω),−δn vδn,p(−x, τxω))dP(ω)

=
∫
�

ξ(ω, vδn,p(·,ω) − vδn,p(0,ω),−δn vδn,p(−x,ω))dP(ω),

the last line being a consequence of the stationarity of P.
Using that vδn,p is Lipschitz continuous uniformly in δ and ξ is continuous on the set �̃, we find∫

�̃

ξ(τx(ω̃))μδn,p(dω̃) =
∫
�

ξ(ω, vδn,p(·,ω) − vδn,p(0,ω),−δn vδn,p(0,ω) + O (δn))dP(ω)

=
∫
�̃

ξ(ω̃)dμδn,p(ω̃) + o(1).

Letting n → +∞, we finally get∫
�̃

ξ(ω̃)τx
μ(dω̃) =
∫
�̃

ξ(ω̃)dμ(ω̃),

and, hence, the claim. �
The next lemma asserts that there exists some c = c(p) such that the restriction of μ to the last component is just a 

Dirac mass. If we know that homogenization holds, then c(p) is of course nothing but H(p). Note that in what follows, 
abusing once again the notation, we denote by μ the restriction of μ to the first two components � × 
.

Lemma 3.2. There exits a constant c = c(p, (δn)n∈N) such that, for any Borel measurable set E ⊂ � × 
,

μ(E × [−Mp, Mp]) = μ(E × {c}).
In particular, the sequence (δn vδn,p(0, ·))n∈N converges in probability to −c.
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Proof. Let n ≥ 1 large and k ∈ {0, . . . , 2n}, set tk := −Mp + Mpk/n and

Ek := {ω ∈ � : ∃θ ∈ 
 and ∃s ∈ [tk, tk+1] such that (ω, θ, s) ∈ sppt(μ)}.
Since the first marginal of μ is P and 

⋃2n
l=0 El × 
 × [−Mp, Mp] ⊃ sppt(μ), there exists k ∈ {0, . . . , 2n} such that P(Ek) > 0.

It turns out that Ek is translation invariant, that is, for each x ∈Rd , τx Ek = Ek . Indeed, if ω ∈ τx Ek , there exists θ ∈ 
 and 
s ∈ [tk, tk+1] such that (τ−xω, θ, s) ∈ sppt(μ) and, hence, τ̃−x(ω, θ(· + x) − θ(x), s) belongs to sppt(μ). Since μ is invariant 
under τ̃x , so is its support. Hence (ω, θ(· + x) − θ(x), s) ∈ sppt(μ) and ω belongs to Ek . The opposite implication follows in 
the same way.

The ergodicity of P yields that P[Ek = 1], which means that μ is concentrated in some Ek ×
 ×[tk, tk+1]. Thus μ is also 
concentrated on � × 
 × [tk, tk+1]. Letting n → +∞ implies that there exists c ∈ [−Mp, Mp] such that μ is concentrated of 
the set � × 
 × {c}.

It remains to check that (δn vδn,p(0, ·))n∈N converges in probability to −c. This is a consequence of the classical Porte-
Manteau Theorem, since, for any ε > 0,

lim sup
n→∞

P[|δn vδn,p(0, ·) + c| ≥ ε] = lim supμδn,p[� × 
 × ([−Mp, Mp]\(c − ε, c + ε))]
≤ μ[� × 
 × ([−Mp, Mp]\(c − ε, c + ε))] = 0. �

The next lemma is the first step in finding a corrector and possibly identifying c and H(p), when the latter exists.

Lemma 3.3. Let c be defined by Lemma 3.2. For μ-a.e. (ω, θ) ∈ � × 
, θ is a solution to

−tr(A(Dθ + p, x,ω)D2θ) + H(Dθ + p, x,ω) = c in Rd. (3.1)

Proof. Fix R, ε > 0 and let E(R, ε) be the set of (ω, θ) ∈ � × 
 such that θ such that, in the open ball B R (0),

−tr(A(Dθ + p, x,ω)D2θ) + H(Dθ + p, x,ω) ≥ c − ε

and

−tr(A(Dθ + p, x,ω)D2θ) + H(Dθ + p, x,ω) ≤ c + ε.

Recall that Lemma 3.2 gives that (δn vδn,p(0, ·))n∈N converge in probability to −c. Since vδn,p solves (2.1) and is uniformly 
Lipschitz continuous, it follows that, as n → ∞, μδn,p(E(R, ε)) → 1.

Finally observing that E(R, ε) is closed in � × 
, we infer, using again the Porte-Manteau Theorem, that μ(E(R, ε)) = 1.
As R and ε are arbitrary, we conclude that the set (ω, θ), for which the fact that the equation is satisfied in the viscosity 

sense is of full probability. �
Next we investigate some properties of θ .

Lemma 3.4. For any x ∈Rd, Eμ [θ(x)] = 0.

Proof. Since the map (ω, θ) → θ(x) is continuous on � × 
 and vδn,p is stationary, we have

Eμ [θ(x)] = limEμδn ,p [θ(x)] = limEP

[
vδn,p(x) − vδn,p(0)

] = 0. �
Lemma 3.5. For μ-a.e. ̃ω = (ω, θ) and any direction q ∈Qd, the (random) limit

ρω̃(q) := lim
t→∞

θ(tq)

t

exists. Moreover, ρω̃(q) is invariant under ̃τx for x ∈Rd, that is,

ρτ̃x(ω̃)(q) = ρω̃(q) μ − a.e.

Proof. We first show that, for any r > 0, the limit

lim
t→+∞

1

t

⎛
⎜⎝ ∫

Br(0)

θ(tq + y)dy −
∫

Br(0)

θ(y)dy

⎞
⎟⎠

exists P-a.s.
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Since the uniform converge of uniformly Lipschitz continuous maps implies the L∞-weak � convergence of their gradi-
ents, the map ξ : � × 
 →R defined by

ξ((ω, θ)) :=
∫

Br(0)

Dθ(y) · q dy

is continuous and bounded on � × 
.
Moreover,

1

t

⎛
⎜⎝ ∫

Br(0)

θ(tq + y)dy −
∫

Br(0)

θ(y)dy

⎞
⎟⎠ = 1

t

t∫
0

∫
Br(0)

Dθ(sq + y) · q dy ds = 1

t

t∫
0

ξ(τ̃sq(ω̃))ds.

It follows from the ergodic theorem that the above expression has, as t → ∞ and μ-a.s. a limit ρω̃(q, r).
Choosing r = 1/n and letting n → +∞, we also find that, as t → +∞, θ(tq)/t has μ-a.s., a limit ρω̃(q) =

limn→inf ty ρω̃(q, 1/n) because θ is C R -Lipschitz continuous.
Fix x ∈Rd and ω̃ ∈ �̃ for which ρω̃(q) and ρτ̃x(ω̃)(q) are well defined; recall that this holds for μ-a.e. ω̃.
Then, in view of the Lipschitz continuity of θ , we have

ρτ̃x(ω̃)(q) = lim
t→+∞

τ̃x(θ)(tq)

t
= lim

t→+∞
1

t
(θ(x + tq) − θ(x)) = ρω̃(q). �

Lemma 3.6. There exists a random vector r ∈ L∞
μ (�̃; Rd) such that, μ-a.s. and for any direction v ∈Rd,

lim
t→+∞

θ(tv)

t
= rω̃ · v.

Proof. Since θ is C R -Lipschitz continuous, it is enough to check that the map q → ρω̃(q) is linear on Qd for μ-a.e. ω̃.
Let �̃0 be a set of μ-full probability in � such that the limit ρω̃(q) in Lemma 3.5 exists for any q ∈Qd .
Restricting further the set �0 if necessary; we may also assume (see, for instance, the proof of Lemma 4.1 in [1]) that, 

for any η, M > 0 and ω̃ = (ω, θ) ∈ �0, there exists T > 0 such that, for all q ∈ Qd with |q| ≤ M , all x ∈Rd and t ≥ T ,∣∣∣∣θ(x + tq) − θ(x)

t
− ρω̃(q)

∣∣∣∣ ≤ η(|x| + 1).

Fix η, M > 0, q1, q2 ∈ Qd with |q1|, |q2| ≤ M , ω̃ ∈ �0 and η > 0, and let T be associated with η, M as above. Then, for any 
t ≥ T , we have

θ(t(q1 + q2)) = θ(t(q1 + q2)) − θ(tq2) + θ(tq2).

Thus ∣∣∣∣θ(t(q1 + q2))

t
− ρω̃(q1) − ρω̃(q2)

∣∣∣∣
≤

∣∣∣∣θ(t(q1 + q2)) − θ(tq2)

t
− ρω̃(q1)

∣∣∣∣ +
∣∣∣∣θ(tq2)

t
− ρω̃(q2)

∣∣∣∣
≤ η(|q2| + t−1) + η

Letting t → +∞ and η → 0 yields the claim, since η and M are arbitrary. �
Lemma 3.7. Let r be defined as in Lemma 3.6. Then Eμ[r] = 0.

Proof. Lemma 3.4 yields that, for any v ∈ Rd ,

0 = lim
t→+∞Eμ

[
θ(tv)

t

]
= Eμ

[
lim

t→+∞
θ(tv)

t

]
= Eμ [r · v] = Eμ[r] · v. �

As a straightforward consequence of the previous results, we have the existence of a corrector and, hence, homogeniza-
tion for at least one vector p′ .
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Corollary 3.8. For μ-a.e. ̃ω = (ω, θ, c), limδ→0 δvδ,p′
(0, ω) exists for p′ := p + rω̃ and is given by c. Moreover, θ ′(x) := θ(x) − rω̃ · x

is a corrector for p′ , in the sense that

−tr(A(Dθ ′ + p′, x,ω)D2θ ′) + H(Dθ ′ + p′, x,ω) = c in Rd with lim|x|→+∞ θ ′(x)/|x| = 0.

Another consequence of the above results is that homogenization holds if the law of (A, H) under P is a radially sym-
metric. By this we mean that, for any rotation matrix R , the law of (A, H) is the same as the law of the pair ( Ã, ̃H) given 
by

( Ã, H̃)(p, x,ω) := (RT AR, H)(Rp, Rx,ω).

Note that this implies that vδ,Rp(0, ·) has the same law as vδ,p(0, ·).

Corollary 3.9. Assume that, P-a.s., A = A(p, x, ω) is 0-homogeneous in p, H satisfies, for all λ ∈ [0, 1],
0 ≤ H(λp, x,ω) ≤ λH(p, x,ω) (3.2)

and suppose that the law of (A, H) under P is radially symmetric. Then homogenization holds in probability, that is, for any p ∈ Rd, 
limδ→0 −δvδ,p(0, ·) = c(|p|) in probability. Moreover, the map s → c(s) satisfies, for any 0 < s1 < s2 ,

0 ≤ c(s1)/s1 ≤ c(s2)/s2.

Note that the map c is increasing as soon as it is positive. Moreover, one easily checks that, if, in addition, H is 
1-homogeneous in p and coercive, then c(s) = cs for some positive constant c.

Proof. It follows from the assumed bounds and the stationarity, that there exists a set �0 with P[�0] = 1 such that, for 
any p ∈ Rd and ω ∈ �0, c+(p) := lim supδ→0 −δvδ,p(0, ω) and c−(p) := lim infδ→0 −δvδ,p(0, ω) exist and are deterministic. 
The radial symmetry assumption and as well as (3.9) imply that c±(p) = c±(|p|) and, in addition, for all λ ∈ [0, 1],

0 ≤ c±(λs) ≤ λc±(s).

Also note that the maps s → c±(s) are nondecreasing. Indeed given 0 < s1 < s2, choosing s = s2 and λ = s1/s2, we find

c±(s1)/s1 ≤ c±(s2)/s2 ≤ c±(s2)/s1.

It follows that c± is increasing as soon as it is positive.
On the other hand, for any p ∈ Rd , we can find a subsequence of μδ,p converging to some measure μp as δ tends to 0. 

By a diagonal argument, we can assume that this is the same subsequence for any p ∈ Qd .
Let c(p) be associated with the limit measure μp as above. It follows from (H) that the map p → c(p) is uniformly 

continuous and thus can be continuously extended to Rd . Moreover, the assumed radial symmetry yields that c(p) = c(|p|). 
Finally, note that, for all s ≥ 0,

0 ≤ c−(s) ≤ c(s) ≤ c+(s). (3.3)

Let σ := inf{s ≥ 0, c+(s) > 0}. Then (3.3) implies c− = c+ = c = 0 on [0, σ ].
Fix p ∈ Qd with |p| > σ , and let μp , c(|p|) and r be associated with p. For μp -a.e. ω̃ = (ω, θ) with ω ∈ �0, θ ′(x) :=

θ(x) − rω̃ · x is a corrector for p′ := p + rω̃ with associated ergodic constant c(|p|). It follows that limδ→0(−δvδ,p′
(0, ω)) =

c(|p|), and, hence,

c+(|p|) ≥ c(|p|) = c+(|p + r|) μp − a.s.

Since c+ is increasing on (σ , +∞), this inequality implies that |p + r| = |p| a.s. Then E[p + r] = p gives r = 0 μp-a.s., so 
that, for μp-a.e. (θ, ω), θ is a corrector for p with associated ergodic constant c(|p|). It follows that limδ→0(−δvδ,p(0, ω)) =
c(|p|). In conclusion, c+(|p|) = c−(|p|) for any p ∈ Qd , and thus, by continuity, for any p ∈ Rd , which, in turn, proves that 
homogenization holds. �

Another application of the previous results is the convergence in law of the random variable δvδ,p(0, ·) when H is convex 
in the gradient variable. The argument is a variant of [15]. Of course, the result is much weaker than the a.s. convergence 
is established in [14]; see also [1,2]. The proof is, however, rather simple.

Proposition 3.10. Assume that, P-a.e., H = H(p, x, ω) is convex in the p variable and that A = A(x, ω) does not depend on p. Then, 
for any p ∈Rd, homogenization holds in probability, that is there exists H(p) such that limδ→0 δvδ(0, ·) = −H(p) in probability.
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Proof. Let μ be a measure built as in the beginning of the section. It follows that there exists a random family of measures 
μω on 
 such that, for any continuous map φ : � × 
 →R, one has

∫
�×


φ(ω, θ)dμ(ω,θ) =
∫
�

⎡
⎣∫




φ(ω, θ)dμω(θ)

⎤
⎦ dP(ω).

Set θ̂ (x, ω) := ∫



θ(x) dμω(θ). Since P and μ are invariant with respect to (τz)z∈Rd and (τ̃z)z∈Rd respectively, for any 
bounded measurable map φ = φ(ω) and any z ∈ Rd , we have∫

�

φ(ω)(θ̂(x + z,ω) − θ̂ (z))dP(ω) =
∫

�×


φ(ω)(θ(x + z) − θ(z))dμ(ω,θ)

=
∫

�×


φ(τ−zω)θ(x)τ̃z
dμ(ω,θ) =
∫
�

φ(τ−zω)θ̂(x,ω)dP(ω) =
∫
�

φ(ω)θ̂(x, τzω)dP(ω).

This shows that θ̂ has stationary increments. Moreover, in view of Lemma 3.4, θ̂ has mean zero, and, hence, D θ̂ is stationary 
with average 0. In particular, θ̂ is P-a.s. strictly sublinear at infinity. Since, for μ-a.e. (ω, θ), θ is a solution to (3.3) and H is 
convex in the gradient variable, θ̂ is a subsolution to (3.3) and, thus a subcorrector. Following [15], this implies that

lim inf
δ→0

δvδ,p(0,ω) ≥ −c.

In particular, for any sequence (δ′
n)n′∈N that tends to 0 such that (μδ′

n,p)n′∈N and (δ′
n vδ′

n,p(0))n′∈N converge respectively to 
a measure μ′ and a constant −c′ , we have c′ ≤ c. Exchanging the roles of (δn)n∈N and (δ′

n)n′∈N leads to the equality c = c′ . 
The conclusion now follows. �

We are now ready to prove the main result.

Proof of Theorem 2.1. We assume that homogenization holds in probability and p ∈ Rd is an extreme point of the convex 
hull of the set S := {q ∈Rd : H(q) ≤ H(p)}.

Let μ be a measure built as in the beginning of the section and r be defined by Lemma 3.6.
Then H(p + r) = H(p) μ-a.s., that is p + r belongs to S μ-a.s. Indeed Lemma 3.3 gives c = H(p) and

−tr(A(Dθ + p, x,ω)D2θ) + H(Dθ + p, x,ω) = c in Rd,

while, in view of Lemma 3.6, for all x ∈ Rd ,

lim
t→+∞

θ(tx)

t
= r · x.

Thus θ̃ (x) := θ(x) − r · x is a corrector for p + r, that is it satisfies

−tr(A(D θ̃ + p + r, x,ω)D2θ̃ ) + H(D θ̃ + p + r, x,ω) = c in Rd and lim|x|→+∞ θ̃ (x)/|x| = 0.

It follows that H(p + r) = H(p) μ-a.s.
Next we recall (Lemma 3.7) that Eμ[p + r] = p. Since p + r ∈ S μ-a.s. and p is an extreme point of the convex hull of S , 

the equality Eμ[p + r] = p implies that r = 0 μ-a.s. Therefore lim|x|→+∞ θ(x)/|x| = 0 μ-a.s., which, together with the fact that 

θ solves the corrector equation for p, implies that θ is a corrector for p itself. �
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