

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Partial differential equations/Theory of signals

Rigidity of optimal bases for signal spaces

Rigidité des bases optimales pour les espaces de signaux

Haïm Brezis^{a,b,c}, David Gómez-Castro^{d,e}

^a Department of Mathematics, Hill Center, Busch Campus, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854, USA

^b Departments of Mathematics and Computer Science, Technion, Israel Institute of Technology, 32000 Haifa, Israel

^c Laboratoire Jacques-Louis-Lions, Université Pierre-et-Marie-Curie, 4, place Jussieu, 75252 Paris cedex 05, France

^d Dpto. de Matemática Aplicada, Universidad Complutense de Madrid, Spain

^e Instituto de Matemática Interdisciplinar, Universidad Complutense de Madrid, Spain

ARTICLE INFO

Article history: Received 1 June 2017 Accepted 7 June 2017 Available online 27 June 2017

Presented by Haïm Brezis

ABSTRACT

We discuss optimal L^2 -approximations of functions controlled in the H^1 -norm. We prove that the basis of eigenfunctions of the Laplace operator with Dirichlet boundary condition is the only orthonormal basis (b_i) of L^2 that provides an optimal approximation in the sense of

$$f - \sum_{i=1}^{n} (f, b_i) b_i \left\|_{l^2}^2 \leq \frac{\|\nabla f\|_{L^2}^2}{\lambda_{n+1}} \quad \forall f \in H^1_0(\Omega), \quad \forall n \geq 1$$

This solves an open problem raised by Y. Aflalo, H. Brezis, A. Bruckstein, R. Kimmel, and N. Sochen (Best bases for signal spaces, C. R. Acad. Sci. Paris, Ser. I 354 (12) (2016) 1155–1167).

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

On s'intéresse à l'approximation optimale pour la norme L^2 de fonctions contrôlées en norme H^1 . On prouve que la base des fonctions propres du laplacien avec condition de Dirichlet au bord est l'unique base orthonormale (b_i) de L^2 qui réalise une approximation optimale au sens de

$$\left\|f-\sum_{i=1}^n (f,b_i)b_i\right\|_{L^2}^2 \leq \frac{\|\nabla f\|_{L^2}^2}{\lambda_{n+1}} \quad \forall f\in H^1_0(\Omega), \quad \forall n\geq 1$$

Ceci résout un problème ouvert posé par Y. Aflalo, H. Brezis, A. Bruckstein, R. Kimmel et N. Sochen (Best bases for signal spaces, C. R. Acad. Sci. Paris, Ser. I 354 (12) (2016) 1155–1167).

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

E-mail addresses: brezis@math.rutgers.edu (H. Brezis), dgcastro@ucm.es (D. Gómez-Castro).

http://dx.doi.org/10.1016/j.crma.2017.06.004

CrossMark

¹⁶³¹⁻⁰⁷³X/© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main result

This note is a follow-up of the papers by Y. Aflalo, H. Brezis and R. Kimmel [2] and Y. Aflalo, H. Brezis, A. Bruckstein, R. Kimmel and N. Sochen [1].

Let $\Omega \subset \mathbb{R}^N$ be a smooth bounded domain. Let $e = (e_i)$ be an orthonormal basis of $L^2(\Omega)$ consisting of the eigenfunctions of the Laplace operator with Dirichlet boundary condition:

$$\begin{cases} -\Delta e_i = \lambda_i e_i & \text{in } \Omega, \\ e_i = 0 & \text{on } \partial \Omega. \end{cases}$$
(1)

where $0 < \lambda_1 < \lambda_2 \le \lambda_3 \le \cdots$ is the ordered sequence of eigenvalues repeated according to their multiplicity. We first recall a very standard result:

Theorem 1.1. *We have, for all* $n \ge 1$ *,*

$$\left\| f - \sum_{i=1}^{n} (f, e_i) e_i \right\|_{L^2}^2 \le \frac{\|\nabla f\|_{L^2}^2}{\lambda_{n+1}} \quad \forall f \in H_0^1(\Omega).$$
(2)

Here and throughout the rest of this paper (\cdot, \cdot) denotes the scalar product in $L^2(\Omega)$. Indeed, we may write

$$\left\| f - \sum_{i=1}^{n} (f, e_i) e_i \right\|_{L^2}^2 = \left\| \sum_{i=n+1}^{+\infty} (f, e_i) e_i \right\|_{L^2}^2 = \sum_{i=n+1}^{+\infty} (f, e_i)^2.$$
(3)

On the other hand,

$$\|\nabla f\|_{L^2}^2 = \sum_{i=1}^{+\infty} \lambda_i (f, e_i)^2 \ge \sum_{i=n+1}^{+\infty} \lambda_i (f, e_i)^2 \ge \lambda_{n+1} \sum_{i=n+1}^{+\infty} (f, e_i)^2.$$
(4)

Combining (3) and (4) yields (2).

The authors of [2] and [1] have investigated the "optimality" in various directions of the basis (e_i) , with respect to inequality (2). Here is one of their results restated in a slightly more general form.

Theorem 1.2 (Theorem 3.1 in [2]). There is no integer $n \ge 1$, no constant $0 \le \alpha < 1$ and no sequence $(\psi_i)_{1 \le i \le n}$ in $L^2(\Omega)$ such that

$$\left\| f - \sum_{i=1}^{n} (f, \psi_i) \psi_i \right\|_{L^2}^2 \le \frac{\alpha}{\lambda_{n+1}} \|\nabla f\|_{L^2}^2 \qquad \forall f \in H_0^1(\Omega).$$
(5)

The proof in [2] relies on the Fischer–Courant max–min principle (see Remark 3.3 below). For the convenience of the reader, we present a very elementary proof based on a simple and efficient device originally due to H. Poincaré [5, pp. 249–250] (and later rediscovered by many people, e.g., H. Weyl [7, p. 445] and R. Courant [3, pp. 17–18]; see also H. Weinberger [6, p. 56] and P. Lax [4, p. 319]).

Suppose not, and set

$$f = c_1 e_1 + c_2 e_2 + \dots + c_n e_n + c_{n+1} e_{n+1}$$
(6)

where $c = (c_1, c_2, \dots, c_n, c_{n+1}) \in \mathbb{R}^{n+1}$. The under-determined linear system

$$(f,\psi_i) = 0, \quad \forall i = 1, \cdots, n \tag{7}$$

of *n* equations with n + 1 unknowns admits a non-trivial solution. Inserting f into (5) yields

$$\lambda_{n+1} \sum_{i=1}^{n+1} c_i^2 \le \alpha \sum_{i=1}^{n+1} \lambda_i c_i^2 \le \alpha \lambda_{n+1} \sum_{i=1}^{n+1} c_i^2.$$
(8)

Therefore $\sum_{i=1}^{n+1} c_i^2 = 0$ and thus c = 0. A contradiction. This proves Theorem 1.2.

The authors of [1] were thus led to investigate the question of whether inequality (2) holds *only* for the orthonormal bases consisting of eigenfunctions corresponding to ordered eigenvalues. They established that a "discrete", i.e., finite-dimensional, version does hold; see [1, Theorem 2.1] and Remark 3.2 below. But their proof of "uniqueness" could not be adapted to the infinite-dimensional case (because it relied on a "descending" induction). It was raised there as an open problem (see [1, p. 1166]). Our next result solves this problem.

Theorem 1.3. Let (b_i) be an orthonormal basis of $L^2(\Omega)$ such that, for all $n \ge 1$,

$$\left\| f - \sum_{i=1}^{n} (f, b_i) b_i \right\|_{L^2}^2 \le \frac{\|\nabla f\|_{L^2}^2}{\lambda_{n+1}} \quad \forall f \in H^1_0(\Omega).$$
(9)

Then, (b_i) consists of an orthonormal basis of eigenfunctions of $-\Delta$ with corresponding eigenvalues (λ_i) .

2. Proof of Theorem 1.3

A basic ingredient of the argument is the following lemma:

Lemma 2.1. Assume that (9) holds for all $n \ge 1$ and all $f \in H^1_0(\Omega)$, and that

$$\lambda_i < \lambda_{i+1} \tag{10}$$

for some $i \ge 1$. Then

$$(b_j, e_k) = 0, \qquad \forall j, k \text{ such that } 1 \le j \le i < k.$$
(11)

Proof. Fix k > i. Let *l* be the largest integer $l \le k - 1$ such that

$$\lambda_l < \lambda_{l+1}. \tag{12}$$

Clearly

$$i \le l$$
 (13)

and

$$\lambda_{l+1} = \lambda_{l+2} = \dots = \lambda_k. \tag{14}$$

Applying (9) for n = l, we get

$$\left\| f - \sum_{i=1}^{l} (f, b_i) b_i \right\|_{L^2}^2 \le \frac{\|\nabla f\|_{L^2}^2}{\lambda_{l+1}} \quad \forall f \in H_0^1(\Omega).$$
(15)

We use again Poincaré's "magic trick". Take f of the form

r

$$f = c_1 e_1 + \dots + c_l e_l + c e_k \tag{16}$$

such that

$$(f, b_j) = 0 \qquad \forall j = 1, \cdots, l. \tag{17}$$

This is a system of l linear equations with l + 1 unknowns, so that there are nontrivial solutions. We may as well assume that

$$c_1^2 + \dots + c_l^2 + c^2 = 1.$$
(18)

By (15) and (14), we have

$$\lambda_{l+1} \leq \lambda_1 c_1^2 + \dots + \lambda_l c_l^2 + \lambda_k c^2 = \lambda_1 c_1^2 + \dots + \lambda_l c_l^2 + \lambda_{l+1} c^2.$$
⁽¹⁹⁾

From (18) we get

$$\lambda_{l+1}(c_1^2 + \dots + c_l^2) \le \lambda_1 c_1^2 + \dots + \lambda_l c_l^2.$$
⁽²⁰⁾

Thus

$$(\lambda_{l+1} - \lambda_1)c_1^2 + \dots + (\lambda_{l+1} - \lambda_l)c_l^2 \le 0.$$

$$(21)$$

By (12) the coefficients $\lambda_{l+1} - \lambda_i$ are positive for every $i = 1, \dots, l$. Therefore

$$c_1 = \dots = c_l = 0. \tag{22}$$

Hence $c = \pm 1$ so that $f = \pm e_k$ and by (17)

$$(b_j, e_k) = 0 \qquad \forall j = 1, \cdots, l.$$
⁽²³⁾

The conclusion follows from (23) and (13). \Box

Before we present the proof in the general case, for the convenience of the reader, we start with the case of simple eigenvalues. Since $\lambda_1 < \lambda_2$ then, by the lemma,

$$(b_1, e_k) = 0 \qquad \forall k \ge 2. \tag{24}$$

Thus $b_1 = \pm e_1$. Next we apply the lemma with $\lambda_2 < \lambda_3$. We have that

$$(b_2, e_k) = 0 \qquad \forall k \ge 3. \tag{25}$$

Also, we have that

$$(b_2, e_1) = \pm (b_2, b_1) = 0.$$
 (26)

Therefore $b_2 = \pm e_2$. Similarly, we have that $b_i = \pm e_i$ for $i \ge 3$. We now turn to the general case:

Proof of Theorem 1.3. As above we have $b_1 = \pm e_1$. Consider the first index $i \ge 2$ such that $\lambda_i < \lambda_{i+1}$. Call it i_1 . From the lemma we have that

$$(b_i, e_k) = 0 \qquad \forall j, k \text{ such that } 1 \le j \le i_1 < k.$$
(27)

Therefore $b_2, \dots, b_{i_1} \in \text{span}(e_2, \dots, e_{i_1})$. Hence, each b_j with $2 \le j \le i_1$ is an eigenfunction of $-\Delta$ with corresponding eigenvalue $\lambda = \lambda_2 = \dots = \lambda_{i_1}$. Therefore, due to dimensions, b_2, \dots, b_{i_1} is an orthonormal basis of

$$\operatorname{span}(b_2, \cdots, b_{i_1}) = \operatorname{span}(e_2, \cdots, e_{i_1}) = \operatorname{ker}(-\Delta - \lambda_{i_1}I);$$
(28)

in particular each

$$e_k \in \text{span}(b_1, \dots, b_{i_1})$$
 $k = 1, \dots, i_1.$ (29)

Consider the next block

$$\lambda = \lambda_{i_1+1} = \dots = \lambda_{i_2} < \lambda_{i_2+1}. \tag{30}$$

From the lemma we have that

$$(b_j, e_k) = 0 \qquad \forall j, k \text{ such that } 1 \le j \le i_2 < k.$$
(31)

We also know that for $j \ge i_1 + 1$,

$$(b_i, e_k) = 0$$
 $k = 1, \cdots, i_1$ (32)

because of (29). Combining (31) and (32) yields

$$(b_j)_{i_1+1 \le j \le i_2} \in \text{span}(e_j)_{i_1+1 \le j \le i_2}.$$
(33)

As above, we conclude, using (30), that $b_{i_1+1}, \dots, b_{i_2}$ is an orthonormal basis of

$$span(b_j)_{i_1+1 \le j \le i_2} = span(e_j)_{i_1+1 \le j \le i_2} = ker(-\Delta - \lambda_{i_2}I).$$
(34)

Similarly for the next blocks. \Box

3. Final remarks

Remark 3.1. We call the attention of the reader to the fact that the functions b_i are only assumed to be in $L^2(\Omega)$ and we deduce from Theorem 1.3 that (surprisingly) they belong to $H_0^1(\Omega) \cap C^{\infty}(\Omega)$.

Remark 3.2. Theorem 1.3 holds in a more general setting. Let *V* and *H* be Hilbert spaces such that $V \subset H$ with compact and dense inclusion (dim $H \leq +\infty$). Let $a: V \times V \to \mathbb{R}$ be a continuous bilinear symmetric form for which there exist constants $C, \alpha > 0$ such that, for all $v \in V$,

$$a(v, v) \ge 0,$$

$$a(v, v) + C |v|_{H}^{2} \ge \alpha ||v||_{V}^{2}.$$

Let $0 \le \lambda_1 \le \lambda_2 \le \cdots$ be the sequence of eigenvalues associated with the orthonormal (in *H*) eigenfunctions $e_1, e_2, \cdots \in V$, i.e.,

$$a(e_i, v) = \lambda_i(e_i, v) \qquad \forall v \in V,$$

where (\cdot, \cdot) denotes the scalar product in *H*. We point out that, in this general setting, it may happen that $\lambda_1 = 0$ (e.g., $-\Delta$ with Neumann boundary conditions); and λ_1 may have multiplicity > 1. Recall that, for every $n \ge 1$ and $f \in V$:

$$\lambda_{n+1} \left| f - \sum_{i=1}^{n} (e_i, f) e_i \right|_H^2 \le a(f, f).$$
(35)

Let (b_i) be an orthonormal basis of H such that for all $n \ge 1$ and $f \in V$

$$\lambda_{n+1} \left| f - \sum_{i=1}^{n} (b_i, f) b_i \right|_{H}^{2} \le a(f, f).$$
(36)

Then, (b_i) consists of an orthonormal basis of eigenfunctions of *a* with corresponding eigenvalues (λ_i) . The proof is identical to the one above.

When dim $H < +\infty$ and V = H, this result is originally due to [1]. The proof of rigidity was quite different and could not be adapted to the infinite-dimensional case. It was raised there as an open problem.

Remark 3.3. Recall that the usual Fischer–Courant max–min principle asserts that for every $n \ge 1$, we have

$$\lambda_{n+1} = \max_{\substack{M \subset L^2(\Omega) \\ M \text{ linear space} \\ \dim M = n}} \min_{\substack{0 \neq f \in H_0^1(\Omega) \\ f \in M^\perp}} \frac{\|\nabla f\|_{L^2}^2}{\|f\|_{L^2}^2},\tag{37}$$

(see, e.g., [4] or [6]). Our technique sheds some light about the structure of the maximizers in (37). Let (b_i) be an orthonormal sequence in $L^2(\Omega)$ such that, for every $n \ge 1$,

$$\lambda_{n+1} = \min_{\substack{0 \neq f \in H_0^1(\Omega) \\ f \in M_n^\perp}} \frac{\|\nabla f\|_{L^2}^2}{\|f\|_{L^2}^2} \quad \text{where } M_n = \operatorname{span}(b_1, b_2, \cdots, b_n).$$
(38)

Then, each b_i is an eigenfunction associated with λ_i . This is an easy consequence of the proof of Theorem 1.3.

Remark 3.4 (*rigidity of the tail*). Assume that (9) holds only for $n = k, k + 1, \dots$. Let the eigenvalues be simple. Applying the same reasoning as in our proof gives

$$\operatorname{span}(b_1, \cdots, b_n) = \operatorname{span}(e_1, \cdots, e_n) \qquad n = k, k+1, \cdots$$
(39)

The same argument as before yields $b_i = \pm e_i$ for $i = k + 1, k + 2, \cdots$. Concerning the b_i 's for $i \le k$, we only know that $b_1, \cdots, b_k \in \text{span}(e_1, \cdots, e_k)$ and therefore they are smooth. A similar result holds if the eigenvalues are not simple.

Remark 3.5. We now turn to the reverse situation, i.e., we assume that (9) holds only for $1 \le n \le k$. In this case (9) yields very little information on the b_i 's. Consider for example the case n = k = 1. In other words, assume that $b = b_1 \in L^2(\Omega)$ is such that $||b||_{L^2} = 1$ and

$$\|f - (f, b)b\|_{L^2}^2 \le \frac{1}{\lambda_2} \|\nabla f\|_{L^2}^2 \qquad \forall f \in H^1_0(\Omega).$$
(40)

Of course, (40) holds with $b = e_1$. From Lemma 2.1, we know that (40) implies that

$$(e_2, b) = 0.$$
 (41)

Clearly, (41) is not sufficient. Indeed, take $b = e_3$. Then, (41) holds but (40) fails for $f = e_1$. We do not have a simple characterization of the functions b satisfying (40). But we can construct a large family of functions b (which need not be smooth) such that (40) holds. Assume that $0 < \lambda_1 \le \lambda_2 < \lambda_3$. Let $\chi \in L^2(\Omega)$ be any function such that

$$(e_1,\chi) = 0, \tag{42}$$

$$(e_2,\chi)=0,\tag{43}$$

$$\|\chi\|_{L^2}^2 = 1. \tag{44}$$

Set

$$b = \alpha e_1 + \varepsilon \chi$$
 $\alpha^2 + \varepsilon^2 = 1$, with $0 < \varepsilon < 1$. (45)

Claim: there exists $\varepsilon_0 > 0$, depending on $(\lambda_i)_{1 \le i \le 3}$, such that for every $0 < \varepsilon < \varepsilon_0$ (40) holds. We have, for $f \in H^1_0(\Omega)$, and with $c_i = (f, e_i)$,

$$\frac{1}{\lambda_2} \|\nabla f\|_{L^2}^2 - \|f - (f, b)b\|_{L^2}^2 = \frac{1}{\lambda_2} \|\nabla f\|_{L^2}^2 - \left(\|f\|_{L^2}^2 - (f, b)^2\right)$$

$$+\infty +\infty$$
(46)

$$=\sum_{i=1}^{+\infty} \frac{\lambda_i}{\lambda_2} c_i^2 - \sum_{i=1}^{+\infty} c_i^2 + (f, b)^2.$$
(47)

On the other hand

$$(f,b)^{2} = (\alpha(f,e_{1}) + \varepsilon(f,\chi))^{2}$$
(48)

$$=\alpha^2 c_1^2 + 2\alpha\varepsilon(f, e_1)(f, \chi) + \varepsilon^2(f, \chi)^2$$
(49)

$$= \alpha^2 c_1^2 + 2\alpha \varepsilon (f - c_2 e_2, e_1) (f - c_2 e_2, \chi) + \varepsilon^2 (f, \chi)^2$$
(50)

$$\geq \alpha^2 c_1^2 - 2\varepsilon \|f - c_2 e_2\|_{L^2}^2 \tag{51}$$

$$= \alpha^2 c_1^2 - 2\varepsilon \sum_{i \neq 2} c_i^2.$$
 (52)

Going back to (47), using (45) and choosing $\varepsilon < \varepsilon_0$ small enough, yields

$$\frac{1}{\lambda_2} \|\nabla f\|_{L^2}^2 - \|f - (f, b)b\|_{L^2}^2$$

$$\geq \left(\frac{\lambda_1}{\lambda_2} - 2\varepsilon - \varepsilon^2\right) c_1^2 + \sum_{i=3}^{+\infty} \left(\frac{\lambda_i}{\lambda_2} - 1 - 2\varepsilon\right) c_i^2$$
(53)

$$\geq 0.$$
 (54)

Remark 3.6. In the general setting of Remark 3.2, it may happen that $0 = \lambda_1 < \lambda_2$. Suppose now that $b \in H$ is such that $\|b\|_H = 1$ and

$$\|f - (f, b)b\|_{H}^{2} \le \frac{1}{\lambda_{2}}a(f, f) \quad \forall f \in V.$$
 (55)

Claim: we have $b = \pm e_1$. Indeed, let $f = e_1$ in (55) we have that

$$\|e_1 - (e_1, b)b\|_H^2 \le \frac{\lambda_1}{\lambda_2} = 0.$$
(56)

Therefore $b = \pm e_1$.

Acknowledgements

The first author (H.B.) thanks A. Bruckstein and R. Kimmel for their warm encouragements. The research of H. Brezis was partially supported by NSF grant DMS-1207793. The research of D. Gómez-Castro was supported by a FPU fellowship from the Spanish Government ref. FPU14/03702, travel grant ref. EST16/00178 and by the project ref. MTM2014-57113-P of the DGISPI (Spain). This paper was written while the second author was visiting the Technion, and he wishes to extend his gratitude for the hospitality.

References

- [1] Y. Aflalo, H. Brezis, A. Bruckstein, R. Kimmel, N. Sochen, Best bases for signal spaces, C. R. Acad. Sci. Paris, Ser. I 354 (12) (2016) 1155–1167.
- [2] Y. Aflalo, H. Brezis, R. Kimmel, On the optimality of shape and data representation in the spectral domain, SIAM J. Imaging Sci. 8 (2) (2015) 1141–1160.
- [3] R. Courant, Über die Eigenwerte bei den Differentialgleichungen der mathematischen Physik, Math. Z. 7 (1-4) (1920) 1-57.
- [4] P.D. Lax, Functional Analysis, John Wiley & Sons, New York, Chichester, 2002.
- [5] H. Poincaré, Sur les équations aux dérivées partielles de la physique mathématique, Amer. J. Math. 12 (3) (1890) 211–294.
- [6] H.F. Weinberger, Variational Methods for Eigenvalue Approximation, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1974.
- [7] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann. 71 (1912) 441–479.