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We discuss optimal L2-approximations of functions controlled in the H1-norm. We prove 
that the basis of eigenfunctions of the Laplace operator with Dirichlet boundary condition 
is the only orthonormal basis (bi) of L2 that provides an optimal approximation in the 
sense of∥∥∥∥∥ f −

n∑
i=1

( f ,bi)bi

∥∥∥∥∥
2

L2

≤ ‖∇ f ‖2
L2

λn+1
∀ f ∈ H1

0(�), ∀n ≥ 1.

This solves an open problem raised by Y. Aflalo, H. Brezis, A. Bruckstein, R. Kimmel, 
and N. Sochen (Best bases for signal spaces, C. R. Acad. Sci. Paris, Ser. I 354 (12) (2016) 
1155–1167).

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On s’intéresse à l’approximation optimale pour la norme L2 de fonctions contrôlées en 
norme H1. On prouve que la base des fonctions propres du laplacien avec condition de 
Dirichlet au bord est l’unique base orthonormale (bi) de L2 qui réalise une approximation 
optimale au sens de∥∥∥∥∥ f −

n∑
i=1

( f ,bi)bi

∥∥∥∥∥
2

L2

≤ ‖∇ f ‖2
L2

λn+1
∀ f ∈ H1

0(�), ∀n ≥ 1.

Ceci résout un problème ouvert posé par Y. Aflalo, H. Brezis, A. Bruckstein, R. Kimmel 
et N. Sochen (Best bases for signal spaces, C. R. Acad. Sci. Paris, Ser. I 354 (12) (2016) 
1155–1167).

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction and main result

This note is a follow-up of the papers by Y. Aflalo, H. Brezis and R. Kimmel [2] and Y. Aflalo, H. Brezis, A. Bruckstein, R. 
Kimmel and N. Sochen [1].

Let � ⊂ R
N be a smooth bounded domain. Let e = (ei) be an orthonormal basis of L2(�) consisting of the eigenfunctions 

of the Laplace operator with Dirichlet boundary condition:{
−�ei = λiei in �,

ei = 0 on ∂�.
(1)

where 0 < λ1 < λ2 ≤ λ3 ≤ · · · is the ordered sequence of eigenvalues repeated according to their multiplicity.
We first recall a very standard result:

Theorem 1.1. We have, for all n ≥ 1,∥∥∥∥∥ f −
n∑

i=1

( f , ei)ei

∥∥∥∥∥
2

L2

≤ ‖ ∇ f ‖2
L2

λn+1
∀ f ∈ H1

0(�). (2)

Here and throughout the rest of this paper (·, ·) denotes the scalar product in L2(�).
Indeed, we may write∥∥∥∥∥ f −

n∑
i=1

( f , ei)ei

∥∥∥∥∥
2

L2

=
∥∥∥∥∥∥

+∞∑
i=n+1

( f , ei)ei

∥∥∥∥∥∥
2

L2

=
+∞∑

i=n+1

( f , ei)
2. (3)

On the other hand,

‖∇ f ‖2
L2 =

+∞∑
i=1

λi( f , ei)
2 ≥

+∞∑
i=n+1

λi( f , ei)
2 ≥ λn+1

+∞∑
i=n+1

( f , ei)
2. (4)

Combining (3) and (4) yields (2). �
The authors of [2] and [1] have investigated the “optimality” in various directions of the basis (ei), with respect to 

inequality (2). Here is one of their results restated in a slightly more general form.

Theorem 1.2 (Theorem 3.1 in [2]). There is no integer n ≥ 1, no constant 0 ≤ α < 1 and no sequence (ψi)1≤i≤n in L2(�) such that∥∥∥∥∥ f −
n∑

i=1

( f ,ψi)ψi

∥∥∥∥∥
2

L2

≤ α

λn+1
‖∇ f ‖2

L2 ∀ f ∈ H1
0(�). (5)

The proof in [2] relies on the Fischer–Courant max–min principle (see Remark 3.3 below). For the convenience of 
the reader, we present a very elementary proof based on a simple and efficient device originally due to H. Poincaré [5, 
pp. 249–250] (and later rediscovered by many people, e.g., H. Weyl [7, p. 445] and R. Courant [3, pp. 17–18]; see also H. 
Weinberger [6, p. 56] and P. Lax [4, p. 319]).

Suppose not, and set

f = c1e1 + c2e2 + · · · + cnen + cn+1en+1 (6)

where c = (c1, c2, · · · , cn, cn+1) ∈R
n+1. The under-determined linear system

( f ,ψi) = 0, ∀i = 1, · · · ,n (7)

of n equations with n + 1 unknowns admits a non-trivial solution. Inserting f into (5) yields

λn+1

n+1∑
i=1

c2
i ≤ α

n+1∑
i=1

λic
2
i ≤ αλn+1

n+1∑
i=1

c2
i . (8)

Therefore 
∑n+1

i=1 c2
i = 0 and thus c = 0. A contradiction. This proves Theorem 1.2. �

The authors of [1] were thus led to investigate the question of whether inequality (2) holds only for the orthonormal 
bases consisting of eigenfunctions corresponding to ordered eigenvalues. They established that a “discrete”, i.e., finite-
dimensional, version does hold; see [1, Theorem 2.1] and Remark 3.2 below. But their proof of “uniqueness” could not 
be adapted to the infinite-dimensional case (because it relied on a “descending” induction). It was raised there as an open 
problem (see [1, p. 1166]). Our next result solves this problem.
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Theorem 1.3. Let (bi) be an orthonormal basis of L2(�) such that, for all n ≥ 1,∥∥∥∥∥ f −
n∑

i=1

( f ,bi)bi

∥∥∥∥∥
2

L2

≤ ‖∇ f ‖2
L2

λn+1
∀ f ∈ H1

0(�). (9)

Then, (bi) consists of an orthonormal basis of eigenfunctions of −� with corresponding eigenvalues (λi).

2. Proof of Theorem 1.3

A basic ingredient of the argument is the following lemma:

Lemma 2.1. Assume that (9) holds for all n ≥ 1 and all f ∈ H1
0(�), and that

λi < λi+1 (10)

for some i ≥ 1. Then

(b j, ek) = 0, ∀ j,k such that 1 ≤ j ≤ i < k. (11)

Proof. Fix k > i. Let l be the largest integer l ≤ k − 1 such that

λl < λl+1. (12)

Clearly

i ≤ l (13)

and

λl+1 = λl+2 = · · · = λk. (14)

Applying (9) for n = l, we get∥∥∥∥∥ f −
l∑

i=1

( f ,bi)bi

∥∥∥∥∥
2

L2

≤ ‖∇ f ‖2
L2

λl+1
∀ f ∈ H1

0(�). (15)

We use again Poincaré’s “magic trick”. Take f of the form

f = c1e1 + · · · + clel + cek (16)

such that

( f ,b j) = 0 ∀ j = 1, · · · , l. (17)

This is a system of l linear equations with l + 1 unknowns, so that there are nontrivial solutions. We may as well assume 
that

c2
1 + · · · + c2

l + c2 = 1. (18)

By (15) and (14), we have

λl+1 ≤ λ1c2
1 + · · · + λlc

2
l + λkc2 = λ1c2

1 + · · · + λlc
2
l + λl+1c2. (19)

From (18) we get

λl+1(c2
1 + · · · + c2

l ) ≤ λ1c2
1 + · · · + λlc

2
l . (20)

Thus

(λl+1 − λ1)c2
1 + · · · + (λl+1 − λl)c2

l ≤ 0. (21)

By (12) the coefficients λl+1 − λi are positive for every i = 1, · · · , l. Therefore

c1 = · · · = cl = 0. (22)

Hence c = ±1 so that f = ±ek and by (17)

(b j, ek) = 0 ∀ j = 1, · · · , l. (23)

The conclusion follows from (23) and (13). �
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Before we present the proof in the general case, for the convenience of the reader, we start with the case of simple 
eigenvalues. Since λ1 < λ2 then, by the lemma,

(b1, ek) = 0 ∀k ≥ 2. (24)

Thus b1 = ±e1. Next we apply the lemma with λ2 < λ3. We have that

(b2, ek) = 0 ∀k ≥ 3. (25)

Also, we have that

(b2, e1) = ±(b2,b1) = 0. (26)

Therefore b2 = ±e2. Similarly, we have that bi = ±ei for i ≥ 3.
We now turn to the general case:

Proof of Theorem 1.3. As above we have b1 = ±e1. Consider the first index i ≥ 2 such that λi < λi+1. Call it i1. From the 
lemma we have that

(b j, ek) = 0 ∀ j,k such that 1 ≤ j ≤ i1 < k. (27)

Therefore b2, · · · , bi1 ∈ span(e2, · · · , ei1 ). Hence, each b j with 2 ≤ j ≤ i1 is an eigenfunction of −� with corresponding 
eigenvalue λ = λ2 = · · · = λi1 . Therefore, due to dimensions, b2, · · · , bi1 is an orthonormal basis of

span(b2, · · · ,bi1) = span(e2, · · · , ei1) = ker(−� − λi1 I); (28)

in particular each

ek ∈ span(b1, · · · ,bi1) k = 1, · · · , i1. (29)

Consider the next block

λ = λi1+1 = · · · = λi2 < λi2+1. (30)

From the lemma we have that

(b j, ek) = 0 ∀ j,k such that 1 ≤ j ≤ i2 < k. (31)

We also know that for j ≥ i1 + 1,

(b j, ek) = 0 k = 1, · · · , i1 (32)

because of (29). Combining (31) and (32) yields

(b j)i1+1≤ j≤i2 ∈ span(e j)i1+1≤ j≤i2 . (33)

As above, we conclude, using (30), that bi1+1, · · · , bi2 is an orthonormal basis of

span(b j)i1+1≤ j≤i2 = span(e j)i1+1≤ j≤i2 = ker(−� − λi2 I). (34)

Similarly for the next blocks. �
3. Final remarks

Remark 3.1. We call the attention of the reader to the fact that the functions bi are only assumed to be in L2(�) and we 
deduce from Theorem 1.3 that (surprisingly) they belong to H1

0(�) ∩ C∞(�).

Remark 3.2. Theorem 1.3 holds in a more general setting. Let V and H be Hilbert spaces such that V ⊂ H with compact and 
dense inclusion (dim H ≤ +∞). Let a : V × V →R be a continuous bilinear symmetric form for which there exist constants 
C, α > 0 such that, for all v ∈ V ,

a(v, v) ≥ 0,

a(v, v) + C | v|2H ≥ α‖v‖2
V .

Let 0 ≤ λ1 ≤ λ2 ≤ · · · be the sequence of eigenvalues associated with the orthonormal (in H) eigenfunctions e1, e2, · · · ∈ V , 
i.e.,

a(ei, v) = λi(ei, v) ∀v ∈ V ,

where (·, ·) denotes the scalar product in H . We point out that, in this general setting, it may happen that λ1 = 0 (e.g., −�

with Neumann boundary conditions); and λ1 may have multiplicity > 1. Recall that, for every n ≥ 1 and f ∈ V :
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λn+1

∣∣∣∣∣ f −
n∑

i=1

(ei, f )ei

∣∣∣∣∣
2

H

≤ a( f , f ). (35)

Let (bi) be an orthonormal basis of H such that for all n ≥ 1 and f ∈ V

λn+1

∣∣∣∣∣ f −
n∑

i=1

(bi, f )bi

∣∣∣∣∣
2

H

≤ a( f , f ). (36)

Then, (bi) consists of an orthonormal basis of eigenfunctions of a with corresponding eigenvalues (λi). The proof is identical 
to the one above.

When dim H < +∞ and V = H , this result is originally due to [1]. The proof of rigidity was quite different and could 
not be adapted to the infinite-dimensional case. It was raised there as an open problem.

Remark 3.3. Recall that the usual Fischer–Courant max–min principle asserts that for every n ≥ 1, we have

λn+1 = max
M⊂L2(�)

M linear space
dim M=n

min
0 �= f ∈H1

0(�)

f ∈M⊥

‖∇ f ‖2
L2

‖ f ‖2
L2

, (37)

(see, e.g., [4] or [6]). Our technique sheds some light about the structure of the maximizers in (37). Let (bi) be an orthonor-
mal sequence in L2(�) such that, for every n ≥ 1,

λn+1 = min
0 �= f ∈H1

0(�)

f ∈M⊥
n

‖∇ f ‖2
L2

‖ f ‖2
L2

where Mn = span(b1,b2, · · · ,bn). (38)

Then, each bi is an eigenfunction associated with λi . This is an easy consequence of the proof of Theorem 1.3.

Remark 3.4 (rigidity of the tail). Assume that (9) holds only for n = k, k + 1, · · · . Let the eigenvalues be simple. Applying the 
same reasoning as in our proof gives

span(b1, · · · ,bn) = span(e1, · · · , en) n = k,k + 1, · · · (39)

The same argument as before yields bi = ±ei for i = k + 1, k + 2, · · · . Concerning the bi ’s for i ≤ k, we only know that 
b1, · · · , bk ∈ span(e1, · · · , ek) and therefore they are smooth. A similar result holds if the eigenvalues are not simple.

Remark 3.5. We now turn to the reverse situation, i.e., we assume that (9) holds only for 1 ≤ n ≤ k. In this case (9) yields 
very little information on the bi ’s. Consider for example the case n = k = 1. In other words, assume that b = b1 ∈ L2(�) is 
such that ‖b‖L2 = 1 and

‖ f − ( f ,b)b‖2
L2 ≤ 1

λ2
‖∇ f ‖2

L2 ∀ f ∈ H1
0(�). (40)

Of course, (40) holds with b = e1. From Lemma 2.1, we know that (40) implies that

(e2,b) = 0. (41)

Clearly, (41) is not sufficient. Indeed, take b = e3. Then, (41) holds but (40) fails for f = e1. We do not have a simple 
characterization of the functions b satisfying (40). But we can construct a large family of functions b (which need not be 
smooth) such that (40) holds. Assume that 0 < λ1 ≤ λ2 < λ3. Let χ ∈ L2(�) be any function such that

(e1,χ) = 0, (42)

(e2,χ) = 0, (43)

‖χ‖2
L2 = 1. (44)

Set

b = αe1 + εχ α2 + ε2 = 1, with 0 < ε < 1. (45)
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Claim: there exists ε0 > 0, depending on (λi)1≤i≤3, such that for every 0 < ε < ε0 (40) holds. We have, for f ∈ H1
0(�), and 

with ci = ( f , ei),

1

λ2
‖∇ f ‖2

L2 − ‖ f − ( f ,b)b‖2
L2 = 1

λ2
‖∇ f ‖2

L2 −
(
‖ f ‖2

L2 − ( f ,b)2
)

(46)

=
+∞∑
i=1

λi

λ2
c2

i −
+∞∑
i=1

c2
i + ( f ,b)2. (47)

On the other hand

( f ,b)2 = (α( f , e1) + ε( f ,χ))2 (48)

= α2c2
1 + 2αε( f , e1)( f ,χ) + ε2( f ,χ)2 (49)

= α2c2
1 + 2αε( f − c2e2, e1)( f − c2e2,χ) + ε2( f ,χ)2 (50)

≥ α2c2
1 − 2ε‖ f − c2e2‖2

L2 (51)

= α2c2
1 − 2ε

∑
i �=2

c2
i . (52)

Going back to (47), using (45) and choosing ε < ε0 small enough, yields

1

λ2
‖∇ f ‖2

L2 − ‖ f − ( f ,b)b‖2
L2

≥
(

λ1

λ2
− 2ε − ε2

)
c2

1 +
+∞∑
i=3

(
λi

λ2
− 1 − 2ε

)
c2

i (53)

≥ 0. (54)

Remark 3.6. In the general setting of Remark 3.2, it may happen that 0 = λ1 < λ2. Suppose now that b ∈ H is such that 
‖b‖H = 1 and

‖ f − ( f ,b)b‖2
H ≤ 1

λ2
a( f , f ) ∀ f ∈ V . (55)

Claim: we have b = ±e1. Indeed, let f = e1 in (55) we have that

‖ e1 − (e1,b)b‖2
H ≤ λ1

λ2
= 0. (56)

Therefore b = ±e1.
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