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r é s u m é

Nous prouvons une limite inférieure optimale pour la meilleure constante dans une classe 
d’inégalités de Poincaré anisotropes pondérées.
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1. Introduction

In this paper, we prove a sharp lower bound for the optimal constant μp,H,ω(�) in the Poincaré-type inequality

inf
t∈R‖u − t‖L p

ω(�) ≤ 1

[μp,H,ω(�)] 1
p

‖H(∇u)‖L p
ω(�),

with 1 < p < +∞; � is a bounded convex domain of Rn , H ∈ H (Rn), where H (Rn) is the set of lower semicontinuous 
functions, positive in Rn \ {0} and positively 1-homogeneous, and ω is a log-concave function.

If H is the Euclidean norm of Rn and ω = 1, then μp(�) = μp,E,ω(�) is the first nontrivial eigenvalue of the Neumann 
p-Laplacian:{ −�pu = μp|u|p−2u in �,

|∇u|p−2 ∂u
∂ν = 0 on ∂�.
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Then, for a convex set �, it holds that

μp(�) ≥
(

πp

DE (�)

)p

,

where

πp = 2

+∞∫
0

1

1 + 1
p−1 sp

ds = 2π
(p − 1)

1
p

p sin π
p

, DE (�) being the Euclidean diameter of �.

This estimate, proved in the case p = 2 in [13] (see also [3]), has been generalized to the case p �= 2 in [1,10,12,15] and 
for p → ∞ in [9,14]. Moreover, the constant 

(
πp

DE (�)

)p
is the optimal constant of the one-dimensional Poincaré–Wirtinger 

inequality, with ω = 1, on a segment of length DE (�). When p = 2 and ω = 1, in [4] an extension of the estimate in the 
class of suitable non-convex domains has been proved.

The aim of the paper is to prove an analogous sharp lower bound for μp,H,ω(�), in a general anisotropic case. More 
precisely, our main result is:

Theorem 1. Let H ∈ H (Rn), Ho be its polar function. Let us consider a bounded convex domain � ⊂ R
n, 1 < p < ∞, and take a 

positive log-concave function ω defined in �. Then, given that

μp,H,ω(�) = inf
u∈W 1,∞(�)∫

� |u|p−2uω dx=0

∫
�

H(∇u)pω dx

∫
�

|u|pω dx
,

it holds that

μp,H,ω(�) ≥
(

πp

DH(�)

)p

, (1)

where DH(�) = supx,y∈� Ho(y − x).

This result has been proved in the case p = 2 and ω = 1, when H is a strongly convex, smooth norm of Rn in [17], with 
a completely different method than the one presented here.

In Section 2 below, we give the precise definition of Ho and give some details on the set H (Rn). In Section 3, we give 
the proof of the main result.

2. Notation and preliminaries

A function

ξ ∈R
n �→ H(ξ) ∈ [0,+∞[

belongs to the set H (Rn) if it verifies the following assumptions:

(1) H is positively 1-homogeneous, that is

if ξ ∈R
n and t ≥ 0, then H(tξ) = tH(ξ);

(2) if ξ ∈R
n \ {0}, then H(ξ) > 0;

(3) H is lower semi-continuous.

If H ∈ H (Rn), properties (1), (2), (3) give that there exists a positive constant a such that

a|ξ | ≤ H(ξ), ξ ∈ R
n.

The polar function Ho : Rn → [0, +∞[ of H ∈ H (Rn) is defined as

Ho(η) = sup
ξ �=0

〈ξ,η〉
H(ξ)

.

The function Ho belongs to H (Rn). Moreover, it is convex on Rn , and then continuous. If H is convex, it holds that
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H(ξ) = (Ho)o(ξ) = sup
η �=0

〈ξ,η〉
Ho(η)

.

If H is convex and H(ξ) = H(−ξ) for all ξ ∈R
n , then H is a norm on Rn , and the same holds for Ho .

We recall that if H is a smooth norm of Rn such that ∇2(H2) is positive definite on Rn \ {0}, then H is called a Finsler 
norm on Rn .

If H ∈ H (Rn), by definition, we have

〈ξ,η〉 ≤ H(ξ)Ho(η), ∀ξ,η ∈R
n. (2)

Remark 2. Let H ∈ H (Rn), and consider the convex envelope of H, that is the largest convex function H such that H ≤H. 
It holds that H and H have the same polar function:

(H)o = Ho in R
n.

Indeed, being H ≤ H, by definition it holds that (H)o ≥ Ho . To show the reverse inequality, it is enough to prove that 
(Ho)o ≤ H. Then, being H the convex envelope of H, it must be (Ho)o ≤ H, that implies (H)o ≤ Ho . Denoting by G(x) =
(Ho)o(x), for any x there exists vx such that

G(x) = 〈x, vx〉
Ho(vx)

, and 〈x, vx〉 ≤ Ho(vx)H(x), that implies G(x) ≤ H(x).

Let H ∈ H (Rn), and consider a bounded convex domain � of Rn . Throughout the paper DH(�) ∈]0, +∞[ will be

DH(�) = sup
x,y∈�

Ho(y − x).

We explicitly observe that since Ho is not necessarily even, in general Ho(y − x) �= Ho(x − y). When H is a norm, then 
DH(�) is the so-called anisotropic diameter of � with respect to Ho . In particular, if H = E is the Euclidean norm in Rn , 
then Eo = E and DE (�) is the standard Euclidean diameter of �. We refer the reader, for example, to [5,11] for remarkable 
examples of convex not even functions in H (Rn). On the other hand, in [16] some results on isoperimetric and optimal 
Hardy–Sobolev inequalities for a general function H ∈ H (Rn) have been proved, by using a generalization of the so-called 
convex symmetrization introduced in [2] (see also [6–8]).

Remark 3. In general, H and Ho are not rotational invariant. Anyway, if A ∈ S O (n), defining

HA(x) = H(Ax), (3)

and being AT = A−1, then HA ∈ H (Rn) and

(HA)o(ξ) = sup
x∈Rn\{0}

〈x, ξ〉
HA(x)

= sup
y∈Rn\{0}

〈AT y, ξ〉
H(y)

= sup
y∈Rn\{0}

〈y, Aξ〉
H(y)

= (Ho)A(ξ).

Moreover,

DHA (AT�) = sup
x,y∈AT�

(Ho)A(y − x) = sup
x̄, ȳ∈�

Ho( ȳ − x̄) = DH(�). (4)

3. Proof of the Payne–Weinberger inequality

In this section, we state and prove Theorem 1. To this aim, the following Wirtinger-type inequality, contained in [12] is 
needed.

Proposition 4. Let f be a positive log-concave function defined on [0, L] and p > 1, then

inf

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

L∫
0

|u′|p f dx

L∫
0

|u|p f dx

, u ∈ W 1,p(0, L),

L∫
0

|u|p−2u f dx = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

≥ πp
p

Lp
.

The proof of the main result is based on a slicing method introduced in [13] in the Laplacian case. The key ingredient is 
the following Lemma. For a proof, we refer the reader, for example, to [13,3,12].
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Lemma 5. Let � be a convex set in Rn having (Euclidean) diameter DE (�), let ω be a positive log-concave function on �, and let u
be any function such that 

∫
�

|u|p−2uω dx = 0. Then, for all positive ε, there exists a decomposition of the set � in mutually disjoint 
convex sets �i (i = 1, . . . , k) such that

k⋃
i=1

�i = �

∫
�i

|u|p−2u ω dx = 0

and for each i there exists a rectangular system of coordinates such that

�i ⊂ {(x1, . . . , xn) ∈R
n : 0 ≤ x1 ≤ di, |xl| ≤ ε, l = 2, . . . ,n},

where di ≤ DE (�), i = 1, . . . , k.

Proof of Theorem 1. By density, it is sufficient to consider a smooth function u with uniformly continuous first derivatives 
and 

∫
�

|u|p−2u ω dx = 0.
Hence, we can decompose the set � in k convex domains �i as in Lemma 5. In order to prove (1), we will show that, 

for any i ∈ {1, . . . , k}, it holds that∫
�i

H p(∇u)ω dx ≥ πp
p

DH(�)p

∫
�i

|u|pω dx. (5)

By Lemma 5, for each fixed i ∈ {1, . . . , k}, there exists a rotation Ai ∈ S O (n) such that

Ai�i ⊂ {(x1, . . . , xn) ∈R
n : 0 ≤ x1 ≤ di, |xl| ≤ ε, l = 2, . . . ,n}.

By changing the variable y = Ai x, recalling the notation (3) and using (4), it holds that∫
�i

Hp(∇u(x))ω(x)dx =
∫

Ai�i

HAT
i
(∇u(AT

i y))p ω(AT
i y)dy; DH(�) = DH

AT
i
(Ai�).

We deduce that it is not restrictive to suppose that for any i ∈ {1, . . . , n} Ai is the identity matrix, and the decomposition 
holds with respect to the x1-axis.

Now we may argue as in [12]. For any t ∈ [0, di] let us denote by v(t) = u(t, 0, . . . , 0), and f i(t) = gi(t)ω(t, 0, . . . , 0), 
where gi(t) will be the (n − 1) volume of the intersection of �i with the hyperplane x1 = t . By the Brunn–Minkowski 
inequality, gi , and then f i , is a log-concave function in [0, di]. Since u, ux1 and ω are uniformly continuous in �, there 
exists a modulus of continuity η(·) with η(ε) ↘ 0 for ε → 0, independent of the decomposition of � and such that∣∣∣∣∣∣∣

∫
�i

|ux1 |pω dx −
di∫

0

|v ′|p fi dt

∣∣∣∣∣∣∣ ≤ η(ε)|�i |,

∣∣∣∣∣∣∣
∫
�i

|u|pω dx −
di∫

0

|v|p fi dt

∣∣∣∣∣∣∣ ≤ η(ε)|�i |,

and ∣∣∣∣∣∣∣
di∫

0

|v|p−2 v fi dt

∣∣∣∣∣∣∣ ≤ η(ε)|�i |.

Now, by property (2), we deduce that for any vector η ∈R
n

|〈∇u, η〉| ≤ H(∇u)max{Ho(η),Ho(−η)}.
Then choosing η = e1 and denoting by M = max{Ho(e1), Ho(−e1)}, Proposition 4 gives

∫
�i

Hp(∇u)ω dx ≥ 1

M p

∫
�i

|ux1 |pω dx ≥ 1

M p

di∫
0

|v ′|p fi dt − η(ε)|�i |
M p

≥ πp

dp
i M p

di∫
0

|v|p fi dt + Cη(ε)|�i | ≥ πp
p

dp
i M p

∫
�i

|u|pω dx + Cη(ε)|�i |,



752 F. Della Pietra et al. / C. R. Acad. Sci. Paris, Ser. I 355 (2017) 748–752
where C is a constant which does not depend on ε. Being di ≤ DE (�), and then di M ≤ DH(�), by letting ε to zero, we 
get (5). Hence, by summing over i, we get the thesis.

Remark 6. In order to prove an estimate for μp,H,ω , we could use directly property (2) with v = ∇u
|∇u| , and the Payne–

Weinberger inequality in the Euclidean case, obtaining that∫
�

Hp(∇u)ω dx ≥
∫
�

|∇u|p

Ho(v)p
ω dx ≥ πp

p

DE (�)pHo(vm)p

∫
�

|u|pω dx,

where Ho(vm) = max|ν|=1
Ho(ν). However, we have a worse estimate than (1) because DE (�) · Ho(vm) is, in general, strictly 

larger than DH(�), as shown in the following example.

Example 1. Let H(x, y) = √
a2x2 + b2 y2, with a < b. Then H is a even, smooth norm with Ho(x, y) =

√
x2

a2
+ y2

b2
and the 

Wulff shapes {Ho(x, y) < R}, R > 0, are ellipses. Clearly, we have:

DE (�) = 2b and DH(�) = 2.

Let us compute Ho(vm). We have:

max|v|=1
Ho(v) = max

ϑ∈[0,2π]

√
(cosϑ)2

a2
+ (sinϑ)2

b2
= Ho(0,±1) = 1

a
.

Then DE (�) ·Ho(vm) = 2
b

a
> 2.
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