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RESUME

Nous prouvons une limite inférieure optimale pour la meilleure constante dans une classe
d’inégalités de Poincaré anisotropes pondérées.
© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this paper, we prove a sharp lower bound for the optimal constant (tp 7(,,(£2) in the Poincaré-type inequality

inf llu _t”LF’(Q) = 1 ”H(Vu)”]_p(g)s
ek T (@17 !
with 1 < p < 4+o00; Q is a bounded convex domain of R", H € 7 (R"), where .77 (R") is the set of lower semicontinuous
functions, positive in R" \ {0} and positively 1-homogeneous, and w is a log-concave function.

If # is the Euclidean norm of R" and w =1, then u, () = up £,,(S2) is the first nontrivial eigenvalue of the Neumann

p-Laplacian:
—Apu=puplulP~2u ingQ,

|Vu[P=23L =0 on 2.

E-mail addresses: f.dellapietra@unina.it (FE. Della Pietra), nunzia.gavitone@unina.it (N. Gavitone), gianpaolo.piscitelli@unina.it (G. Piscitelli).

http://dx.doi.org/10.1016/j.crma.2017.06.005
1631-073X/© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.


http://dx.doi.org/10.1016/j.crma.2017.06.005
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:f.dellapietra@unina.it
mailto:nunzia.gavitone@unina.it
mailto:gianpaolo.piscitelli@unina.it
http://dx.doi.org/10.1016/j.crma.2017.06.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crma.2017.06.005&domain=pdf

FE Della Pietra et al. / C. R. Acad. Sci. Paris, Ser. I 355 (2017) 748-752 749

Then, for a convex set £, it holds that

p
upm)z( T ) :
Dg(S2)

where

+00 1
1 -1
Ty =2 / 4lds = ZRH, D¢ (€2) being the Euclidean diameter of 2.
1+ pjsp psiny

This estimate, proved in the case p =2 in [13] (see also [3]), has been generalized to the case p # 2 in [1,10,12,15] and
P
for p — oo in [9,14]. Moreover, the constant (%) is the optimal constant of the one-dimensional Poincaré-Wirtinger

inequality, with w =1, on a segment of length D¢ (2). When p =2 and w =1, in [4] an extension of the estimate in the
class of suitable non-convex domains has been proved.

The aim of the paper is to prove an analogous sharp lower bound for wp % ,(£2), in a general anisotropic case. More
precisely, our main result is:

Theorem 1. Let H € 7 (R"), H° be its polar function. Let us consider a bounded convex domain Q C R", 1 < p < oo, and take a
positive log-concave function w defined in 2. Then, given that

/ HVu)Pwdx

: Q
pooo@= ot R
uew%°( p
Jo ulP~2uw dx=0 /|u| wdx
Q

it holds that

o\’
pona@= (52 ) 0

where D3;(Q2) = supy yeq HO (¥ — X).
This result has been proved in the case p =2 and w =1, when # is a strongly convex, smooth norm of R" in [17], with
a completely different method than the one presented here.

In Section 2 below, we give the precise definition of #° and give some details on the set .#(R"). In Section 3, we give
the proof of the main result.

2. Notation and preliminaries

A function
£eR"— H(E) €[0, +o00[

belongs to the set 7 (R") if it verifies the following assumptions:
(1) H is positively 1-homogeneous, that is

if¢ eR"and t > 0, then H(t&) = tH(£);

(2) if £ e R"\ {0}, then H (&) > 0;
(3) H is lower semi-continuous.

If H € 2 (R"), properties (1), (2), (3) give that there exists a positive constant a such that
al| < H(E), &eR"
The polar function H°: R" — [0, +o0o[ of H € 77 (R") is defined as

, )
H = .
(=P % &)

The function H° belongs to 7 (R"). Moreover, it is convex on R", and then continuous. If A is convex, it holds that
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0\0 (&, m)
HE) = (H = )
&) =MH"®) 2113 70

If H is convex and H(§) = H(—&) for all £ € R", then H is a norm on R", and the same holds for H°.

We recall that if 7{ is a smooth norm of R" such that V2(#?) is positive definite on R" \ {0}, then 7 is called a Finsler
norm on R",

If H € 7 (R™), by definition, we have

& <=HEH (), V& neR (2)

Remark 2. Let H € J#(R"), and consider the convex envelope of H, that is the largest convex function H such that H < H.
It holds that 4 and #H have the same polar function:
(H)°=H° inR".

Indeed, being H < H, by definition it holds that (H)° > H°. To show the reverse inequality, it is enough to prove that
(H°)° < H. Then, being H the convex envelope of H, it must be (#°)° < H, that implies (#)° < H°. Denoting by G(x) =
(H°)°(x), for any x there exists vy such that

%)
T W)

G(x) and (x,Vy) < H°(Vy)H(x), thatimplies G(x) < H(x).

Let H € ##(R"), and consider a bounded convex domain  of R". Throughout the paper D (2) €]0, +oo[ will be

D3() = sup H°(y —X).
X,ye
We explicitly observe that since #H° is not necessarily even, in general H°(y — x) # H°(x — y). When H is a norm, then
D(S2) is the so-called anisotropic diameter of © with respect to H°. In particular, if H = £ is the Euclidean norm in R",
then £° =& and Dg(Q) is the standard Euclidean diameter of 2. We refer the reader, for example, to [5,11] for remarkable
examples of convex not even functions in 7 (R"). On the other hand, in [16] some results on isoperimetric and optimal
Hardy-Sobolev inequalities for a general function H € #(R") have been proved, by using a generalization of the so-called
convex symmetrization introduced in [2] (see also [6-8]).

Remark 3. In general, H and #° are not rotational invariant. Anyway, if A € SO (n), defining

Ha(x) = H(Ax), (3)
and being AT = A~1, then H4 € 2 (R") and
0 (x,8) (ATy, €) (y, A§) 0
(HaY'@®) xei&l’}{’{o} Ha(x) yeSRu"I\J{O} H(y) yeislilg{O} H(y) (H)4)
Moreover,
D3, (ATQ) = sup (H*)a(y —x) = sup H°(y —X) = Dy (). (4)

x,yeATQ X,yeQ
3. Proof of the Payne-Weinberger inequality

In this section, we state and prove Theorem 1. To this aim, the following Wirtinger-type inequality, contained in [12] is
needed.

Proposition 4. Let f be a positive log-concave function defined on [0, L] and p > 1, then

L
[ s ax L p
inf OLi, uewhP(, L), /|u|p_2ufdx=0 zf—g.
/Iul”fdx °
0

The proof of the main result is based on a slicing method introduced in [13] in the Laplacian case. The key ingredient is
the following Lemma. For a proof, we refer the reader, for example, to [13,3,12].
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Lemma 5. Let 2 be a convex set in R" having (Euclidean) diameter D ¢(2), let w be a positive log-concave function on €2, and let u
be any function such that fQ |u|P~2uwdx = 0. Then, for all positive €, there exists a decomposition of the set  in mutually disjoint
convex sets Q; (i=1,...,k) such that

and for each i there exists a rectangular system of coordinates such that
Qi C{(X1,....%) ER": 0<x <dj, x| <e&,1=2,...,n},
whered; < Dg(2),i=1,... k.
Proof of Theorem 1. By density, it is sufficient to consider a smooth function u with uniformly continuous first derivatives
and [, [ulP2uwdx=0.

Hence, we can decompose the set © in k convex domains €2; as in Lemma 5. In order to prove (1), we will show that,
for any i € {1, ...,k}, it holds that

m
HP (Vu)wdx > ————— | |[u|Pwdx. (5)
D4,(S2)P
Qi Q;

By Lemma 5, for each fixed i € {1, ..., k}, there exists a rotation A; € SO (n) such that
AiQiC{(X1,...,Xn)€Rn: 0<x;<dj, |xj] <&, 1=2,...,n}.
By changing the variable y = A;x, recalling the notation (3) and using (4), it holds that

/H”(VU(X))G)(X) dx= / HAI_T(VU(A,»T)’))" w(A]y)dy: D3(€2) = D3 1 (Ai€2).

Q; AiQ |
We deduce that it is not restrictive to suppose that for any i € {1,...,n} A; is the identity matrix, and the decomposition
holds with respect to the x;-axis.

Now we may argue as in [12]. For any t € [0, d;] let us denote by v(t) = u(t,0,...,0), and fi(t) = gi(t)w(t,0,...,0),
where g;i(t) will be the (n — 1) volume of the intersection of Q; with the hyperplane x; =t. By the Brunn-Minkowski
inequality, g;, and then f;, is a log-concave function in [0, d;]. Since u, uy, and @ are uniformly continuous in €2, there
exists a modulus of continuity 7(-) with n(¢) N\, 0 for ¢ — 0, independent of the decomposition of & and such that

d; d;
[Ilelpde—/IV'lpfidf < n(&)|%4l, /|u|1’a)dx—/|v|pf,-dt < n(&)|%4l,
Qi 0 Qi 0

and

d;
f|v|”*2vf,-dt < ()|l
0

Now, by property (2), we deduce that for any vector n € R"
[(Vu, n)| < H(Vu) max{H°(n), H* (=n)}.
Then choosing n = ey and denoting by M = max{H°(e1), H°(—e1)}, Proposition 4 gives

d;
1 1 n(&)|€24]
p . p . /\P f. _
/’H (Vu)wdx > MP/|UX1| wdx > Mp/lvl fidt MP
Q; Q; 0
d; »
=y /|V|pfidf+C77(8)|Qi|> 2 flul"wdx%n(e)mn
~dPmp ~dPmp ’
0 Qi
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where C is a constant which does not depend on €. Being d; < Dg(2), and then d;M < Dy (R2), by letting ¢ to zero, we
get (5). Hence, by summing over i, we get the thesis.

Remark 6. In order to prove an estimate for 1, 7/ ,, we could use directly property (2) with v = ;—Z‘, and the Payne-

Weinberger inequality in the Euclidean case, obtaining that

|Vul|P h
P(Vuwdx > d Pwdx,
/H (Vu)w X‘/H"(v)l’w X > De ()P HO ()P |[ul wdx
Q Q Q

where H’(viy) = ‘mla)%’;'-l”(v). However, we have a worse estimate than (1) because D¢ () - H°(vyy) is, in general, strictly
V|=
larger than D (£2), as shown in the following example.

2 2

Example 1. Let H(x, y) = /a?x2 +b2y2, with a < b. Then H is a even, smooth norm with H°(x, y) = 2—2 + Z—Z and the
Wulff shapes {H°(x, y) < R}, R > 0, are ellipses. Clearly, we have:
De(Q)=2b and Dy (Q)=2.

Let us compute H°(v,;). We have:

0 (cos®)2  (sin®)?
max H"(v) = max +
V=1 9e[0,2m] a? b2

_ a0 _1
=H°(0, £1) = —.
a

b
Then Dg (%) H(vm) =2 > 2.
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