Mathematical analysis/Partial differential equations

A sharp weighted anisotropic Poincaré inequality for convex domains

Une inégalité de Poincaré anisotrope pondérée pour les domaines convexes

Francesco Della Pietra, Nunzia Gavitone, Gianpaolo Piscitelli
Dipartimento di Matematica e Applicazioni "R. Caccioppoli", Università degli Studi di Napoli Federico II, Complesso Monte S. Angelo, via Cintia, 80126 Napoli, Italy

A R T I C L E I N F O

Article history:

Received 9 April 2017
Accepted 7 June 2017
Available online 27 June 2017
Presented by Haïm Brézis

A B S T R A C T
We prove an optimal lower bound for the best constant in a class of weighted anisotropic Poincaré inequalities.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Nous prouvons une limite inférieure optimale pour la meilleure constante dans une classe d'inégalités de Poincaré anisotropes pondérées.
© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this paper, we prove a sharp lower bound for the optimal constant $\mu_{p, \mathcal{H}, \omega}(\Omega)$ in the Poincaré-type inequality

$$
\inf _{t \in \mathbb{R}}\|u-t\|_{L_{\omega}^{p}(\Omega)} \leq \frac{1}{\left[\mu_{p, \mathcal{H}, \omega}(\Omega)\right]^{\frac{1}{p}}}\|\mathcal{H}(\nabla u)\|_{L_{\omega}^{p}(\Omega)}
$$

with $1<p<+\infty$; Ω is a bounded convex domain of $\mathbb{R}^{n}, \mathcal{H} \in \mathscr{H}\left(\mathbb{R}^{n}\right)$, where $\mathscr{H}\left(\mathbb{R}^{n}\right)$ is the set of lower semicontinuous functions, positive in $\mathbb{R}^{n} \backslash\{0\}$ and positively 1-homogeneous, and ω is a log-concave function.

If \mathcal{H} is the Euclidean norm of \mathbb{R}^{n} and $\omega=1$, then $\mu_{p}(\Omega)=\mu_{p, \mathcal{E}, \omega}(\Omega)$ is the first nontrivial eigenvalue of the Neumann p-Laplacian:

$$
\begin{cases}-\Delta_{p} u=\mu_{p}|u|^{p-2} u & \text { in } \Omega \\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu}=0 & \text { on } \partial \Omega\end{cases}
$$

[^0]Then, for a convex set Ω, it holds that

$$
\mu_{p}(\Omega) \geq\left(\frac{\pi_{p}}{D_{\mathcal{E}}(\Omega)}\right)^{p}
$$

where

$$
\pi_{p}=2 \int_{0}^{+\infty} \frac{1}{1+\frac{1}{p-1} s^{p}} \mathrm{~d} s=2 \pi \frac{(p-1)^{\frac{1}{p}}}{p \sin \frac{\pi}{p}}, \quad D_{\mathcal{E}}(\Omega) \text { being the Euclidean diameter of } \Omega
$$

This estimate, proved in the case $p=2$ in [13] (see also [3]), has been generalized to the case $p \neq 2$ in $[1,10,12,15]$ and for $p \rightarrow \infty$ in [9,14]. Moreover, the constant $\left(\frac{\pi_{p}}{D_{\mathcal{E}}(\Omega)}\right)^{p}$ is the optimal constant of the one-dimensional Poincaré-Wirtinger inequality, with $\omega=1$, on a segment of length $D_{\mathcal{E}}(\Omega)$. When $p=2$ and $\omega=1$, in [4] an extension of the estimate in the class of suitable non-convex domains has been proved.

The aim of the paper is to prove an analogous sharp lower bound for $\mu_{p, \mathcal{H}, \omega}(\Omega)$, in a general anisotropic case. More precisely, our main result is:

Theorem 1. Let $\mathcal{H} \in \mathscr{H}\left(\mathbb{R}^{n}\right)$, \mathcal{H}^{0} be its polar function. Let us consider a bounded convex domain $\Omega \subset \mathbb{R}^{n}, 1<p<\infty$, and take a positive log-concave function ω defined in Ω. Then, given that

$$
\mu_{p, \mathcal{H}, \omega}(\Omega)=\inf _{\substack{u \in W^{1, \infty}(\Omega) \\ \int_{\Omega}|u|^{p-2} u \omega \mathrm{~d} x=0}} \frac{\int_{\Omega} \mathcal{H}(\nabla u)^{p} \omega \mathrm{~d} x}{\int_{\Omega}|u|^{p} \omega \mathrm{~d} x}
$$

it holds that

$$
\begin{equation*}
\mu_{p, \mathcal{H}, \omega}(\Omega) \geq\left(\frac{\pi_{p}}{D_{\mathcal{H}}(\Omega)}\right)^{p} \tag{1}
\end{equation*}
$$

where $D_{\mathcal{H}}(\Omega)=\sup _{x, y \in \Omega} \mathcal{H}^{0}(y-x)$.
This result has been proved in the case $p=2$ and $\omega=1$, when \mathcal{H} is a strongly convex, smooth norm of \mathbb{R}^{n} in [17], with a completely different method than the one presented here.

In Section 2 below, we give the precise definition of \mathcal{H}^{0} and give some details on the set $\mathscr{H}\left(\mathbb{R}^{n}\right)$. In Section 3, we give the proof of the main result.

2. Notation and preliminaries

A function

$$
\xi \in \mathbb{R}^{n} \mapsto \mathcal{H}(\xi) \in[0,+\infty[
$$

belongs to the set $\mathscr{H}\left(\mathbb{R}^{n}\right)$ if it verifies the following assumptions:
(1) \mathcal{H} is positively 1 -homogeneous, that is

$$
\text { if } \xi \in \mathbb{R}^{n} \text { and } t \geq 0 \text {, then } \mathcal{H}(t \xi)=t \mathcal{H}(\xi)
$$

(2) if $\xi \in \mathbb{R}^{n} \backslash\{0\}$, then $\mathcal{H}(\xi)>0$;
(3) \mathcal{H} is lower semi-continuous.

If $\mathcal{H} \in \mathscr{H}\left(\mathbb{R}^{n}\right)$, properties (1), (2), (3) give that there exists a positive constant a such that

$$
a|\xi| \leq \mathcal{H}(\xi), \quad \xi \in \mathbb{R}^{n}
$$

The polar function $\mathcal{H}^{0}: \mathbb{R}^{n} \rightarrow\left[0,+\infty\left[\right.\right.$ of $\mathcal{H} \in \mathscr{H}\left(\mathbb{R}^{n}\right)$ is defined as

$$
\mathcal{H}^{0}(\eta)=\sup _{\xi \neq 0} \frac{\langle\xi, \eta\rangle}{\mathcal{H}(\xi)}
$$

The function \mathcal{H}^{0} belongs to $\mathscr{H}\left(\mathbb{R}^{n}\right)$. Moreover, it is convex on \mathbb{R}^{n}, and then continuous. If \mathcal{H} is convex, it holds that

$$
\mathcal{H}(\xi)=\left(\mathcal{H}^{o}\right)^{o}(\xi)=\sup _{\eta \neq 0} \frac{\langle\xi, \eta\rangle}{\mathcal{H}^{o}(\eta)}
$$

If \mathcal{H} is convex and $\mathcal{H}(\xi)=\mathcal{H}(-\xi)$ for all $\xi \in \mathbb{R}^{n}$, then \mathcal{H} is a norm on \mathbb{R}^{n}, and the same holds for \mathcal{H}^{0}.
We recall that if \mathcal{H} is a smooth norm of \mathbb{R}^{n} such that $\nabla^{2}\left(\mathcal{H}^{2}\right)$ is positive definite on $\mathbb{R}^{n} \backslash\{0\}$, then \mathcal{H} is called a Finsler norm on \mathbb{R}^{n}.

If $\mathcal{H} \in \mathscr{H}\left(\mathbb{R}^{n}\right)$, by definition, we have

$$
\begin{equation*}
\langle\xi, \eta\rangle \leq \mathcal{H}(\xi) \mathcal{H}^{o}(\eta), \quad \forall \xi, \eta \in \mathbb{R}^{n} \tag{2}
\end{equation*}
$$

Remark 2. Let $\mathcal{H} \in \mathscr{H}\left(\mathbb{R}^{n}\right)$, and consider the convex envelope of \mathcal{H}, that is the largest convex function $\overline{\mathcal{H}}$ such that $\overline{\mathcal{H}} \leq \mathcal{H}$. It holds that $\overline{\mathcal{H}}$ and \mathcal{H} have the same polar function:

$$
(\overline{\mathcal{H}})^{o}=\mathcal{H}^{o} \quad \text { in } \mathbb{R}^{n} .
$$

Indeed, being $\overline{\mathcal{H}} \leq \mathcal{H}$, by definition it holds that $(\overline{\mathcal{H}})^{0} \geq \mathcal{H}^{0}$. To show the reverse inequality, it is enough to prove that $\left(\mathcal{H}^{0}\right)^{0} \leq \mathcal{H}$. Then, being $\overline{\mathcal{H}}$ the convex envelope of \mathcal{H}, it must be $\left(\mathcal{H}^{0}\right)^{0} \leq \overline{\mathcal{H}}$, that implies $(\overline{\mathcal{H}})^{0} \leq \mathcal{H}^{0}$. Denoting by $G(x)=$ $\left(\mathcal{H}^{0}\right)^{0}(x)$, for any x there exists \bar{v}_{x} such that

$$
G(x)=\frac{\left\langle x, \bar{v}_{x}\right\rangle}{\mathcal{H}^{0}\left(\bar{v}_{x}\right)}, \quad \text { and } \quad\left\langle x, \bar{v}_{x}\right\rangle \leq \mathcal{H}^{0}\left(\bar{v}_{x}\right) \mathcal{H}(x), \quad \text { that implies } \quad G(x) \leq \mathcal{H}(x)
$$

Let $\mathcal{H} \in \mathscr{H}\left(\mathbb{R}^{n}\right)$, and consider a bounded convex domain Ω of \mathbb{R}^{n}. Throughout the paper $\left.D_{\mathcal{H}}(\Omega) \in\right] 0,+\infty[$ will be

$$
D_{\mathcal{H}}(\Omega)=\sup _{x, y \in \Omega} \mathcal{H}^{0}(y-x)
$$

We explicitly observe that since \mathcal{H}^{0} is not necessarily even, in general $\mathcal{H}^{0}(y-x) \neq \mathcal{H}^{0}(x-y)$. When \mathcal{H} is a norm, then $D_{\mathcal{H}}(\Omega)$ is the so-called anisotropic diameter of Ω with respect to \mathcal{H}^{0}. In particular, if $\mathcal{H}=\mathcal{E}$ is the Euclidean norm in \mathbb{R}^{n}, then $\mathcal{E}^{0}=\mathcal{E}$ and $D_{\mathcal{E}}(\Omega)$ is the standard Euclidean diameter of Ω. We refer the reader, for example, to [5,11] for remarkable examples of convex not even functions in $\mathscr{H}\left(\mathbb{R}^{n}\right)$. On the other hand, in [16] some results on isoperimetric and optimal Hardy-Sobolev inequalities for a general function $\mathcal{H} \in \mathscr{H}\left(\mathbb{R}^{n}\right)$ have been proved, by using a generalization of the so-called convex symmetrization introduced in [2] (see also [6-8]).

Remark 3. In general, \mathcal{H} and \mathcal{H}^{0} are not rotational invariant. Anyway, if $A \in S O(n)$, defining

$$
\begin{equation*}
\mathcal{H}_{A}(x)=\mathcal{H}(A x) \tag{3}
\end{equation*}
$$

and being $A^{\mathrm{T}}=A^{-1}$, then $\mathcal{H}_{A} \in \mathscr{H}\left(\mathbb{R}^{n}\right)$ and

$$
\left(\mathcal{H}_{A}\right)^{o}(\xi)=\sup _{x \in \mathbb{R}^{n} \backslash\{0\}} \frac{\langle x, \xi\rangle}{\mathcal{H}_{A}(x)}=\sup _{y \in \mathbb{R}^{n} \backslash\{0\}} \frac{\left\langle A^{\mathrm{T}} y, \xi\right\rangle}{\mathcal{H}(y)}=\sup _{y \in \mathbb{R}^{n} \backslash\{0\}} \frac{\langle y, A \xi\rangle}{\mathcal{H}(y)}=\left(\mathcal{H}^{o}\right)_{A}(\xi)
$$

Moreover,

$$
\begin{equation*}
D_{\mathcal{H}_{A}}\left(A^{\mathrm{T}} \Omega\right)=\sup _{x, y \in A^{\mathrm{T}} \Omega}\left(\mathcal{H}^{0}\right)_{A}(y-x)=\sup _{\bar{x}, \bar{y} \in \Omega} \mathcal{H}^{0}(\bar{y}-\bar{x})=D_{\mathcal{H}}(\Omega) \tag{4}
\end{equation*}
$$

3. Proof of the Payne-Weinberger inequality

In this section, we state and prove Theorem 1. To this aim, the following Wirtinger-type inequality, contained in [12] is needed.

Proposition 4. Let f be a positive log-concave function defined on $[0, L]$ and $p>1$, then

$$
\inf \left\{\frac{\int_{0}^{L}\left|u^{\prime}\right|^{p} f \mathrm{~d} x}{\int_{0}^{L}|u|^{p} f \mathrm{~d} x}, u \in W^{1, p}(0, L), \int_{0}^{L}|u|^{p-2} u f \mathrm{~d} x=0\right\} \geq \frac{\pi_{p}^{p}}{L^{p}}
$$

The proof of the main result is based on a slicing method introduced in [13] in the Laplacian case. The key ingredient is the following Lemma. For a proof, we refer the reader, for example, to [13,3,12].

Lemma 5. Let Ω be a convex set in \mathbb{R}^{n} having (Euclidean) diameter $D_{\mathcal{E}}(\Omega)$, let ω be a positive log-concave function on Ω, and let u be any function such that $\int_{\Omega}|u|^{p-2} u \omega \mathrm{~d} x=0$. Then, for all positive ε, there exists a decomposition of the set Ω in mutually disjoint convex sets $\Omega_{i}(i=1, \ldots, k)$ such that

$$
\begin{aligned}
& \bigcup_{i=1}^{k} \overline{\Omega_{i}}=\bar{\Omega} \\
& \int_{\Omega_{i}}|u|^{p-2} u \omega \mathrm{~d} x=0
\end{aligned}
$$

and for each i there exists a rectangular system of coordinates such that

$$
\Omega_{i} \subset\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: 0 \leq x_{1} \leq d_{i},\left|x_{l}\right| \leq \varepsilon, l=2, \ldots, n\right\}
$$

where $d_{i} \leq D_{\mathcal{E}}(\Omega), i=1, \ldots, k$.
Proof of Theorem 1. By density, it is sufficient to consider a smooth function u with uniformly continuous first derivatives and $\int_{\Omega}|u|^{p-2} u \omega \mathrm{~d} x=0$.

Hence, we can decompose the set Ω in k convex domains Ω_{i} as in Lemma 5 . In order to prove (1), we will show that, for any $i \in\{1, \ldots, k\}$, it holds that

$$
\begin{equation*}
\int_{\Omega_{i}} H^{p}(\nabla u) \omega \mathrm{d} x \geq \frac{\pi_{p}^{p}}{D_{\mathcal{H}}(\Omega)^{p}} \int_{\Omega_{i}}|u|^{p} \omega \mathrm{~d} x \tag{5}
\end{equation*}
$$

By Lemma 5 , for each fixed $i \in\{1, \ldots, k\}$, there exists a rotation $A_{i} \in S O(n)$ such that

$$
A_{i} \Omega_{i} \subset\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: 0 \leq x_{1} \leq d_{i},\left|x_{l}\right| \leq \varepsilon, l=2, \ldots, n\right\}
$$

By changing the variable $y=A_{i} x$, recalling the notation (3) and using (4), it holds that

$$
\int_{\Omega_{i}} \mathcal{H}^{p}(\nabla u(x)) \omega(x) \mathrm{d} x=\int_{A_{i} \Omega_{i}} \mathcal{H}_{A_{i}^{\mathrm{T}}}\left(\nabla u\left(A_{i}^{\mathrm{T}} y\right)\right)^{p} \omega\left(A_{i}^{\mathrm{T}} y\right) \mathrm{d} y ; \quad D_{\mathcal{H}}(\Omega)=D_{\mathcal{H}_{A_{i}^{\mathrm{T}}}}\left(A_{i} \Omega\right)
$$

We deduce that it is not restrictive to suppose that for any $i \in\{1, \ldots, n\} A_{i}$ is the identity matrix, and the decomposition holds with respect to the x_{1}-axis.

Now we may argue as in [12]. For any $t \in\left[0, d_{i}\right]$ let us denote by $v(t)=u(t, 0, \ldots, 0)$, and $f_{i}(t)=g_{i}(t) \omega(t, 0, \ldots, 0)$, where $g_{i}(t)$ will be the ($n-1$) volume of the intersection of Ω_{i} with the hyperplane $x_{1}=t$. By the Brunn-Minkowski inequality, g_{i}, and then f_{i}, is a log-concave function in $\left[0, d_{i}\right]$. Since $u, u_{x_{1}}$ and ω are uniformly continuous in Ω, there exists a modulus of continuity $\eta(\cdot)$ with $\eta(\varepsilon) \searrow 0$ for $\varepsilon \rightarrow 0$, independent of the decomposition of Ω and such that

$$
\left.\left|\int_{\Omega_{i}}\right| u_{x_{1}}\right|^{p} \omega \mathrm{~d} x-\int_{0}^{d_{i}}\left|v^{\prime}\right|^{p} f_{i} \mathrm{~d} t|\leq \eta(\varepsilon)| \Omega_{i}|, \quad| \int_{\Omega_{i}}|u|^{p} \omega \mathrm{~d} x-\int_{0}^{d_{i}}|v|^{p} f_{i} \mathrm{~d} t|\leq \eta(\varepsilon)| \Omega_{i} \mid
$$

and

$$
\left.\left|\int_{0}^{d_{i}}\right| v\right|^{p-2} v f_{i} \mathrm{~d} t|\leq \eta(\varepsilon)| \Omega_{i} \mid
$$

Now, by property (2), we deduce that for any vector $\eta \in \mathbb{R}^{n}$

$$
|\langle\nabla u, \eta\rangle| \leq \mathcal{H}(\nabla u) \max \left\{\mathcal{H}^{0}(\eta), \mathcal{H}^{0}(-\eta)\right\}
$$

Then choosing $\eta=e_{1}$ and denoting by $M=\max \left\{\mathcal{H}^{0}\left(e_{1}\right), \mathcal{H}^{0}\left(-e_{1}\right)\right\}$, Proposition 4 gives

$$
\begin{aligned}
\int_{\Omega_{i}} \mathcal{H}^{p}(\nabla u) \omega \mathrm{d} x \geq \frac{1}{M^{p}} \int_{\Omega_{i}}\left|u_{x_{1}}\right|^{p} \omega \mathrm{~d} x \geq & \frac{1}{M^{p}} \int_{0}^{d_{i}}\left|v^{\prime}\right|^{p} f_{i} \mathrm{~d} t-\frac{\eta(\varepsilon)\left|\Omega_{i}\right|}{M^{p}} \\
& \geq \frac{\pi_{p}}{d_{i}^{p} M^{p}} \int_{0}^{d_{i}}|v|^{p} f_{i} \mathrm{~d} t+C \eta(\varepsilon)\left|\Omega_{i}\right| \geq \frac{\pi_{p}^{p}}{d_{i}^{p} M^{p}} \int_{\Omega_{i}}|u|^{p} \omega \mathrm{~d} x+C \eta(\varepsilon)\left|\Omega_{i}\right|,
\end{aligned}
$$

where C is a constant which does not depend on ε. Being $d_{i} \leq D_{\mathcal{E}}(\Omega)$, and then $d_{i} M \leq D_{\mathcal{H}}(\Omega)$, by letting ε to zero, we get (5). Hence, by summing over i, we get the thesis.

Remark 6. In order to prove an estimate for $\mu_{p, \mathcal{H}, \omega}$, we could use directly property (2) with $v=\frac{\nabla u}{|\nabla u|}$, and the PayneWeinberger inequality in the Euclidean case, obtaining that

$$
\int_{\Omega} \mathcal{H}^{p}(\nabla u) \omega \mathrm{d} x \geq \int_{\Omega} \frac{|\nabla u|^{p}}{\mathcal{H}^{o}(v)^{p}} \omega \mathrm{~d} x \geq \frac{\pi_{p}^{p}}{D_{\mathcal{E}}(\Omega)^{p} \mathcal{H}^{o}\left(v_{m}\right)^{p}} \int_{\Omega}|u|^{p} \omega \mathrm{~d} x
$$

where $\mathcal{H}^{0}\left(v_{m}\right)=\max _{|\nu|=1} \mathcal{H}^{0}(\nu)$. However, we have a worse estimate than (1) because $D_{\mathcal{E}}(\Omega) \cdot \mathcal{H}^{0}\left(v_{m}\right)$ is, in general, strictly larger than $D_{\mathcal{H}}(\Omega)$, as shown in the following example.

Example 1. Let $\mathcal{H}(x, y)=\sqrt{a^{2} x^{2}+b^{2} y^{2}}$, with $a<b$. Then \mathcal{H} is a even, smooth norm with $\mathcal{H}^{0}(x, y)=\sqrt{\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}}$ and the Wulff shapes $\left\{\mathcal{H}^{0}(x, y)<R\right\}, R>0$, are ellipses. Clearly, we have:

$$
D_{\mathcal{E}}(\Omega)=2 b \quad \text { and } \quad D_{\mathcal{H}}(\Omega)=2
$$

Let us compute $\mathcal{H}^{0}\left(v_{m}\right)$. We have:

$$
\max _{|v|=1} \mathcal{H}^{0}(v)=\max _{\vartheta \in[0,2 \pi]} \sqrt{\frac{(\cos \vartheta)^{2}}{a^{2}}+\frac{(\sin \vartheta)^{2}}{b^{2}}}=\mathcal{H}^{0}(0, \pm 1)=\frac{1}{a} .
$$

Then $D_{\mathcal{E}}(\Omega) \cdot \mathcal{H}^{o}\left(v_{m}\right)=2 \frac{b}{a}>2$.

Acknowledgements

This work has been partially supported by MIUR (for FIRB 2013 project "Geometrical and qualitative aspects of PDE's") and by INdAM (for GNAMPA).

References

[1] G. Acosta, R.G. Durán, An optimal Poincaré inequality in L^{1} for convex domains, Proc. Amer. Math. Soc. 132 (2004) 195-202.
[2] A. Alvino, V. Ferone, P.-L. Lions, G. Trombetti, Convex symmetrization and applications, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 14 (1997) $275-293$.
[3] M. Bebendorf, A note on the Poincaré inequality for convex domains, Z. Anal. Anwend. 22 (2003) 751-756.
[4] B. Brandolini, F. Chiacchio, E.B. Dryden, J.J. Langford, Sharp Poincaré inequalities in a class of non-convex sets, preprint.
[5] S.S. Chern, Z. Shen, Riemann-Finsler Geometry, Nankai Tracts in Mathematics, vol. 6, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, USA, 2005.
[6] F. Della Pietra, N. Gavitone, Sharp bounds for the first eigenvalue and the torsional rigidity related to some anisotropic operators, Math. Nachr. 287 (2014) 194-209.
[7] F. Della Pietra, N. Gavitone, Faber-Krahn inequality for anisotropic eigenvalue problems with Robin boundary conditions, Potential Anal. 41 (2014) 1147-1166.
[8] F. Della Pietra, N. Gavitone, Symmetrization with respect to the anisotropic perimeter and applications, Math. Ann. 363 (2015) 953-971.
[9] L. Esposito, B. Kawohl, C. Nitsch, C. Trombetti, The Neumann eigenvalue problem for the ∞-Laplacian, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl. 26 (2015) 119-134.
[10] L. Esposito, C. Nitsch, C. Trombetti, Best constants in Poincaré inequalities for convex domains, J. Convex Anal. 20 (2013) $253-264$.
[11] C. Farkas, J. Fodor, A. Kristaly, Anisotropic elliptic problems involving sublinear terms, in: SACI 2015 - 10th Jubilee IEEE International Symposium on Applied Computational Intelligence and Informatics, Proceedings, 2015, pp. 141-146, 7208187.
[12] V. Ferone, C. Nitsch, C. Trombetti, A remark on optimal weighted Poincaré inequalities for convex domains, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl. 23 (2012) 467-475.
[13] L.E. Payne, H.F. Weinberger, An optimal Poincaré inequality for convex domains, Arch. Ration. Mech. Anal. 5 (1960) 286-292.
[14] J.D. Rossi, N. Saintier, On the first nontrivial eigenvalue of the ∞-Laplacian with Neumann boundary conditions, Houst. J. Math. 42 (2016) 613-635.
[15] D. Valtorta, Sharp estimate on the first eigenvalue of the p-Laplacian, Nonlinear Anal. 75 (2012) 4974-4994.
[16] J. Van Schaftingen, Anisotropic symmetrization, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 23 (2006) 539-565.
[17] G. Wang, C. Xia, An optimal anisotropic Poincaré inequality for convex domains, Pac. J. Math. 258 (2012) 305-326.

[^0]: E-mail addresses: f.dellapietra@unina.it (F. Della Pietra), nunzia.gavitone@unina.it (N. Gavitone), gianpaolo.piscitelli@unina.it (G. Piscitelli).
 http://dx.doi.org/10.1016/j.crma.2017.06.005
 1631-073X/© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

