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r é s u m é

Dans cette note, on utilise des modules combinatoires sur le bord d’un immeuble 
hyperbolique à angles droits pour encadrer sa dimension conforme. La borne inférieure 
obtenue est optimale dans le cas des immeubles fuchsiens.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The conformal dimension is a quasi-isometric invariant of Gromov hyperbolic spaces that has been introduced by P. Pansu 
in [12]. Since then it has become a major tool used to study quasi-conformal properties of boundaries of hyperbolic groups 
in relation with rigidity phenomena. In particular, in [1], it plays a key role in proving that right-angled Fuchsian buildings 
satisfy a Mostow type rigidity theorem. We refer to [9] and [8] for surveys concerning the connection between the conformal 
dimension and Mostow type rigidity results and to [10] for a survey concerning the conformal dimension in the more 
general context of self-similar spaces.

In this note, we give bounds to the conformal dimension of the boundary of a right-angled hyperbolic building. This is 
obtained by simple computations not on the boundary of the building, but on the boundary of an apartment.

The motivation of this work is that a good understanding of the conformal dimension of these buildings could lead to 
new rigidity results. Some of them are indeed highly suspected to be rigid.
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2. Recalls

Let (Z , d) and (Z ′, d′) be two compact arcwise connected metric spaces. The cross-ratio of four distinct points a, b, c, d ∈ Z
is

[a : b : c : d]Z = d(a,b)

d(a, c)
· d(c,d)

d(b,d)
.

An homeomorphism f : Z −→ Z ′ is quasi-Moebius (QM) if there exists an homeomorphism φ :R+ −→ R
+ such that for any 

quadruple of distinct points a, b, c, d ∈ Z

[ f (a) : f (b) : f (c) : f (d)]Z ′ ≤ φ([a : b : c : d]Z ).

In this case, f −1 is also QM and Z and Z ′ are said quasi-Moebius equivalent (QM equivalent). Now we assume that Z is a 
Q -Ahlfors-regular (AR) for Q > 1. This means that there exists a constant C > 1 such that for any 0 < R ≤ diam Z and any 
R-ball B ⊂ Z one has

C−1 · R Q ≤ Hd(B) ≤ C · R Q ,

where Hd(·) denotes the Hausdorff measure of (Z , d). Notice that, under this assumption, Q is equal to the Hausdorff 
dimension dimH(Z , d) of (Z , d). The Ahlfors-regular conformal gauge of (Z , d) is defined as follows:

Jc(Z ,d) := {(Z , δ) : (Z , δ) is AR and is QM equivalent to (Z ,d)}.

Definition 2.1. The Ahlfors-regular conformal dimension of ∂� is

Confdim(Z ,d) := inf{dimH(Z , δ) : (Z , δ) ∈ Jc(Z ,d)}.

In the rest of the note we will simply call it the conformal dimension. As the topological and the Hausdorff dimen-
sions are respectively invariant under homeomorphisms and bi-Lipschitz maps, the conformal dimension is invariant under 
quasi-Moebius maps. The inclusions between these three classes of maps imply the following inequalities:

dimT (Z) ≤ Confdim(Z ,d) ≤ dimH(Z ,d),

where dimT (Z) stands for the topological dimension of Z .
We recall that all the visual metrics on the boundary of a hyperbolic space are quasi-Moebius homeomorphic to each 

other and AR. In particular, the conformal dimension is a quasi-isometric invariant of a hyperbolic space. This will be the 
context of this note.

Combining ideas of G.D. Mostow, P. Pansu, and M. Bourdon with a theorem of M. Bonk and B. Kleiner (see [1, Theo-
rem 1.3]), it is known that if the conformal dimension of the boundary of a CAT(-1) group is achieved in the conformal 
gauge, then the underlying CAT(-1) space satisfies a Mostow-type rigidity theorem (see [8, Théorème 5.11]).

Hence, the conformal dimension is a very powerful tool, but, unfortunately, it is also very hard to compute.

3. The result

The goal of this note is to prove the theorem below that relates the conformal dimension of the boundary of a building 
to the conformal dimension of the boundary of an apartment. We refer to [6] for generalities concerning Coxeter groups 
and buildings.

Let G denote a finite simplicial graph i.e G(0) is finite, each edge has two different vertices, and G contains no double edge. 
We denote by G(0) = {v1, . . . , vn} the vertices of G and we set S = {s1, . . . , sn}. If for i �= j the corresponding vertices vi, v j
are connected by an edge, then we write vi ∼ v j . We denote by W the right-angled Coxeter group whose relation graph is G , 
namely

W =
〈
si ∈ S|s2

i = 1, si s j = s j si if vi ∼ v j

〉
.

For q ≥ 2 we denote by �q the group defined by the following presentation

�q = 〈
si ∈ S|sq

i = 1, si s j = s j si if vi ∼ v j
〉
.

In the rest of this note, we will assume that �q is infinite hyperbolic with arcwise connected boundary ∂�q . This assumption 
is in fact only an assumption on the graph G (see [11] and [7]). We also equip ∂�q with a visual metric d.

We recall that �q acts by isometry properly discontinuously and cocompactly on �q the building of type (W , S) and 
of constant thickness q. As a consequence, the boundaries ∂�q and ∂�q are canonically identified by a �q-equivarient 
quasi-Moebius homeomorphism. We also recall that �q is a CAT(-1) metric space.

In the following, for g ∈ �q , we designate by |g| the distance, for the word metric on �q relative to the generating set Sq , 
between e and g . Then τ (q) = lim supk

1
k log(#{g ∈ �q : |g| ≤ k}) is the growth rate of �q . In the rest of the note, we will 

write Q (q) = Confdim(∂�q). Notice that, in particular, Q (2) = Confdim(∂W ).
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Theorem 3.1. There exists a constant C > 0 independent of q such that

Q (2) · (1 + log(q − 1)

τ (2)

) ≤ Q (q) ≤ C log(q − 1).

4. Consequences of Theorem 3.1

In general, the conformal dimension Q (2) of ∂W is unknown. However, the topological dimension of ∂W is easy to read 
in the graph G (see [7]). Hence, one can use the inequality Confdim(∂W ) ≥ dimT (∂W ), to obtain an explicit lower bound.

The only hyperbolic buildings for which we can compute the conformal dimension of their boundaries are Fuchsian 
buildings. In this case, the lower bound of Theorem 3.1 is optimal (see [2, Théorème 1.1]). We can wonder if this bound is 
optimal for other examples. The following example is particularly interesting because it should lead to a new rigidity result.

Example 1. Let D be the regular right-angled dodecahedron in H3 and W D be the right-angled Coxeter group generated by 
the reflections about the faces of D . Then ∂W D is quasi-Moebius homeomorphic to the Euclidean sphere S2 and Q (2) = 2.

For q ≥ 3, the corresponding building �q has all chances to be Mostow rigid. Indeed, Fuchsian buildings (the analogues 
of �q in dimension 2) are rigid, whereas their apartments are not. These are hyperbolic planes H2. On the other hand, 
the apartments of �q are rigid, they are hyperbolic 3-spaces H3. Hence, the rigidity of the apartments should be increased 
by the building structure. Moreover, in [5] it is proved that ∂�q satisfies the combinatorial Loewner property. This property 
is conjecturally equivalent to admitting a metric realizing the conformal dimension (see [9, Conjecture 7.5]). A next step 
towards the rigidity of this building would be to know if the lower bound Q (q) ≥ 2 + 2 log(q−1)

τ (2)
is sharp.

This example has an analogue in dimension 4 if we replace the dodecahedron in H3 by the right-angled regular 120-cell 
in H4. The boundary of the building obtained also satisfies the combinatorial Loewner property and for the same reasons 
has also all the chances to be rigid.

Finally, an immediate computation shows that the growth rates τ (q) and τ (2) are related by the formula τ (q) = τ (2) +
log(q −1). On the other hand, growth rates of Coxeter groups can be computed by hand. For instance, if W D is the reflection 
group of Example 1, then τ (2) = log(4 + √

15).

5. Combinatorial modulus

For a complete introduction on combinatorial modulus on boundaries of hyperbolic groups we refer to [3]. In this note, 
we will restrict to the example given by the group ∂�q equipped with a visual metric d.

For k ≥ 0 and κ > 1, a κ-approximation of (∂�q, d) on scale k is a finite covering Gk by open subsets such that for any 
v ∈ Gk there exists zv ∈ v satisfying the following properties:

– B(zv , κ−12−k) ⊂ v ⊂ B(zv , κ2−k),
– ∀v, w ∈ Gk with v �= w one has B(zv , κ−12−k) ∩ B(zw , κ−12−k) = ∅.

A sequence {Gk}k≥0 is called a κ-approximation of (∂�q, d).
Now we fix the approximation {Gk}k≥0. Throughout this note, we will call a curve in ∂�q a continuous map γ : [0, 1] −→

∂�q and we will denote by γ its image. Let ρ : Gk −→ [0, +∞) be a positive function and γ be a curve in ∂�q . The ρ-length
of γ is

Lρ(γ ) =
∑

γ ∩v �=∅
v∈Gk

ρ(v).

For p ≥ 1, the p-mass of ρ is Mp(ρ) = ∑
v∈Gk

ρ(v)p . Let F be a non-empty set of curves in ∂�q . We say that the function ρ

is F -admissible if Lρ(γ ) ≥ 1 for any curve γ ∈F . For p ≥ 1, the Gk-combinatorial p-modulus of F is

Modp(F, Gk) = inf{Mp(ρ)},
where the infimum is taken over the set of F -admissible functions and with Modp(∅, Gk) := 0.

6. Two ingredients for the proof

The first ingredient of the proof is that the conformal dimension is a critical exponent for the combinatorial modulus. 
Let d0 > 0 be a small constant compared with the geometric constants of (∂�q, d) and let F0 be the set of all the curves in 
∂�q of diameter larger than d0. Under this assumption

Confdim(∂�q) = inf{p ∈ [1,+∞) : lim Modp(F0, Gk) = 0}. (1)

k→+∞
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This is the immediate application of an unpublished theorem due to S. Keith and B. Kleiner (see [4, Theorem 1.2.] for a 
proof in a more general context).

The second ingredient of the proof is a control of the combinatorial modulus on the boundary of the building by the 
combinatorial modulus on the boundary of an apartment established in [5], which we recall here briefly. Let G W

k and Gk
be two κ-approximations of respectively ∂W and ∂� constructed as in [5, Subsection 8.2]. We recall that by construction, 
there exists λ ≥ 1 such that, for any k ≥ 0

#G W
k ≤ #{g ∈ W : |g| ≤ k} ≤ λ · #G W

k .

In particular, this implies that τ (2) = lim supk→∞ 1
k log(#G W

k ). Now we designate by modp(·, GW
k ) and Modp(·, Gk) the com-

binatorial modulus computed respectively in ∂W and in ∂�q . Let d0 > 0 be a small constant compared with the geometric 
parameters of ∂W and ∂�q and let FW

0 and F0 be the set of all the curves respectively in ∂W and ∂�q of diameter larger 
than d0. Under these assumptions, according to [5, Theorem 9.1], for any p ≥ 1, there exists a constant D ≥ 1 such that, for 
every k ≥ 1,

D−1 · Modp(F0, Gk) ≤ (q − 1)k · modp(FW
0 , G W

k ) ≤ D · Modp(F0, Gk). (2)

As an immediate consequence of the relations (1) and (2),

Q (q) = inf{p ∈ [1,+∞) : lim
k→+∞

(q − 1)k · modp(FW
0 , G W

k ) = 0}. (3)

7. Right-hand-side inequality

We use the equality (3) in proving Theorem 3.1. Throughout the proof, {ρk}k≥0 is a sequence of FW
0 -admissible functions.

Comparing the diameters of the elements of Gk with d0, one obtains that there exist two constants K > 0 and 0 < λ < 1
independent of k and q such that, up to changing the sequence {ρk}k≥0, for all k ≥ 1 and all w ∈ G W

k

ρk(w) ≤ K · λk.

Hence

(q − 1)k
∑

w∈G W
k

ρk(w)p ≤ K p · #G W
k · [λp(q − 1)]k.

As we recalled, τ (2) = lim supk→∞ 1
k log(#G W

k ), thus Q (q) ≤ 1
log 1/λ

(τ (2) + log(q − 1)).

8. Left-hand-side inequality

Now we set G = ⋃
k≥0

GW
k and for w ∈ G we write |w| = k such that w ∈ G W

k . For a sequence {ρk}k≥0 of FW
0 -admissible 

function, let ρ : w ∈ G −→ ρ|w|(w) ∈ R
+ . Now we observe that

if
∑
w∈G

(q − 1)|w|ρ(w)p < ∞ then p ≥ Q (q).

We define the function

Pρ(s) := inf{p > 0|
∑
w∈G

(q − 1)s|w|ρ(w)p < ∞}

and we study the function Pρ to compute the lower bound for Q (q).
To start, one has Pρ(0) ≥ Q (2) and, up to changing {ρk}k≥0, we can choose Pρ(0) arbitrarily close to Q (2). Then, 

identically, one has Pρ(1) ≥ Q (q) and, up to changing {ρk}k≥0, we can choose Pρ(1) arbitrarily close to Q (q).
Now we set s0 = sup{s ∈R| ∑w∈G(q − 1)s|w| < ∞}. Clearly, s0 < 0 and is such that Pρ(s0) = 0. Indeed, as we said in the 

preceding paragraph, there exist two constants K > 0 and 0 < λ < 1 independent of k and q such that, up to changing the 
sequence {ρk}k≥0, for all k ≥ 1 and all w ∈ G W

k

ρ(w) ≤ K · λ|w|.

Hence, if for all ε > 0
∑

(q − 1)−ε|w|.(q − 1)s0|w| < ∞.
w∈G
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Then for all ε′ > 0 small enough, one has
∑
w∈G

ρ(w)ε
′
(q − 1)s0|w| ≤ K ε′ ·

∑
w∈G

(q − 1)−ε|w|.(q − 1)s0|w| < ∞.

On the other hand, s0 = sup{s ∈R| ∑k∈N #G W
k (q − 1)sk < ∞}. As we recalled, τ (2) = lim supk

1
k log(#G W

k ) thus

s0 = − τ (2)

log(q − 1)
.

Now we check that the function Pρ is convex on [s0, +∞). In other word, we check that for all t ∈ [0, 1], for all 
[a, b] ⊂ [s0, +∞) and for all ε > 0 one has

∑
w∈G

(q − 1)(ta+(1−t)b)|w|ρ(w)(t Pρ(a)+(1−t)Pρ(b))+ε < ∞.

Indeed, for all ε > 0
∑
w∈G

xw :=
∑
w∈G

(q − 1)a|w|ρ(w)Pρ(a)+ε < ∞ and
∑
w∈G

yw :=
∑
w∈G

(q − 1)b|w|ρ(w)Pρ(b)+ε < ∞.

Hence {x1/p
w } ∈ p and {y1/q

w } ∈ q with p = 1
t and q = 1

1−t and by Hölder’s inequality:

(
∑
w∈G

xw)1/p .(
∑
w∈G

yw)1/q ≥
∑
w∈G

((q − 1)a|w|ρ(w)Pρ(a)+ε)t .((q − 1)b|w|ρ(w)Pρ (b)+ε)1−t,

≥
∑
w∈G

(q − 1)(ta+(1−t)b)|w|ρ(w)(t Pρ(a)+(1−t)Pρ(b))+ε .

Finally, by convexity, for all t < 0 one has Pρ(ts0) ≥ t Pρ(s0) + (1 − t)Pρ(0). In particular, for t = 1/s0 one has

Q (q) ≥ Q (2) · (1 − 1

s0
) = Q (2) · (1 + log(q − 1)

τ (2)

)
.
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