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In 1992, Reid asked whether hyperbolic 3-manifolds with the same geodesic length 
spectra are necessarily commensurable. While this is known to be true for arithmetic 
hyperbolic 3-manifolds, the non-arithmetic case is still open. Building towards a negative 
answer to this question, Futer and Millichap recently constructed infinitely many pairs 
of non-commensurable, non-arithmetic hyperbolic 3-manifolds which have the same 
volume and whose length spectra begin with the same first m geodesic lengths. In the 
present paper, we show that this phenomenon is surprisingly common in the arithmetic 
setting. In particular, given any arithmetic hyperbolic 3-orbifold derived from a quaternion 
algebra, any finite subset S of its geodesic length spectrum, and any k ≥ 2, we produce 
infinitely many k-tuples of arithmetic hyperbolic 3-orbifolds which are pairwise non-
commensurable, have geodesic length spectra containing S , and have volumes lying in 
an interval of (universally) bounded length. The main technical ingredient in our proof is 
a bounded gaps result for prime ideals in number fields lying in Chebotarev sets which 
extends recent work of Thorner.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

En 1992, Reid a demandé si deux 3-variétés hyperboliques partageant le même spectre 
de longueurs géodésiques sont nécessairement commensurables. Ceci s’avère être vrai 
quand les variétés sont arithmétiques, mais la question reste ouverte dans le cas non 
arithmétique. Comme premier pas vers une réponse négative à cette question, Futer et 
Millichap ont récemment construit un nombre infini de paires de 3-variétés hyperboliques 
non arithmétiques et non commensurables ayant le même volume et dont les spectres 
de longueurs commencent avec les mêmes m longueurs géodésiques. Dans le présent 
article, nous démontrons que ce phénomène est étonnamment commun dans le contexte 
arithmétique. En particulier, étant donné une 3-variété hyperbolique arithmétique dérivée 
d’une algèbre de quaternions, un sous-ensemble fini S de son spectre de longueurs 
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géodésiques et un entier k ≥ 2, nous construisons un nombre infini de k-tuples de 
3-variétés hyperboliques arithmétiques qui sont non commensurables deux à deux, ont un 
spectre de longueurs géodésiques contenant S et dont le volume appartient à un intervalle 
de longueur bornée (cette borne est, en outre, universelle pour chaque entier k). Notre 
preuve s’appuie sur un résultat sur les petits écarts entre idéaux premiers d’un corps de 
nombres appartenant à un ensemble de Chebotarev ; ce résultat généralise un article récent 
de Thorner.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Given a closed, negatively curved Riemannian manifold M with fundamental group π1(M), each π1(M)-conjugacy class 
[γ ] has a unique geodesic representative. The multi-set of lengths of these closed geodesics is called the geodesic length 
spectrum and is denoted by L (M). The extent to which L (M) determines M is a basic problem in geometry and is the 
main topic of the present paper. Specifically, our interest lies with the following question, which was posed and studied by 
Reid [13,14]:

Question 1. If M1, M2 are complete, orientable, finite volume hyperbolic n-manifolds and L (M1) = L (M2), then are M1, M2 com-
mensurable?

The motivation for this question is two-fold. First, Reid [13] gave an affirmative answer to Question 1 when n = 2 and 
M1 is arithmetic. In particular, if M1 is arithmetic and L (M1) = L (M2), then M1, M2 are commensurable and hence 
M2 is also arithmetic as arithmeticity is a commensurability invariant. Second, the two most common constructions of 
Riemannian manifolds with the same geodesic length spectra (Sunada [15], Vignéras [17]) both produce manifolds that are 
commensurable. Question 1 has been extensively studied in the arithmetic setting (i.e., when M1 is arithmetic). When n = 3, 
Chinburg–Hamilton–Long–Reid [3] gave an affirmative answer. Prasad–Rapinchuk [12] later showed that the geodesic length 
spectrum of an arithmetic hyperbolic n-manifold determines the manifold up to commensurability when n �≡ 1 (mod 4) and 
n �= 7. Most recently, Garibaldi [5] has confirmed the question in dimension n = 7.

In the non-arithmetic setting (i.e., when neither M1 nor M2 is arithmetic), the relationship between the geodesic length 
spectrum and commensurability class of the manifold is rather mysterious. To our knowledge, the only explicit work in this 
area is Millichap [11] and Futer–Millichap [4]. In [4], which extends work from [11], Futer and Millichap produce, for every 
m ≥ 1, infinitely many pairs of non-commensurable hyperbolic 3-manifolds which have the same volume and the same m
shortest geodesic lengths. Additionally, they give an upper bound on the volume of their manifolds as a function of m. In 
this paper we also consider hyperbolic 3-manifolds and orbifolds. Note that in this context we consider the complex length 
spectrum, which encodes both the real length of a closed geodesic as well as the holonomy angle incurred in traveling once 
around the geodesic. Inspired by [4], in this paper we consider the following question.

Question 2. Let M be an arithmetic hyperbolic 3-orbifold and S be a finite subset of the complex length spectrum L (M) of M. What 
can one say about the set of hyperbolic 3-orbifolds N which are not commensurable with M and for which L (N) contains S?

This question was previously studied by the authors in [8]. Let π(V , S) denote the maximum cardinality of a collection of 
pairwise non-commensurable arithmetic hyperbolic 3-orbifolds derived from quaternion algebras, each of which has volume 
less than V and geodesic length spectrum containing S . In [8], it was shown that, if π(V , S) → ∞ as V → ∞, then there 
are integers 1 ≤ r, s ≤ |S| and constants c1, c2 > 0 such that

c1 V

log(V )
1− 1

2r
≤ π(V , S) ≤ c2 V

log(V )
1− 1

2s

for all sufficiently large V . This shows that not only is it quite common for an arithmetic hyperbolic 3-orbifold to share 
large portions of its geodesic length spectrum with other (non-commensurable) arithmetic hyperbolic 3-orbifolds, but that 
the cardinality of sets of commensurability classes of such orbifolds grows relatively fast.

A few remarks about the hypothesis that π(V , S) → ∞ as V → ∞ are in order. In [8] a number field K (containing a 
unique complex place) and collection of quadratic field extensions L1, . . . , Lr of K were associated with S . Theorem 4.10 of 
[8] shows that a necessary and sufficient condition for π(V , S) → ∞ as V → ∞ is that there exist infinitely many quaternion 
algebras over K which are ramified at all real places of K and which admit embeddings of all of the extensions Li/K . 
The Albert–Brauer–Hasse–Noether theorem, which characterizes when a quaternion algebra over a number field admits an 
embedding of a quadratic extension, therefore implies that it is quite common for π(V , S) → ∞ as V → ∞. It is, however, 
possible for π(V , S) to be non-zero yet eventually constant. In light of the comments above, this amounts to constructing 
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a suitable collection of quadratic extensions of a number field K with the property that only finitely many quaternion 
algebras over K admit embeddings of all of the quadratic extensions. Examples of this were given in [7] in the context 
of hyperbolic surfaces. In order to construct hyperbolic 3-manifold examples one need only apply [7, Theorem 4.2], which 
holds for quaternion algebras over arbitrary number fields, to a number field K having a unique complex place.

We now state our main geometric result.

Theorem 1.1. Let M be an arithmetic hyperbolic 3-orbifold which is derived from a quaternion algebra and let S be a finite subset of 
the length spectrum of M. Suppose that π(V , S) → ∞ as V → ∞. Then, for every k ≥ 2, there is a constant C > 0 such that there are 
infinitely many k-tuples M1, . . . , Mk of arithmetic hyperbolic 3-orbifolds which are pairwise non-commensurable, have length spectra 
containing S, and volumes satisfying 

∣∣vol(Mi) − vol(M j)
∣∣ < C for all 1 ≤ i, j ≤ k.

We note that the main novelty of Theorem 1.1 compared to [8] is that we are able to impose a great amount of control 
on the volumes of the orbifolds M1, . . . , Mk . As a corollary to Theorem 1.1 we are able to show (see Corollary 5.1) that, 
when M is a hyperbolic 3-manifold arising from the elements of reduced norm one in a maximal quaternion order, the 
orbifolds M1, . . . , Mk produced by Theorem 1.1 may be taken to be manifolds.

The main technical ingredient in the proof of Theorem 1.1 is a result showing that there are bounded gaps between 
prime ideals in number fields which lie in certain Chebotarev sets (see Theorem 3.1). This extends a theorem of Thorner 
[16]. All of these results stem from the seminal work of Zhang [18] and Maynard–Tao [10] on bounded gaps between primes. 
The techniques employed by Maynard and Tao, in particular, have proven fruitful in resolving a wide array of interesting 
questions within number theory. The present paper is yet another example of the impact of their ideas.

2. Arithmetic hyperbolic 3-orbifolds

In this brief section, we review the construction of arithmetic lattices in PSL(2, C). For a more detailed treatment of this 
topic, we refer the reader to [9]. Given a number field K with ring of integers OK and a K -quaternion algebra B , the set 
of places of K which ramify in B will be denoted by Ram(B). It is known that Ram(B) is a finite set of even cardinality. 
The subset of Ram(B) consisting of the finite (resp. infinite) places of K which ramify in B will be denoted by Ram f (B)

(resp. Ram∞(B)). By the Albert–Brauer–Hasse–Noether theorem, if B1 and B2 are quaternion algebras over K , then B1 ∼= B2
if and only if Ram(B1) = Ram(B2). An order of B is a subring O < B which is finitely generated as an OK -module and with 
B = O ⊗OK K . An order is maximal if it is maximal with respect to the partial order induced by inclusion.

Fixing a maximal order O < B , we will denote by O1 the multiplicative group consisting of the units of O with reduced 
norm 1. Via B ⊗K Kν

∼= M(2, C), the image of O1 in PSL(2, C) is a discrete subgroup with finite covolume which we will 
denote by �1

O . The group �1
O is cocompact precisely when B is a division algebra. A subgroup � of PSL(2, C) is an arithmetic 

Kleinian group if it is commensurable with a group of the form �1
O . A hyperbolic 3-orbifold M = H3/� is arithmetic if its 

orbifold fundamental group π1(M) = � is an arithmetic Kleinian group. An arithmetic hyperbolic 3-orbifold is derived from 
a quaternion algebra if its fundamental group is contained in a group of the form �1

O .
For a discrete subgroup � < PSL(2, C), the invariant trace field K� of � is the field Q(tr(γ 2) : γ ∈ �). Provided � is a 

lattice, the invariant trace field is a number field by Weil Local Rigidity. We define B� to be the K�-subalgebra of M(2, C)

generated by 
{
γ 2 : γ ∈ �

}
. Provided � is non-elementary, which is the case when � is a lattice, B� is a quaternion algebra 

over K� which is called the invariant quaternion algebra of �. The invariant trace field and invariant quaternion algebra 
of an arithmetic hyperbolic 3-orbifold are complete commensurability class invariants in the sense that, if �1 and �2 are 
arithmetic Kleinian groups, then the arithmetic hyperbolic 3-orbifolds H3/�1 and H3/�2 are commensurable if and only if 
K�1 ∼= K�2 and B�1 ∼= B�2 (see [9, Ch 8.4]).

3. Bounded gaps between primes in number fields

For the number-theoretic background assumed in this section, we refer the reader to [6, Ch 3, §§2–3]. Before stating our 
bounded gap result, we set some notation. Suppose that F/K is a Galois extension of number fields. By a prime ideal of a 
number field, we mean a nonzero prime ideal of its ring of integers. Let P be a prime ideal of K unramified in F , and let 
Q be a prime ideal of F lying above P . We let 

[F/K
Q

] ∈ Gal(F/K ) denote the Frobenius automorphism associated with Q . 
Replacing Q with a different prime Q ′ above P replaces 

[F/K
Q

]
with σ

[F/K
Q

]
σ−1 for a certain σ ∈ Gal(F/K ); thus, it makes 

sense to define the Frobenius conjugacy class 
(F/K

P

)
as the conjugacy class of 

[F/K
Q

]
(inside Gal(F/K )) for an arbitrary prime 

Q of F lying above P .

Theorem 3.1. Let L/K be a Galois extension of number fields, let C be a conjugacy class of Gal(L/K ), and let k be a positive integer. 
Then, for a certain constant c = cL/K ,C ,k, there are infinitely many k-tuples P1, . . . , Pk of prime ideals of K for which the following 
hold:

(i)
(L/K) = · · · = (L/K) = C ,
P1 Pk
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(ii) P1, . . . , Pk lie above distinct rational primes,
(iii) each of P1, . . . , Pk has degree 1,
(iv) |N(Pi) − N(P j)| ≤ c, for each pair of i, j ∈ {1, 2, . . . , k}.

When K = Q, Theorem 3.1 was proved by Thorner [16]. The following proposition allows us to reduce to that case.

Proposition 3.2. Let L/K be a Galois extension of number fields, let C be a conjugacy class of Gal(L/K ), and let F be the Galois closure 
of L/Q. There is a conjugacy class C ′ of Gal(F/Q) for which the following holds. If p ∈ N is a prime for which 

(F/Q
p

) = C ′ , then there is 
a prime ideal P of K lying above p for which

(i)
(L/K

P

) = C ,
(ii) N(P ) = p.

Proof. The Chebotarev density theorem guarantees that a positive proportion of the prime ideals P of K satisfy 
(L/K

P

) = C . 
Since almost all prime ideals of K have degree 1 and only finitely many rational primes ramify in F , we may fix a prime 
ideal P0 of K with 

(L/K
P0

) = C , with P0 having degree 1, and with P0 ∩ Z = p0Z (say) unramified in F . Let Q 0 be a prime 
ideal of F lying above P0. We claim that C ′ = (F/Q

p0

)
has the desired properties. Indeed, suppose that p is a rational prime 

with 
(F/Q

p

) = C ′ . (Note that there exist infinitely many such primes by the Chebotarev density theorem.) Since 
(F/Q

p

) = (F/Q
p0

)

and 
(F/Q

p0

)
is the conjugacy class of 

[F/Q
Q 0

]
, we may choose a prime ideal Q of F lying above p with 

[F/Q
Q

] = [F/Q
Q 0

]
. Setting 

P = Q 0 ∩ OK , we see that P is a prime ideal of K lying above p.
We proceed to show that (i) and (ii) hold for this choice of P . Note first that, with f (·/·) denoting the inertia degree 

and D(·/·) denoting the decomposition group,

f (P/p) = f (Q /p)

f (Q /P )
= |D(Q /p)|

|D(Q /P )| = |D(Q /p)|
|(D(Q /p) ∩ Gal(F/K ))| . (1)

Similarly,

f (P0/p0) = |D(Q 0/p0)|
|(D(Q 0/p0) ∩ Gal(F/K ))| . (2)

Now, D(Q /p) is cyclic and generated by 
[F/Q

Q

]
, while D(Q 0/p0) is generated by 

[F/Q
Q 0

]
. Since 

[F/Q
Q

] = [F/Q
Q 0

]
, we have 

D(Q /p) = D(Q 0/p0), and so f (P/p) = f (P0/p0) via (1), (2). We chose P0 to have degree 1, and so f (P/p) = 1. This 

proves property (ii). To show (i), note that 
(L/K

P

)
is the conjugacy class of 

[ L/K
Q ∩L

] = [F/K
Q

]∣∣∣∣
L
= [F/Q

Q

]∣∣∣∣
L
. The last equality uses 

that P has degree 1, so that 
[F/K

Q

] = [F/Q
Q

]
. Similarly, 

(L/K
P0

) = [F/Q
Q 0

]∣∣
L . Since 

[F/Q
Q

] = [F/Q
Q 0

]
, it follows that 

(L/K
P

) = (L/K
P0

) = C , 
which is (i). �
Proof of Theorem 3.1. Choose F and C ′ as in Proposition 3.2. By that proposition, it suffices to show that if P is the set of 
primes p with 

(F/Q
p

) = C ′ , then there are infinitely many k-tuples of elements of P lying in bounded length intervals. This 
is a direct consequence of Thorner’s generalization of the Maynard–Tao theorem to Chebotarev sets [16, Thm 1]. �
4. Proof of Theorem 1.1

Let M = H3/� be a compact arithmetic hyperbolic 3-orbifold which is derived from a quaternion algebra B over K and 
let S = {�1, . . . , �r} be a finite subset of the length spectrum of M . For each i = 1, . . . r, let γi be a loxodromic element of �
whose axis in H3 projects to a closed geodesic in M having length �i , and let λi be the eigenvalue of a lift of γi to SL(2, C)

for which |λi | > 1. For each i = 1, . . . , r, we let Li = K (λi) and �i ⊂ Li be a quadratic OK -order containing a preimage in Li
of γi .

Lemma 4.1. Let B ′ be a quaternion algebra over K for which Ram(B) � Ram(B ′) and Ram f (B) �= ∅. If B ′ admits embeddings of 
L1, . . . , Lr then the commensurability class defined by (K , B ′) contains a hyperbolic 3-orbifold M ′ which is not commensurable to M
and has length spectrum containing S. In fact, M ′ can be taken to be of the form M ′ = H3/�1

O ′ , where O ′ is a maximal order of B ′.

Proof. Let B ′ be as in the statement of the lemma and O ′ be a maximal order of B ′ . Because K is the invariant trace field 
and B is the invariant trace field of an arithmetic Kleinian group, the field K is a number field with a unique complex 
place and the set Ram(B) contains all real places of K . By hypothesis, Ram(B) � Ram(B ′), hence B ′ is also ramified at 
all real places of K and M ′ = H3/�1

O ′ is an arithmetic hyperbolic 3-orbifold. By hypothesis B ′ admits embeddings of the 
quadratic extensions L1, . . . , Lr of K and is ramified at a finite prime of K . By [2, Thm 3.3], O ′ admits embeddings of all 
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of the quadratic orders �1, . . . , �r . It follows that �1
O ′ contains conjugates of the loxodromic elements γ1, . . . , γr and that 

the length spectrum of the orbifold M ′ contains S . To show that M ′ is not commensurable to M it suffices to show that 
B � B ′ , since the invariant trace field and quaternion algebra are complete commensurability class invariants [9, Thm 8.4]. 
Because two quaternion algebras defined over number fields are isomorphic if and only if their ramification sets are equal, 
that B � B ′ follows from the hypothesis that Ram(B) � Ram(B ′). �
Proof of Theorem 1.1. For M as in the statement of Theorem 1.1, let K , B be the invariant trace field and quaternion 
algebra of M , and let L1, . . . , Lr be the quadratic extensions of K associated with the geodesics lengths in S as defined 
above. We may assume without loss of generality that these extensions are all distinct. That there are infinitely many 
non-commensurable arithmetic hyperbolic 3-orbifolds with length spectra containing S implies that there are infinitely 
many non-isomorphic K -quaternion algebras over K admitting embeddings of the extensions L1, . . . , Lr . This in turn implies 
that the degree of the compositum L of L1, . . . , Lr over K has degree [L : K ] = 2r . These assertions were proven in [7, §6–7]. 
Note that while [7] deals with hyperbolic surfaces rather than hyperbolic 3-orbifolds, the assertions in question were proven 
using results about quaternion algebras over arbitrary number fields and thus apply to our present setting by taking the 
number fields to have a unique complex place. The Galois group Gal(L/K ) is isomorphic to (Z/2Z)r and the primes of K
whose Frobenius elements represent the element (1, . . . , 1) correspond to those which are inert in each of the extensions 
L1/K , . . . , Lr/K . Fix a prime P0 of K whose Frobenius element represents (1, . . . , 1) and which does not lie in Ram f (B). By 
Theorem 3.1 there is a constant C1 > 0 such that there are infinitely many k-tuples P1, . . . , Pk of primes of K , all of which 
are inert in the extensions L1/K , . . . , Lr/K and have norms lying within an interval of length C1. We may assume that none 
of the primes Pi ramify in B . As M is derived from a quaternion algebra, π1(M) < �1

O for some maximal order O of B . 
Finally, by Borel [1], we have

vol(H3/�1
O) = |	K |3/2ζK (2)

(4π2)nK −1

∏

P∈Ram f (B)

(N(P ) − 1) ,

where nK = [K : Q], ζK (s) is the Dedekind zeta function of K , and 	K is the discriminant of K .
We now use the primes P1, . . . , Pk to construct quaternion algebras B1, . . . , Bk over K . For each i = 1, . . . , k, define Bi

to be the unique quaternion algebra over K for which Ram(Bi) = Ram(B) ∪ {P0, Pi}. As B admits embeddings of all of 
the quadratic extensions Li , no prime of Ram(B) splits in Li/K . Similarly, none of the primes P0, P1, . . . , Pk split in Li/K
for any i. The Albert–Brauer–Hasse–Noether theorem implies that a quaternion algebra over a number field K admits an 
embedding of a quadratic extension of K if and only if no prime which ramifies in the algebra splits in the extension 
of K . This allows us to conclude that all of the quaternion algebras which we have defined are pairwise non-isomorphic 
and admit embeddings of all of the Li . Let O1, . . . , Ok be maximal orders of B1, . . . , Bk . By Lemma 4.1, the arithmetic 
hyperbolic 3-orbifolds Mi = H3/�1

Oi
, which are all pairwise non-commensurable since the algebras B1, . . . , Bk are pairwise 

non-isomorphic, have length spectra containing S . By [1], the volume of Mi is equal to vol(H3/�1
O) · (N(P0) − 1)(N(Pi) − 1). 

As the k primes P1, . . . , Pk have norms lying in a bounded length interval, the orbifolds M1, . . . , Mk have volumes lying in 
a bounded length interval. This completes the proof of Theorem 1.1. �
5. Producing arithmetic hyperbolic 3-manifolds

In this section we prove a variant of Theorem 1.1 that produces infinitely many k-tuples (for any k ≥ 2) of arithmetic 
hyperbolic 3-manifolds which are pairwise non-commensurable, have geodesic length spectra containing some fixed set of 
lengths and have volumes lying in an interval of (universally) bounded length.

Corollary 5.1. Let M = H3/�1
O be a compact arithmetic hyperbolic 3-manifold whose invariant quaternion algebra is ramified at some 

finite prime and let S be a finite subset of the length spectrum of M. Suppose that π(V , S) → ∞ as V → ∞. Then, for every k ≥ 2, there 
is a constant C > 0 such that there are infinitely many k-tuples M1, . . . , Mk of arithmetic hyperbolic 3-manifolds which are pairwise 
non-commensurable, have length spectra containing S, and volumes satisfying 

∣∣vol(Mi) − vol(M j)
∣∣ < C for all 1 ≤ i, j ≤ k.

Proof. We will show that our hypotheses on M imply that the orbifolds M1, . . . , Mk produced by Theorem 1.1 in this case 
are all manifolds. Let K , B be the invariant trace field and quaternion algebra of M . As M is a manifold, �1

O is torsion-
free and so B does not admit an embedding of any cyclotomic extension F of K with [F : K ] = 2. This follows from [9, 
Thm 12.5.4] and makes use of the fact that Ram f (B) is nonempty. The Albert–Brauer–Hasse–Noether theorem therefore 
implies that, for every cyclotomic extension F of K with [F : K ] = 2, there exists a prime P ∈ Ram(B) such that P splits 
in F/K . Let B1, . . . , Bk , O1, . . . , Ok and M1, . . . , Mk be as in the proof of Theorem 1.1. The quaternion algebras B1, . . . , Bk
were defined so that Ram(B) � Ram(Bi), hence the Albert–Brauer–Hasse–Noether theorem again implies that no cyclotomic 
extension F of K with [F : K ] = 2 embeds into any of the quaternion algebras Bi . By [9, Thm 12.5.4], the groups �1

Oi
are all 

torsion-free, and hence the orbifolds M1, . . . , Mk are all manifolds. �



1126 B. Linowitz et al. / C. R. Acad. Sci. Paris, Ser. I 355 (2017) 1121–1126
Acknowledgements

The authors would like to thank Robert J. Lemke Oliver and Jesse Thorner for helpful conversations. D.M. was supported 
by NSF grant DMS-1408458. P.P. was supported by NSF grant DMS-1402268. L.T. was supported by an AMS Simons Travel 
Grant and by NSF grant DMS-1440140 while in residence at the Mathematical Sciences Research Institute during the Spring 
2017 semester.

References

[1] A. Borel, Commensurability classes and volumes of hyperbolic 3-manifolds, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4) 8 (1) (1981) 1–33. MR 616899.
[2] T. Chinburg, E. Friedman, An embedding theorem for quaternion algebras, J. Lond. Math. Soc. (2) 60 (1) (1999) 33–44. MR 1721813.
[3] T. Chinburg, E. Hamilton, D.D. Long, A.W. Reid, Geodesics and commensurability classes of arithmetic hyperbolic 3-manifolds, Duke Math. J. 145 (1) 

(2008) 25–44. MR 2451288.
[4] D. Futer, C. Millichap, Spectrally similar incommensurable 3-manifolds, Proc. Lond. Math. Soc. 115 (2) (2017) 411–447.
[5] S. Garibaldi, Outer automorphisms of algebraic groups and determining groups by their maximal tori, Mich. Math. J. 61 (2) (2012) 227–237. MR 

2944477.
[6] G.J. Janusz, Algebraic Number Fields, Grad. Stud. Math., vol. 7, American Mathematical Society, Providence, RI, USA, 1996. MR MR1362545.
[7] B. Linowitz, Counting problems for geodesics on arithmetic hyperbolic surfaces, Proc. Amer. Math. Soc. (2017), https://doi.org/10.1090/proc/13782, in 

press.
[8] B. Linowitz, D.B. McReynolds, P. Pollack, L. Thompson, Counting and effective rigidity in algebra and geometry, preprint, available at http://arxiv.org/

abs/1407.2294.
[9] C. Maclachlan, A.W. Reid, The Arithmetic of Hyperbolic 3-Manifolds, Grad. Texts Math., vol. 219, Springer-Verlag, New York, 2003. MR 1937957.

[10] J. Maynard, Small gaps between primes, Ann. of Math. (2) 181 (2015) 383–413. MR 3272929.
[11] C. Millichap, Mutations and short geodesics in hyperbolic 3-manifolds, Commun. Anal. Geom. 25 (3) (2017) 625–683.
[12] G. Prasad, A.S. Rapinchuk, Weakly commensurable arithmetic groups and isospectral locally symmetric spaces, Publ. Math. Inst. Hautes Études Sci. 

109 (1) (2009) 113–184. MR 2511587.
[13] A.W. Reid, Isospectrality and commensurability of arithmetic hyperbolic 2- and 3-manifolds, Duke Math. J. 65 (2) (1992) 215–228. MR 1150584.
[14] A.W. Reid, Traces, lengths, axes and commensurability, Ann. Fac. Sci. Toulouse Math. (6) 23 (5) (2014) 1103–1118. MR 3294604.
[15] T. Sunada, Riemannian coverings and isospectral manifolds, Ann. of Math. (2) 121 (1) (1985) 169–186. MR 782558.
[16] J. Thorner, Bounded gaps between primes in Chebotarev sets, Res. Math. Sci. 1 (2014) 4, 16 pages.
[17] M.F. Vignéras, Variétés riemanniennes isospectrales et non isométriques, Ann. of Math. (2) 112 (1) (1980) 21–32. MR 584073.
[18] Y. Zhang, Bounded gaps between primes, Ann. of Math. (2) 179 (2014) 1121–1174. MR 3171761.

http://refhub.elsevier.com/S1631-073X(17)30179-6/bib42s1
http://refhub.elsevier.com/S1631-073X(17)30179-6/bib4346s1
http://refhub.elsevier.com/S1631-073X(17)30179-6/bib43484C52s1
http://refhub.elsevier.com/S1631-073X(17)30179-6/bib43484C52s1
http://refhub.elsevier.com/S1631-073X(17)30179-6/bib464Ds1
http://refhub.elsevier.com/S1631-073X(17)30179-6/bib47s1
http://refhub.elsevier.com/S1631-073X(17)30179-6/bib47s1
http://refhub.elsevier.com/S1631-073X(17)30179-6/bib4A616E75737As1
http://dx.doi.org/10.1090/proc/13782
http://arxiv.org/abs/1407.2294
http://arxiv.org/abs/1407.2294
http://refhub.elsevier.com/S1631-073X(17)30179-6/bib4D52s1
http://refhub.elsevier.com/S1631-073X(17)30179-6/bib6D61796E617264s1
http://refhub.elsevier.com/S1631-073X(17)30179-6/bib434Ds1
http://refhub.elsevier.com/S1631-073X(17)30179-6/bib5052s1
http://refhub.elsevier.com/S1631-073X(17)30179-6/bib5052s1
http://refhub.elsevier.com/S1631-073X(17)30179-6/bib52s1
http://refhub.elsevier.com/S1631-073X(17)30179-6/bib522D537572766579s1
http://refhub.elsevier.com/S1631-073X(17)30179-6/bib53s1
http://refhub.elsevier.com/S1631-073X(17)30179-6/bib74686F726E65723134s1
http://refhub.elsevier.com/S1631-073X(17)30179-6/bib56s1
http://refhub.elsevier.com/S1631-073X(17)30179-6/bib7A68616E67s1

	Bounded gaps between primes and the length spectra of arithmetic hyperbolic 3-orbifolds
	1 Introduction
	2 Arithmetic hyperbolic 3-orbifolds
	3 Bounded gaps between primes in number ﬁelds
	4 Proof of Theorem 1.1
	5 Producing arithmetic hyperbolic 3-manifolds
	Acknowledgements
	References


