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answer to this question, Futer and Millichap recently constructed infinitely many pairs
of non-commensurable, non-arithmetic hyperbolic 3-manifolds which have the same
volume and whose length spectra begin with the same first m geodesic lengths. In the
present paper, we show that this phenomenon is surprisingly common in the arithmetic
setting. In particular, given any arithmetic hyperbolic 3-orbifold derived from a quaternion
algebra, any finite subset S of its geodesic length spectrum, and any k > 2, we produce
infinitely many k-tuples of arithmetic hyperbolic 3-orbifolds which are pairwise non-
commensurable, have geodesic length spectra containing S, and have volumes lying in
an interval of (universally) bounded length. The main technical ingredient in our proof is
a bounded gaps result for prime ideals in number fields lying in Chebotarev sets which
extends recent work of Thorner.
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RESUME

En 1992, Reid a demandé si deux 3-variétés hyperboliques partageant le méme spectre
de longueurs géodésiques sont nécessairement commensurables. Ceci s’avére étre vrai
quand les variétés sont arithmétiques, mais la question reste ouverte dans le cas non
arithmétique. Comme premier pas vers une réponse négative a cette question, Futer et
Millichap ont récemment construit un nombre infini de paires de 3-variétés hyperboliques
non arithmétiques et non commensurables ayant le méme volume et dont les spectres
de longueurs commencent avec les mémes m longueurs géodésiques. Dans le présent
article, nous démontrons que ce phénoméne est étonnamment commun dans le contexte
arithmétique. En particulier, étant donné une 3-variété hyperbolique arithmétique dérivée
d’'une algeébre de quaternions, un sous-ensemble fini S de son spectre de longueurs
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géodésiques et un entier k > 2, nous construisons un nombre infini de k-tuples de
3-variétés hyperboliques arithmétiques qui sont non commensurables deux a deux, ont un
spectre de longueurs géodésiques contenant S et dont le volume appartient a un intervalle
de longueur bornée (cette borne est, en outre, universelle pour chaque entier k). Notre
preuve s'appuie sur un résultat sur les petits écarts entre idéaux premiers d'un corps de
nombres appartenant a un ensemble de Chebotarev ; ce résultat généralise un article récent
de Thorner.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Given a closed, negatively curved Riemannian manifold M with fundamental group m; (M), each 7 (M)-conjugacy class
[¥] has a unique geodesic representative. The multi-set of lengths of these closed geodesics is called the geodesic length
spectrum and is denoted by .Z(M). The extent to which .Z (M) determines M is a basic problem in geometry and is the
main topic of the present paper. Specifically, our interest lies with the following question, which was posed and studied by
Reid [13,14]:

Question 1. If M1, My are complete, orientable, finite volume hyperbolic n-manifolds and £ (M1) = £ (M3), then are M1, M com-
mensurable?

The motivation for this question is two-fold. First, Reid [13] gave an affirmative answer to Question 1 when n =2 and
M is arithmetic. In particular, if M is arithmetic and Z(M1) = 2 (M3), then My, M are commensurable and hence
M, is also arithmetic as arithmeticity is a commensurability invariant. Second, the two most common constructions of
Riemannian manifolds with the same geodesic length spectra (Sunada [15], Vignéras [17]) both produce manifolds that are
commensurable. Question 1 has been extensively studied in the arithmetic setting (i.e., when M; is arithmetic). When n =3,
Chinburg-Hamilton-Long-Reid [3] gave an affirmative answer. Prasad—-Rapinchuk [12] later showed that the geodesic length
spectrum of an arithmetic hyperbolic n-manifold determines the manifold up to commensurability when n # 1 (mod 4) and
n # 7. Most recently, Garibaldi [5] has confirmed the question in dimension n = 7.

In the non-arithmetic setting (i.e., when neither My nor M> is arithmetic), the relationship between the geodesic length
spectrum and commensurability class of the manifold is rather mysterious. To our knowledge, the only explicit work in this
area is Millichap [11] and Futer-Millichap [4]. In [4], which extends work from [11], Futer and Millichap produce, for every
m > 1, infinitely many pairs of non-commensurable hyperbolic 3-manifolds which have the same volume and the same m
shortest geodesic lengths. Additionally, they give an upper bound on the volume of their manifolds as a function of m. In
this paper we also consider hyperbolic 3-manifolds and orbifolds. Note that in this context we consider the complex length
spectrum, which encodes both the real length of a closed geodesic as well as the holonomy angle incurred in traveling once
around the geodesic. Inspired by [4], in this paper we consider the following question.

Question 2. Let M be an arithmetic hyperbolic 3-orbifold and S be a finite subset of the complex length spectrum £ (M) of M. What
can one say about the set of hyperbolic 3-orbifolds N which are not commensurable with M and for which . (N) contains S?

This question was previously studied by the authors in [8]. Let m(V, S) denote the maximum cardinality of a collection of
pairwise non-commensurable arithmetic hyperbolic 3-orbifolds derived from quaternion algebras, each of which has volume
less than V and geodesic length spectrum containing S. In [8], it was shown that, if ©(V,S) - oo as V — oo, then there
are integers 1 <r,s <|S| and constants cy, c; > 0 such that

C1 % C2 Vv
— <V, ————
log(V)'~7 log(V)'~2

for all sufficiently large V. This shows that not only is it quite common for an arithmetic hyperbolic 3-orbifold to share
large portions of its geodesic length spectrum with other (non-commensurable) arithmetic hyperbolic 3-orbifolds, but that
the cardinality of sets of commensurability classes of such orbifolds grows relatively fast.

A few remarks about the hypothesis that n(V,S) — oo as V — oo are in order. In [8] a number field K (containing a
unique complex place) and collection of quadratic field extensions L1, ..., L; of K were associated with S. Theorem 4.10 of
[8] shows that a necessary and sufficient condition for n(V, S) — oco as V — oo is that there exist infinitely many quaternion
algebras over K which are ramified at all real places of K and which admit embeddings of all of the extensions L;/K.
The Albert-Brauer-Hasse-Noether theorem, which characterizes when a quaternion algebra over a number field admits an
embedding of a quadratic extension, therefore implies that it is quite common for n(V,S) — oo as V — oo. It is, however,
possible for m(V, S) to be non-zero yet eventually constant. In light of the comments above, this amounts to constructing
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a suitable collection of quadratic extensions of a number field K with the property that only finitely many quaternion
algebras over K admit embeddings of all of the quadratic extensions. Examples of this were given in [7] in the context
of hyperbolic surfaces. In order to construct hyperbolic 3-manifold examples one need only apply [7, Theorem 4.2], which
holds for quaternion algebras over arbitrary number fields, to a number field K having a unique complex place.

We now state our main geometric result.

Theorem 1.1. Let M be an arithmetic hyperbolic 3-orbifold which is derived from a quaternion algebra and let S be a finite subset of
the length spectrum of M. Suppose that t(V, S) — oo as V — oo. Then, for every k > 2, there is a constant C > 0 such that there are
infinitely many k-tuples M1, ..., My of arithmetic hyperbolic 3-orbifolds which are pairwise non-commensurable, have length spectra
containing S, and volumes satisfying ]vol(M,-) — vol(Mj)| <Cforalll<i,j<k.

We note that the main novelty of Theorem 1.1 compared to [8] is that we are able to impose a great amount of control
on the volumes of the orbifolds My, ..., M. As a corollary to Theorem 1.1 we are able to show (see Corollary 5.1) that,
when M is a hyperbolic 3-manifold arising from the elements of reduced norm one in a maximal quaternion order, the
orbifolds My, ..., My produced by Theorem 1.1 may be taken to be manifolds.

The main technical ingredient in the proof of Theorem 1.1 is a result showing that there are bounded gaps between
prime ideals in number fields which lie in certain Chebotarev sets (see Theorem 3.1). This extends a theorem of Thorner
[16]. All of these results stem from the seminal work of Zhang [18] and Maynard-Tao [10] on bounded gaps between primes.
The techniques employed by Maynard and Tao, in particular, have proven fruitful in resolving a wide array of interesting
questions within number theory. The present paper is yet another example of the impact of their ideas.

2. Arithmetic hyperbolic 3-orbifolds

In this brief section, we review the construction of arithmetic lattices in PSL(2, C). For a more detailed treatment of this
topic, we refer the reader to [9]. Given a number field K with ring of integers ¢ and a K-quaternion algebra B, the set
of places of K which ramify in B will be denoted by Ram(B). It is known that Ram(B) is a finite set of even cardinality.
The subset of Ram(B) consisting of the finite (resp. infinite) places of K which ramify in B will be denoted by Ramy(B)
(resp. Ramy (B)). By the Albert-Brauer-Hasse-Noether theorem, if By and By are quaternion algebras over K, then By = B,
if and only if Ram(B1) = Ram(B>). An order of B is a subring ¢ < B which is finitely generated as an Jx-module and with
B =0 ®¢, K. An order is maximal if it is maximal with respect to the partial order induced by inclusion.

Fixing a maximal order & < B, we will denote by ¢! the multiplicative group consisting of the units of ¢ with reduced
norm 1. Via B @ K, = M(2, C), the image of ¢! in PSL(2,C) is a discrete subgroup with finite covolume which we will
denote by l“}ﬁ. The group 1“10 is cocompact precisely when B is a division algebra. A subgroup I' of PSL(2, C) is an arithmetic
Kleinian group if it is commensurable with a group of the form F1ﬁ. A hyperbolic 3-orbifold M =H3/T is arithmetic if its
orbifold fundamental group m;(M) =T is an arithmetic Kleinian group. An arithmetic hyperbolic 3-orbifold is derived from
a quaternion algebra if its fundamental group is contained in a group of the form F}ﬁ

For a discrete subgroup I" < PSL(2, C), the invariant trace field KT of T is the field Q(tr(y?): ¥ € I'). Provided T is a
lattice, the invariant trace field is a number field by Weil Local Rigidity. We define BT" to be the KT -subalgebra of M(2, C)
generated by {y2 Ty e I‘}. Provided I' is non-elementary, which is the case when I is a lattice, BT is a quaternion algebra
over KT" which is called the invariant quaternion algebra of I'. The invariant trace field and invariant quaternion algebra
of an arithmetic hyperbolic 3-orbifold are complete commensurability class invariants in the sense that, if 'y and I'; are
arithmetic Kleinian groups, then the arithmetic hyperbolic 3-orbifolds H?/ 'y and H3/ T, are commensurable if and only if
KT'1 = KTy and BI'1 = BT, (see [9, Ch 8.4]).

3. Bounded gaps between primes in number fields

For the number-theoretic background assumed in this section, we refer the reader to [6, Ch 3, §§2-3]. Before stating our
bounded gap result, we set some notation. Suppose that F/K is a Galois extension of number fields. By a prime ideal of a
number field, we mean a nonzero prime ideal of its ring of integers. Let P be a prime ideal of K unramified in F, and let
Q be a prime ideal of F lying above P. We let [F/K] € Gal(F/K) denote the Frobenius automorphism associated with Q.

Replacing Q with a different prime Q' above P replaces [F/K] with G[F/K] —1 for a certain o € Gal(F/K); thus, it makes

sense to define the Frobenius conjugacy class (F/K) as the conjugacy class of [F(/zK] (inside Gal(F/K)) for an arbitrary prime
Q of F lying above P.

Theorem 3.1. Let L/K be a Galois extension of number fields, let € be a conjugacy class of Gal(L/K), and let k be a positive integer.
Then, for a certain constant ¢ = ¢k « . there are infinitely many k-tuples P1, ..., Py of prime ideals of K for which the following
hold:

W () == =2
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(ii) P1,..., Py lie above distinct rational primes,
(iii) each of P1, ..., Py has degree 1,
(iv) IN(P;) — N(Pj)| <, for each pair of i, j € {1,2, ..., k}.

When K = Q, Theorem 3.1 was proved by Thorner [16]. The following proposition allows us to reduce to that case.

Proposition 3.2. Let L /K be a Galois extension of number fields, let € be a conjugacy class of Gal(L/K), and let F be the Galois closure
of L/Q. There is a conjugacy class ¢’ of Gal(F /Q) for which the following holds. If p € N is a prime for which (%) =€, then there is
a prime ideal P of K lying above p for which

Proof. The Chebotarev density theorem guarantees that a positive proportion of the prime ideals P of K satisfy (L/ K) =%.
Since almost all prime ideals of K have degree 1 and only finitely many rational primes ramify in F, we may fix a prime
ideal Py of K with (%) =%, with Py having degree 1, and with Po NZ = poZ (say) unramified in F. Let Qo be a prime

ideal of F lying above Py. We claim that ¢’ = (%2) has the desired properties. Indeed, suppose that p is a rational prime

wit —) = . ote that there exist in mtey many such primes yt e ebotarev ensntyt eorem. 1nce =
'hF{,Q %'. (Note that th ist infinitel h primes by the Cheb density th ) Si F/Q FP/OQ

and (%1) is the conjugacy class of [Q/l?] we may choose a prime ideal Q of F lying above p with [F/Q] [F/Q] Setting

P = Qo N Ok, we see that P is a prime ideal of K lying above p.
We proceed to show that (i) and (ii) hold for this choice of P. Note first that, with f(-/-) denoting the inertia degree
and D(-/-) denoting the decomposition group,

f@Q/p) _ D@/ _ ID(Q/p)I

P = = = . 1
T(PIPY=54/P) = ID(@/P)| ~ [(D(Q/p) N Gal(F/K))] M
Similarly,
ID(Qo/po)
P = . 2
J(Po/Po) = 15 G0 o) A Gal(F/K) @)

Now, D(Q/p) is cyclic and generated by [F/Q], while D(Qq/po) is generated by [F/Q] Since [%l] = [%1] we have
D(Q/p) = D(Qo/po), and so f(P/p) = f(Po/po) via (1), (2). We chose Pg to have degree 1, and so f(P/p) = 1. This

proves property (ii). To show (i), note that (#) is the conjugacy class of [%] = [M]

[FQ/Q] it follows that (L/K) (L,ff) =%,

= [%l]‘ . The last equality uses
L L

that P has degree 1, so that [%] [F/Q] Similarly, (L/K) [FQ/(?“L Since [%l]
which is (i). O

Proof of Theorem 3.1. Choose F and %" as in Proposition 3.2. By that proposition, it suffices to show that if &7 is the set of
primes p with (%2) = ¢, then there are infinitely many k-tuples of elements of &2 lying in bounded length intervals. This

is a direct consequence of Thorner’s generalization of the Maynard-Tao theorem to Chebotarev sets [16, Thm 1]. O

4. Proof of Theorem 1.1

Let M =H3/T be a compact arithmetic hyperbolic 3-orbifold which is derived from a quaternion algebra B over K and

let S={¢1,...,4;} be a finite subset of the length spectrum of M. For each i =1,...r, let ¥; be a loxodromic element of I"
whose axis in H> projects to a closed geodesic in M having length ¢;, and let A; be the eigenvalue of a lift of ¥; to SL(2, C)
for which |Aj| > 1. For eachi=1,...,r, we let L; = K(};) and ©; C L; be a quadratic Ok-order containing a preimage in L;
of Yi-

Lemma 4.1. Let B’ be a quaternion algebra over K for which Ram(B) C Ram(B’) and Ram(B) # #. If B' admits embeddings of
L1, ..., L then the commensurability class defined by (K, B") contains a hyperbolic 3-orbifold M’ which is not commensurable to M
and has length spectrum containing S. In fact, M’ can be taken to be of the form M’ =H3/T'L,, where ¢ is a maximal order of B’.

Proof. Let B’ be as in the statement of the lemma and &’ be a maximal order of B’. Because K is the invariant trace field
and B is the invariant trace field of an arithmetic Kleinian group, the field K is a number field with a unique complex
place and the set Ram(B) contains all real places of K. By hypothesis, Ram(B) C Ram(B’), hence B’ is also ramified at
all real places of K and M’ = H3/ I‘lﬁ, is an arithmetic hyperbolic 3-orbifold. By hypothesis B’ admits embeddings of the
quadratic extensions L1, ..., L, of K and is ramified at a finite prime of K. By [2, Thm 3.3], ¢’ admits embeddings of all
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of the quadratic orders 1, ..., Q. It follows that F?ﬁ, contains conjugates of the loxodromic elements y1, ..., ¥, and that
the length spectrum of the orbifold M’ contains S. To show that M’ is not commensurable to M it suffices to show that
B % B’, since the invariant trace field and quaternion algebra are complete commensurability class invariants [9, Thm 8.4].
Because two quaternion algebras defined over number fields are isomorphic if and only if their ramification sets are equal,
that B 2 B’ follows from the hypothesis that Ram(B) C Ram(B’). O

Proof of Theorem 1.1. For M as in the statement of Theorem 1.1, let K, B be the invariant trace field and quaternion
algebra of M, and let Lq,...,L; be the quadratic extensions of K associated with the geodesics lengths in S as defined
above. We may assume without loss of generality that these extensions are all distinct. That there are infinitely many
non-commensurable arithmetic hyperbolic 3-orbifolds with length spectra containing S implies that there are infinitely
many non-isomorphic K-quaternion algebras over K admitting embeddings of the extensions Lq, ..., L;. This in turn implies
that the degree of the compositum L of Ly, ..., L, over K has degree [L : K] =2". These assertions were proven in [7, §6-7].
Note that while [7] deals with hyperbolic surfaces rather than hyperbolic 3-orbifolds, the assertions in question were proven
using results about quaternion algebras over arbitrary number fields and thus apply to our present setting by taking the
number fields to have a unique complex place. The Galois group Gal(L/K) is isomorphic to (Z/2Z)" and the primes of K
whose Frobenius elements represent the element (1,...,1) correspond to those which are inert in each of the extensions
L1/K,...,Ly/K. Fix a prime Pg of K whose Frobenius element represents (1,..., 1) and which does not lie in Ram(B). By
Theorem 3.1 there is a constant C; > 0 such that there are infinitely many k-tuples Pq, ..., Pj of primes of K, all of which
are inert in the extensions L1/K, ..., L;/K and have norms lying within an interval of length C;. We may assume that none
of the primes P; ramify in B. As M is derived from a quaternion algebra, ©t;(M) < Flﬁ, for some maximal order & of B.
Finally, by Borel [1], we have

AxPPPek 2
_ AkIP# 8k () T oo -1,

3 1
Vol(H'/T'p) = (4m2)nk—1
PeRamg(B)

where ng = [K : Q], ¢k (s) is the Dedekind zeta function of K, and Ak is the discriminant of K.

We now use the primes Pq,..., P, to construct quaternion algebras B1, ..., By over K. For each i =1,...,k, define B;
to be the unique quaternion algebra over K for which Ram(B;) = Ram(B) U {Pg, P;}. As B admits embeddings of all of
the quadratic extensions L;, no prime of Ram(B) splits in L;/K. Similarly, none of the primes Py, P1,..., Py split in L;/K

for any i. The Albert-Brauer-Hasse-Noether theorem implies that a quaternion algebra over a number field K admits an
embedding of a quadratic extension of K if and only if no prime which ramifies in the algebra splits in the extension
of K. This allows us to conclude that all of the quaternion algebras which we have defined are pairwise non-isomorphic
and admit embeddings of all of the L;. Let 04,..., 0 be maximal orders of Bi,..., B. By Lemma 4.1, the arithmetic
hyperbolic 3-orbifolds M; = H3/T'] - which are all pairwise non-commensurable since the algebras By, ..., By are pairwise
non-isomorphic, have length spectra containing S. By [1], the volume of M; is equal to vol(H3/ Ft]ﬁ) -(N(Pg) —1)(N(P;) —1).
As the k primes P1,..., P, have norms lying in a bounded length interval, the orbifolds M1, ..., M} have volumes lying in
a bounded length interval. This completes the proof of Theorem 1.1. O

5. Producing arithmetic hyperbolic 3-manifolds

In this section we prove a variant of Theorem 1.1 that produces infinitely many k-tuples (for any k > 2) of arithmetic
hyperbolic 3-manifolds which are pairwise non-commensurable, have geodesic length spectra containing some fixed set of
lengths and have volumes lying in an interval of (universally) bounded length.

Corollary 5.1. Let M = H3/ F1ﬁ be a compact arithmetic hyperbolic 3-manifold whose invariant quaternion algebra is ramified at some
finite prime and let S be a finite subset of the length spectrum of M. Suppose that n(V, S) — oo as V. — oc. Then, for every k > 2, there
is a constant C > 0 such that there are infinitely many k-tuples M1, ..., My of arithmetic hyperbolic 3-manifolds which are pairwise
non-commensurable, have length spectra containing S, and volumes satisfying |vol(Mi) — vol(Mj)| <Cforalll<i,j<k.

Proof. We will show that our hypotheses on M imply that the orbifolds My, ..., My produced by Theorem 1.1 in this case
are all manifolds. Let K, B be the invariant trace field and quaternion algebra of M. As M is a manifold, I‘lﬁ is torsion-
free and so B does not admit an embedding of any cyclotomic extension F of K with [F : K] = 2. This follows from [9,
Thm 12.5.4] and makes use of the fact that Ramy(B) is nonempty. The Albert-Brauer-Hasse-Noether theorem therefore
implies that, for every cyclotomic extension F of K with [F : K] =2, there exists a prime P € Ram(B) such that P splits
in F/K. Let By,...,Bg, O1,...,0, and M1, ..., My be as in the proof of Theorem 1.1. The quaternion algebras Bq,..., By
were defined so that Ram(B) C Ram(B;), hence the Albert-Brauer-Hasse-Noether theorem again implies that no cyclotomic
extension F of K with [F : K] =2 embeds into any of the quaternion algebras B;. By [9, Thm 12.5.4], the groups Ftlﬁi are all
torsion-free, and hence the orbifolds My, ..., My are all manifolds. O
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