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We discuss a uniqueness property of the characteristic function of an absolutely continuous 
probability measure. Our study is initiated by the question posed by N.G. Ushakov: is it true 
that, for any interval [a, b] ⊂ R, 0 /∈ [a, b], there exists a characteristic function f such that 
f �≡ e−t2/2, but f (t) = e−t2/2 for all t ∈ [a, b]?

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous discutons d’une propriété d’unicité pour : les fonctions caractéristiques des mesures 
de probabilité. Notre étude tire son origine dans la question de N.G. Ushakov : étant donné 
[a, b] ⊂ R, 0 /∈ [a, b], est-il vrai qu’il existe une fonction caractéristique f telle que f �≡
e−t2/2, mais vérifiant f (t) = e−t2/2 pour t ∈ [a, b] ?

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let M(R) denote the Banach algebra of bounded regular complex-valued Borel measures on R with the total variation 
norm ‖μ‖. In this paper, we define the Fourier–Stieltjes transform of μ ∈ M(R) by

μ̂(t) =
∫
R

e−itxdμ(x), t ∈R.

The Lebesgue space L1(R) can be identified with the closed ideal in M(R) of measures absolutely continuous with respect 
to the Lebesgue measure dx on R. Namely, if ϕ ∈ L1(R), then ϕ is associated with the measure

μϕ(E) =
∫
E

ϕ(x)dx
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for each Borel subset E of R. Hence, ϕ̂(t) = ∫
R

e−itxϕ(x) dx. We normalize the inverse Fourier transform

ϕ̌(x) = 1

2π

∫
R

eixtϕ(t)dt

so that the formula (̂ϕ̌) = ϕ is true for suitable ϕ ∈ L1(R).
Suppose that μ ∈ M(R) is a positive measure such that ‖μ‖ = 1. Then, in the language of probability theory, μ and 

f (t) := μ̂(t), t ∈ R, are called a probability measure and its characteristic function, respectively. In particular, if μ = ϕ(x)dx, 
where ϕ ∈ L1(R) and ϕ is such that ‖ϕ‖L1(R) = 1 and ϕ ≥ 0 on R, then ϕ is called the probability density function of μ, or 
the probability density for short.

Next we discuss a uniqueness property of the characteristic function of a probability measures with continuous densities. 
Our study is initiated by the question posed by Ushakov and Ushakov [7, p. 275]:

Is it true that for any interval, which does not contain the origin, there exists a

characteristic function f (t) such that f (t) = e−t2/2 on this interval but f (t) �≡ e−t2/2? (1)

Throughout the following, for U ⊂ R, we shall write f = g on U if f (t) = g(t) for t ∈ U . If there U = R, then we shall write 
f ≡ g .

Assume that f is the characteristic function such that it coincides with e−t2/2 on (a, b), a < b, (a, b) �= R but f �≡
e−t2/2. Then (a, b) cannot contain the origin. This is an immediate consequence of the usual uniqueness theorem for an 
analytic function and the following theorem (see [5, p. 193]): if the characteristic function f can be continued in a complex 
neighborhood of origin to an analytic function, then f is analytic in a certain horizontal strip

Ha = {λ ∈C : |�λ| < a}, a > 0. (2)

In this paper, we study the question (1) in the more general case with the characteristic function f = ϕ̂ of an arbitrary 
continuous probability density ϕ , instead of e−t2/2.

Given a continuous function ϕ :R →C, we define its essential support to be

Sϕ = {x ∈ R : |ϕ(x)| > 0}.
Then Nϕ = R \ Sϕ is the zero set of ϕ . Throughout the following, for σ > 0,

Uσ =R \ (−σ ,σ ),

denotes a neighborhood of infinity.
An affirmative answer to (1) comes from the following theorem.

Theorem 1.1. (see [6, Theorem 1.2]) Let f : R → C be the characteristic function of a continuous probability density ϕ . Assume that 
α ∈ R and d > 0 are such that (α, α + 2d) ⊂ Sϕ . If

σd ≥ 2
√

3,

then there is a characteristic function g such that f = g on Uσ but f �≡ g.

The next corollary is an immediate consequence of Theorem 1.1.

Corollary 1.2. For any characteristic function f : R → C of a continuous probability density, there exist the characteristic function g
and a neighborhood of infinity Uσ such that f = g on Uσ but f �≡ g.

Although the answer to (1) is positive, some examples show that is not true in general (see Theorem 1.3 below). It turns 
out that for certain characteristic functions and some related neighborhoods of infinity, appropriate uniqueness theorems 
can be true.

Let Z denote the set of integers. We state the main result of this paper.

Theorem 1.3. Let f : R → C be the characteristic function of a continuous probability density ϕ . Suppose that there exist lattices 
� j = τ j + α jZ, τ j ∈R, α j > 0, j = 1, 2, such that

�1,�2 ⊂ Nϕ (3)

and

�1 ∩ �2 = ∅. (4)

Assume that g : R →C is the characteristic function of a probability measure such that f = g on Uσ . If
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σα j ≤ 2π (5)

for j = 1, 2, then f ≡ g.

Theorem 1.3 gives us an idea that, in such uniqueness theorems, the significant role is not played only by how big both 
Sϕ and Uϕ are, but also by an arithmetic structure of Sϕ .

The following proposition shows that the statement of Theorem 1.3 is exact (in some sense).

Proposition 1.4. Let α1, α2 > 0 be given. Assume that

σα j > 2π (6)

for j = 1, 2. Then there are τ1, τ2 ∈ R such that:

(i) lattices � j = τ j + α jZ, j = 1, 2, satisfy (4);
(ii) to any characteristic function f of a continuous probability density ϕ with Nϕ = �1 ∪ �2 , there exists the characteristic function 

g such that f = g on Uσ , but f �≡ g.

2. Preliminaries and proofs

Let � be a closed subset of R. A function ω ∈ Lp(R), 1 ≤ p ≤ ∞, is called bandlimited to � if ω̂ vanishes outside �. If 
2 < p ≤ ∞, then we understand the Fourier transform of ω ∈ Lp(R) in a distributional sense of the Schwartz space S ′(R).

For σ > 0, we denote by B p
σ the Bernstein space of all F ∈ Lp(R) such that F is bandlimited to [−σ , σ ]. The space B p

σ

is equipped with the norm

‖F‖p =
(∫
R

|F (x)|p dx
)1/p

for 1 ≤ p < ∞ and ‖F‖∞ = ess suppx∈R|F (x)|.

By the Paley–Wiener–Schwartz theorem (see [3, p. 68]), any F ∈ B p
σ is infinitely differentiable on R. Even more is true: this 

F has an extension onto the complex plane C to an entire function of exponential type at most σ . That is, for every ε > 0, 
there exists M = M(ε) > 0 such that

|F (z)| ≤ Me(σ+ε)|z|

for all z ∈C (see, e.g., [4, p. 149]). Any F ∈ B p
σ satisfies the Plancherel–Polya inequality [4, p. 150]∫

R

|F (x + iy)|p dx ≤ epσ |y|‖F‖p
p for 1 ≤ p < ∞, (7)

where y ∈R, and

|F (x + iy)| ≤ eσ |y|‖F‖∞ for p = ∞. (8)

Note that 1 ≤ p ≤ r ≤ ∞ implies ([3, p. 49], Lemma 6.6)

B1
σ ⊂ B p

σ ⊂ Br
σ ⊂ B∞

σ . (9)

For F ∈ B1
σ with x ∈R and a > 0, the Poisson summation formula reads (see, e.g., [2, p. 63] and [1, p. 509])

∑
n∈Z

F (x + an) = 1

a

∑
k∈Z

F̂

(
2π
a

k

)
ei 2πx

a k, (10)

where both sums converge absolutely.

Proof of Theorem 1.3. By Bochner’s theorem, there exists a probability measure μ ∈ M(R) such that g = μ̂. Under the 
conditions of our theorem, it follows that f − g is supported on [−σ , σ ]. Then ( f − g) ∈ L1(R). This yields that ϕ − μ =
( f̌ − ǧ) ∈ C0(R), where C0(R) is the usual Banach space of complex-valued continuous functions on R that vanish at infinity. 
We see that μ is absolutely continuous with respect to the Lebesgue measure on R. Therefore, we can identify ǧ with some 
continuous probability density ψ ∈ L1(R). By definition, put

F = ϕ − ψ. (11)

Then F ∈ B1
σ , since ϕ̂ − ψ is supported on [−σ , σ ]. Moreover, (11) implies that

F (x) ≤ ϕ(x) (12)
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for all x ∈R and∫
R

F (x)dx = 0. (13)

Our strategy is to prove that if an arbitrary F ∈ B1
σ satisfies (12) and (13), then F ≡ 0. We do this in three steps. First, we 

show that F = 0 on lattices �1 and �2, i.e.

F (τ j + α jn) = 0 (14)

for j = 1, 2 and all n ∈ Z. Indeed, combining (3) and (12), we see that

F (τ j + α jn) ≤ 0, (15)

j = 1, 2, n ∈ Z. On the other hand, using the Poisson formula (10), we get

∑
n∈Z

F (τ j + α jn) = 1

α j

∑
k∈Z

F̂

(
2π
α j

k

)
e

i
2πτ j
α j

k
, (16)

j = 1, 2. Under the conditions (5), it follows that 1/α j ≥ σ/(2π), j = 1, 2. Then |2πk/α j | ≥ |σk| for j = 1, 2 and all k ∈ Z. 
Hence

F̂

(
2π
α j

k

)
= 0

k ∈ Z, k �= 0, since F̂ is a continuous function on R and it is supported on [−σ , σ ]. Now (16) implies that

∑
n∈Z

F (τ j + α jn) = F̂ (0)

α j
= 1

α j

∫
R

F (x)dx,

j = 1, 2. Finally, combining this with (13) and (15), we get (14).
The second step is to show that if ξ ∈ B1

σ and

ξ(τ + αn) = 0, (17)

for all n ∈ Z and certain α, τ ∈ R such that α ≥ π/σ , then the function

U (z) = ξ(z)

sin(π(z − τ )/α)
(18)

is entire and belongs to B1
σ1

, with σ1 = σ − π/α > 0. Indeed, the function (18) is entire, since both ξ and sin(π(z − τ )/α)

are entire functions and (17) implies that ξ vanishes on the zeros set {τ + αn : n ∈ Z} of sin(π(z − τ )/α). By (9), we can 
consider ξ ∈ B1

σ also as an element of B∞
σ . Therefore, if z = x + iy with y �= 0, then applying (8) to ξ in (18), we get

|U (z)| ≤ 2‖ξ‖L∞(R)eσ |y|

|e(π/α)y − e−(π/α)yei2π(x−τ )/α| ≤ 2‖ξ‖L∞(R)eσ |y|

|e(π/α)y − e−(π/α)y|
= 2‖ξ‖L∞(R)e

(σ−π/α)|y| 1

|1 − e(−2π/α)|y|| . (19)

This means that U is bounded on the boundary of any strip (2). Then, by the maximum principle for analytic functions, we 
have that U is bounded by the same constant on the whole strip (2). Combining this with (19), we can conclude that there 
exists 0 < A < ∞ such that

|U (x + iy)| ≤ Ae(σ−π/α)|y|

for all x, y ∈R. Therefore, we have that U ∈ B∞
σ1

with σ1 = σ − π/α.
Now we will show that U ∈ B1

σ1
. For a ∈R, a �= 0, let us define Ua(z) = U (z + ia), z ∈ C. By the definition (18) of U , and 

keeping in mind that ξ ∈ B1
σ , we can use (7) for ξ and p = 1. This gives Ua ∈ B1

σ . Next we apply the estimate (7) to Ua

with p = 1 and y = −a. In this way, we see that U ∈ B1
σ1

as claimed.
In the final step, we show that F defined in (11) is the zero function on R. To this end, let us define the function

T (z) = F (z)

sin
(

π(z − τ1)/α1

)
sin

(
π(z − τ2)/α2

) .

Now if we recall (14) and what was proved in the previous step for the function (18), we can state that T ∈ B1 with
θ
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θ = σ −
(

π
α1

+ π
α2

)
.

On the other hand, the conditions (5) imply that T is an entire function of order 1 and no more than minimal type. Then T
is a constant function (see [4, p. 39]). Furthermore, T ≡ 0, since T ∈ B1

θ and so T ∈ L1(R). This proves Theorem 1.3. �
Proof of Proposition 1.4. Let I :=

[
0, 2π/σ

]
. Having in mind (6), it is easy to see that there exist τ1, τ2 < 0 such that 

�1 = τ1 + α1Z and �2 = τ2 + α2Z satisfy (4) and the additional condition

� j ∩ I = ∅. (20)

Suppose that ϕ is an arbitrary continuous probability density such that Nϕ = �1 ∪ �2. By f denote the characteristic 
function of ϕ . Using (20), we get

a = min
x∈I

ϕ(x) > 0. (21)

For this number a, we define two functions

F1(x) = aπ2

σ

sin
(

σ x
2

)
x(2π − σ x)

and F (x) = F1(x) sin
σ x

2
.

It is clear that F1 ∈ B1
σ/2 and F ∈ B1

σ . Next, it is easy to see that F is nonpositive on R \ I and F attains its maximum value 
on I at x = π/σ . Since F (π/σ ) = F1(π/σ ) = a, we may conclude from (21) that F satisfies (12).

We claim that F satisfies also (13). Indeed, F̂1 and F̂ are continuous functions on R, since F1 ∈ B1
σ/2 and F ∈ B1

σ . In 
addition, they are supported on [−σ/2, σ/2] and on [−σ , σ ], respectively. Therefore,

F̂1

(
−σ

2

)
= F̂1

(σ

2

)
= 0. (22)

Next, a direct computation shows that

F̂ (t) = ̂(
sin

σ x

2

)
∗ F̂1(t) = i

2

(
δσ/2 − δ−σ/2

)
∗ F̂1(t) = i

2

(
F̂1

(
t − σ

2

)
− F̂1

(
t + σ

2

))
.

Combining this and (22), we get∫
R

F (x)dx = F̂ (0) = 0

as claimed.
If we now define ψ := ϕ − F , then (12) and (13) imply that ψ is a continuous probability density. Finally, if we denote 

ψ̂ by g , then for any t ∈ Uσ ,

g(t) = ψ̂(t) = ϕ̂(t) − F̂ (t) = ϕ̂(t) = f (t),

since F ∈ B1
σ . On the other hand, f − g = F̂ �≡ 0. This proves Proposition 1.4. �
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