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r é s u m é

Dans cette note, nous prouvons le théorème du flot tubulaire pour les champs vectoriels 
Lipschitz à divergence nulle.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and basic definitions

1.1. Introduction

Given a regular orbit of a Cr flow (r ≥ 1), it is always possible, using a change of coordinates, to straighten out all orbits 
in a certain neighborhood of the orbit. This is a very simple, yet important result called the flowbox theorem, and its proof 
uses basically the inverse function theorem (see, e.g., [16, pp. 40]). This theorem describes completely the local behavior of 
the orbits in a neighborhood of a regular orbit and shows that, locally, first integrals always exist. However, since the change 
of coordinates is given implicitly, there is no guarantee that it preserves certain geometric invariants of the flow like, for 
example, the conservation of a volume form or of a symplectic form. We may wonder why there is the need of preservation 
of some invariants? Actually, when working with perturbations of flows/vector fields, it is nice to have good coordinates to 
perform perturbations explicitly; furthermore, once we perturb maintaining the invariant (volume form, symplectic form), 
we would like to ‘return’ to the initial scenario and so we are keenly interested that these change of coordinates keep the 
geometric invariant unchanged, otherwise they are completely useless. With respect to the Hamiltonian vector field context, 
the proof of the flowbox theorem goes back to classic textbooks by Abraham and Marsden [1] and also by Robinson [17], 
with some revisited approaches by the author and Dias [6], and more recently by Cabral [9]. Considering the preservation 
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of the volume form, the flowbox theorem proof was firstly given by the author in [4] (see also the multidimensional case 
in [5]), and afterwards different approaches were given by Barbarosie [3] and by Castro and Oliveira [10].

Nevertheless, when we work with vector fields, whether they are divergence-free, or Hamiltonian or even without any 
invariant restriction at all, in order to have the Picard–Lindelöf uniqueness of integrability into a flow, we impose only 
Lipschitz continuity. So it is natural to ask if previous mentioned results also work in the broader regularity class of Lipschitz 
vector fields. Boldt and Calcaterra [8] gave a satisfactory answer regarding Lipschitz vector fields. Since this work applies 
only to general (i.e. not divergence-free) vector fields, it was not clear that the change of coordinates would preserve 
volume when applied to the special case of divergence-free vector fields. In the present paper, we present a proof of the 
result described in the title. We expect that this basic tool can be useful to complete the theory of continuous flows in the 
volume-preserving case, as it is presented in the recent work [7].

As it is usual in these type of results, the regularity of the change of coordinates obtained is the same as the one of 
the vector field. So we only expect to obtain a lipeomorphism (a bijective Lipschitz map with Lipschitz inverse) for the 
change of coordinates. Indeed, despite the fact that Boldt and Calcaterra’s lipeomorphim does not keep invariant the volume 
necessarily, in [8, Example 5] (see Example 1), an example is presented of a vector field, which curiously is divergence-free, 
and such that no change of coordinates (volume-preserving or not) shall be differentiable.

1.2. Basic definitions

Let M be a connected, closed and C∞ Riemannian manifold of dimension n ≥ 2. Since along this paper we deal with 
divergence-free vector fields, we assume that M is also a volume-manifold with a volume form V : T Mn → R where T M
stands for the tangent bundle. Furthermore, we equip M with an atlas A = {(ϕi, Ui)i} of M (cf. [15]), such that (ϕi)∗V =
dx1 ∧ dx2 ∧ ... ∧ dxn , where xi are the canonical coordinates in the Euclidean space, ϕi : Ui →R

n a local C∞ diffeomorphism 
and Ui an open subset of M . The fact that M is compact guarantees that A can be taken finite, say A = {(ϕi, Ui)}k

i=1. We 
call Lebesgue measure the measure associated with V and denote it by ν . More precisely, we let

ν(B) = νV (B) :=
∫

ϕ(B)

Vϕ−1(x)(Dϕ−1
1 · e1, ..., Dϕ−1

n · en)dx1 . . . dxn,

for some Borelian B ⊂ M where {e1, ..., en} is the canonical base of Rn . Let d(·, ·) stands for the metric associated with the 
Riemannian structure.

We say that a function F : Rn → R is Lipschitz (or Lipschitz continuous) if there exists L > 0 such that ‖F (x) − F (y)‖ ≤
L‖x − y‖ for all x, y ∈ R

n . A Cr vector field X (r ≥ 0) is a Cr map X : M → T M so that X(x) ∈ TxM . Let X be written 
in the coordinates associated with A such that X = ∑n

i=1 Xi
∂

∂xi
. If, for every i = 1, ..., n, each function Xi is Lipschitz 

continuous, then X is said to be a Lipschitz vector field. The integral family of curves, Xt : M → M , associated with X satisfies 
Xt+s(x) = Xt(X s(x)) and X0(x) = x for all t, s ∈ R and x ∈ M and is called the flow associated with X . In [13, Theorem 
3.41 & Lemma 3.42], it is proved that Lipschitz vector fields integrate Lipschitz flows. Rademacher’s theorem ([12, Theorem 
3.1.6]) yields that Lipschitz functions admit derivatives for ν-a.e. (almost every) point. The divergence of a vector field, 
∇ · X : M → R, where ∇ :=

(
∂

∂x1
, ..., ∂

∂xn

)
, is a well-defined function on a ν-full measure subset of M if we assume X to be 

a Lipschitz vector field. We say that a Lipschitz vector field X is divergence-free if ∇ · X = 0 for ν-a.e. x ∈ M . We denote this 

set by X0,1
ν (M). We endow X0,1

ν (M) with the norm ‖ · ‖0,1 defined by ‖X‖0,1 := max

{
sup
p∈M

‖X(p)‖, sup
p,q∈M,p �=q

‖X(p)−X(q)‖
d(p,q)

}
. 

When a vector field X is of class Cr (r ≥ 1), we say that X is divergence-free if ∇ · X = 0 for all x ∈ M .

2. The Abel–Jacobi–Liouville formula for X0,1
ν (M)

As we already said, Lipschitz vector fields are uniquely integrable and, for each time t , the map Xt is Lipschitz continuous, 
thus D Xt

x exists for ν-a.e. x ∈ M . In fact, Xt is a lipeomorphism with respect to the space variable. We say that a Lipschitz 
flow Xt : M → M is volume-preserving if, for any Borelian B ⊆ M and any t ∈ R, we have ν(Xt(B)) = ν(B). From the Change 
of Variables Theorem, this definition is equivalent to the one that assures that for any τ ∈ R and for ν-a.e. point x ∈ M , we 
have det(D Xτ

x ) = 1.
The relation between the volume-preserving property of the flow and the divergence-freeness of the vector field is 

embodied in Proposition 1. This is a kind of Abel–Jacobi–Liouville’s formula, but for the Lipschitz class. For the Cr class 
(r ≥ 2), the proof of this formula is easy and the proof for C1 vector fields usually follows from a C1-approximation of 
C2 vector fields and a limit argument (see, e.g., [14, Theorem 3.2]). Unfortunately, we can not use this argument because 
vector fields in X0,1

ν (M) are not ‖ · ‖0,1-approximable by vector fields in X ∈ X1
ν(M), as we can see in the following simple 

example.

Example 1. Take X(x, y) = (X1(x, y), X2(x, y)) = (1 + |y|, 0) in X0,1
ν (R2) and use [15] to transport it to M = S

2, defining a 
vector field in X0,1

ν (M). Assume, by contradiction, that there exists a C1 vector field Y (x, y) = (Y1(x, y), Y2(x, y)) ∈ X1
ν(M)

such that ∂Y1 |(0,0) exists and ‖X − Y ‖0,1 < 1. Let us define, for y ∈ (−1, 1), α(y) = Y1(0, y), β(y) = X1(0, y) = 1 + |y| and

∂ y
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�y := |α(y) − β(y) − (α(0) − β(0))|
|y − 0| =

∣∣∣∣α(y) − α(0)

|y| −
(

β(y) − β(0)

|y|
)∣∣∣∣ =

∣∣∣∣α(y) − α(0)

|y| − 1

∣∣∣∣ .
We observe that

lim
y→0+

α(y) − α(0)

|y| = α′(0) = ∂Y1

∂ y
|(0,0) and lim

y→0−
α(y) − α(0)

|y| = −α′(0) = −∂Y1

∂ y
|(0,0).

Hence, one of these numbers α′(0) or −α′(0) is ≤ 0, which contradics ‖X − Y ‖0,1 < 1 above.

To prove Proposition 1, we use the next result:

Theorem 2.1. (Dacorogna and Moser [11, Theorem 2]) Let 	 ⊂ R
n be a bounded open set with C∞ boundary. Let g ∈ C∞(	, R)

be such that 
∫
	

g = 0. Then, there exists a vector field V ∈ C∞(	, Rn) and with the same regularity at the boundary such that 
∇ · V (x) = g(x) for x ∈ 	 and V (x) = 0 on the boundary ∂	.

Proposition 1. If X ∈X
0,1
ν (M) and τ ∈R, then, for any Borelian B, we have ν(B) = ν(Xτ (B)).

Proof. The proof resemble [2, Theorem 2.2]. Use [15] and cover M with volume-preserving charts {ϕi : Ui → R
n}k

i=1.
Local argument: Fix ϕ1 : U1 →R

n . Let η : Rn → R be a C∞ map compactly supported in B(0,1) and such that 
∫
Rn η = 1. We 

apply the convolution operator of the scaled Friedrich’s mollifier ηε(x) := ε−nη
( x
ε

)
on a small ball of radius ε > 0 to each 

component of a Lipschitz vector field X in the local chart ϕ1 in U1. Thus, Xi ∗ ηε(x) = ∫
Rn Xi(y)ηε(x − y) dν(y) for each 

i = 1, ..., n and so the vector field X1
ε = X ∗ ηε = (X1 ∗ ηε, ..., Xn ∗ ηε) on U1 is of class C∞ . We have also that if Xi has 

Lipschitz constant L, then Xi ∗ ηε has also Lipschitz constant L. Observe that:

∇ · X1
ε (x) = ∇ · (X1 ∗ ηε, ..., Xn ∗ ηε) = ∂

∂x1
(X1 ∗ ηε) + ... + ∂

∂xn
(Xn ∗ ηε)

= ∂

∂x1

⎛
⎝∫
Rn

X1(y)ηε(x − y)dν(y)

⎞
⎠ + ... + ∂

∂xn

⎛
⎝∫
Rn

Xn(y)ηε(x − y)dν(y)

⎞
⎠

=
∫
Rn

(
∂

∂x1
X1(y)

)
ηε(x − y)dν(y) + ... +

∫
Rn

(
∂

∂xn
Xn(y)

)
ηε(x − y)dν(y)

=
∫
Rn

(
∂

∂x1
X1(y) + ... + ∂

∂xn
Xn(y)

)
ηε(x − y)dν(y) =

∫
Rn

(∇ · X(y)) ηε(x − y)dν(y) = 0.

Since lim
ε→0

ηε(x) = δ(x), where δ is the Dirac delta function, and Xi ∗ δ = Xi we have that X1
ε converges locally to X in 

the C0-topology.
Global argument: Take a partition of the unit {ξi}k

i=1 subordinated to {Ui}k
i=1 and supported in V i for each i = 1, ..., k. 

Consider an open set W i ⊂ V i ⊂ Ui such that ϕi(W i) = B(0, 13 ), ϕi(V i) = B(0, 23 ), ξi |W i = 1 and 	 := M \ int(∪k
i=1W i) is a 

manifold with C∞ boundary. By the local argument, we consider, for i = 1, ..., k, local defined vector fields Xi
ε arbitrarily 

C0-close to X . Let us define a (not necessarily divergence-free) C∞ vector field in the whole M by

Y (x) :=
k∑

i=1

ξi(x)Xi
ε(x),

and the C∞ map g(x) = ∇ · Y (x). We claim that 
∫
	

g(x) dν(x) = 0. Indeed, using the Divergence Theorem twice,

∫
	

g(x)dν(x) =
∫
	

∇ · Y (x)dν(x) =
∫
∂	

Y · �n(x)dSn−1(x) =
k∑

i=1

∫
∂W i

ξi(x)Xi
ε · �n(x)dSn−1(x)

=
k∑

i=1

∫
∂W i

Xi
ε · �n(x)dSn−1(x) =

k∑
i=1

∫
W i

∇ · Xi
ε(x)dν(x) = 0.

We are in the conditions of applying Theorem 2.1. So there exists a C∞ vector field V : 	 → T	M such that ∇ · V (x) = g(x)
for x ∈ 	, V (x) = 0 on ∂	 and C∞ at ∂	. Notice that:
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g(x) = ∇ · Y (x) = ∇ ·
k∑

i=1

ξi(x)Xi
ε(x) =

k∑
i=1

(
∇ξi(x) · Xi

ε(x) + ξi(x)∇ · Xi
ε(x)

)
=

k∑
i=1

∇ξi(x) · Xi
ε(x)

=
k−1∑
i=1

∇ξi(x) · Xi
ε(x) + ∇ξk(x) · Xk

ε(x) =
k−1∑
i=1

∇ξi(x) · Xi
ε(x) +

(
∇(1 −

k−1∑
i=1

ξi(x))

)
· Xk

ε(x)

=
k−1∑
i=1

∇ξi(x) · (Xi
ε(x) − Xk

ε(x)).

Therefore, if we take Xi
ε(x) (i = 1, ..., k) sufficiently C0-close to X , then we obtain g arbitrarily C0-close to zero. We also 

have that V is C0-close to zero. It is also easy to see that Y is C0-close to X .
Finally, we define Z := Y − V . Clearly, ∇ · Z = ∇ · Y − ∇ · V = ∇ · Y − g = 0 and Z ∈ X∞

ν (M), since V is C∞ at the 
boundary of 	. Since Y is C0-arbitrarily close to X and V is C0-arbitrarily close to the zero vector field we obtain that Z is 
C0-arbitrarily close to X .

Now, we pick any small cube C and we claim that ν(C) = ν(Xτ (C)). So, consider a sequence {Zn} ⊂ X∞
ν (M) such that 

Zn→X in the C0 sense. Clearly ν(C) = ν(Zτ
n (C)) for all n. Since Xτ is Lipschitz we have ν(Xτ (∂C)) = 0 guaranteeing no 

raise of volume on the boundary and so ν(C) = ν(Xτ (C)). �
3. Proof of the main result

Once again we appeal to another very useful result by Dacorogna and Moser to obtain our main theorem, i.e. a conser-
vative local change of coordinates that trivializes the action of the flow.

Theorem 3.1. (Dacorogna and Moser [11, Theorem 1]) Let 	 = B(x, r) and f , g ∈ C0,1(	) two positive functions. Then, there exists a 
diffeomorphism1 ϕ with ϕ, ϕ−1 ∈ C1,α(	, Rn), where α < 1, satisfying

g(ϕ(x))det Dϕx = λ f (x), (1)

for all x ∈ 	 where λ = ∫
g/ 

∫
f . We also have ϕ = Id at ∂	.

We say that two vector fields X1 : U1 → T U1 and X2 : U2 → T U2 are locally topologically conjugate near p1 ∈ U1 and 
p2 ∈ U2 if there exist two open neighborhoods O i � pi (i = 1, 2) and a homeomorphism φ : O 1 → O 2 with φ(p1) = p2
such that for any x ∈ O 1 and a small interval I containing 0 the integral curve σx : I → O 1 defined by σx(0) = x and 
d
dt σx(t) = X1(σx(t)) for all t ∈ I (i.e. defined by Xt

1(x) for t ∈ I) is a solution associated with X1 if and only if the integral 
curve φ ◦ σx : I → O 2 is a solution associated with X2.

Theorem 1. (Flowbox theorem for Lipschitz divergence-free vector fields)
Let be given X ∈ X

0,1
ν (M), a non-singular point p1 ∈ M and the trivial vector field T (x̂1, ̂x2, ..., ̂xn) = (1, 0, ..., 0) on canonical coor-

dinates (x̂1, ̂x2, ..., ̂xn) of Rn.

(i) Then, X and T are locally topologically conjugate near p1 and p2 = 0̂. The homeomorphism φ that gives the conjugacy is a 
lipeomorphism.

(ii) Then, X and Tc = cT are locally topologically (volume-preserving) conjugate near p1 and p2 = 0̂ for some c = c(X, p1) > 0. The 
homeomorphism �, which gives the conjugacy, is a volume-preserving lipeomorphism.

Proof. The item (i) is precisely [8, Theorem 4] where φ : O 1 � p1 → O 2 � 0̂. Assume, using Moser coordinates [15], that 
X evolves in Rn with coordinates (x1, ..., xn), p1 = 0 and X(p1) ∈ {(x,0, ...,0) ∈ R

n : x ∈R}. Like in [8] we let � = X(p1)
⊥ . 

Take r > 0 sufficiently small such that 	 := B(0, r) ⊂ � and 	 ⊂ O 1. Using the same notation as in [8] for each x ∈ O 1, 
there exists a unique tx ∈ (−T , T ) such that σx(−tx) is in a very small (n − 1)-dimensional ball centered in 0 inside �. 
The lipeomorphism φ is defined by φ(x) = σx(−tx) + tx(1, 0, ..., 0) and so, we have φ(	) = 	̂ where 	̂ := (1, 0, ..., 0)⊥ in 
coordinates (x̂1, ̂x2, ..., ̂xn). We have φ−1(x̂1, ̂x2, ..., ̂xn) = Xx1 (0, ̂x2, ..., ̂xn).

We define the C∞ function

f : 	̂ −→ R

(x̂2, ..., x̂n) �−→ 1

and the Lipschitz continuous function

1 The optimal gain in smoothness from f , g ∈ C0,1 to ϕ ∈ C1,1 (typical of Dacorogna and Moser theorem) is not assured in the Lipschitz case. Nevertheless, 
C1,α regularity is sufficient for our purposes.
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g : 	 −→ R

(x2, ..., xn) �−→ X1(0, x2, ..., xn),

where X1(x1, x2, ..., xn) is the projection into the first coordinate of X(x1, x2, ..., xn). Since the functions f and g have the 
regularity required in Theorem 3.1, we apply this theorem to 	̂ = B(0, r) ⊆ R

n−1 so there exists a C1,α diffeomorphism 
(α < 1)

ϕ : 	̂ −→ ϕ(	̂) = 	 ⊆ R
n−1

(x̂2, ..., x̂n) �−→ (ϕ1(x̂2, ..., x̂n), ...,ϕn−1(x̂2, ..., x̂n))

satisfying the partial differential equation

g(ϕ(x̂2, ..., x̂n))det Dϕ(x̂2,...,x̂n) = λ, (2)

for all (x̂2, ..., ̂xn) ∈ 	̂ where λ = ∫
g/ 

∫
1, and ϕ|

∂	̂
is the identity. Now, we define the change of coordinates by:

� : O 2 ⊂ R× 	̂ −→ O 1

x̂ = (x̂1, x̂2, ..., x̂n) �−→ Xλ−1 x̂1((0,ϕ(x̂2, ..., x̂n))

where Xλ−1x1 ((0, ϕ(x̂2, ..., ̂xn)) = (Xλ−1 x̂1
1 (0, ϕ(x̂2, ..., ̂xn)), ..., Xλ−1 x̂1

n (0, ϕ(x̂2, ..., ̂xn))). Observe that O 1 can diminish due to 
the parameter λ (we keep the notation O 1). Since � is the composition of a C1,α diffeomorphism and a lipeomorphism, we 
have that � is of class C0,1. Thus we can apply Rademacher’s theorem and take derivatives for ν-a.e. We begin by claiming 
that:

det D�(0,x̂2,...,x̂n) = 1 for ν-a.e. (0, x̂2, ..., x̂n) ∈ O 2. (3)

Note that, taking x1 = 0 for j = 2, ..., n and i = 2, ..., n, we have the partial derivative at (0, ̂x2, ..., ̂xn) given by:

∂

∂ x̂i
Xλ−1 x̂1

j (0,ϕ(x̂2, ..., x̂n)) = ∂ϕ j

∂ x̂i
(x̂2, ..., x̂n), (4)

and for j = 1 and i = 2, ..., n we have the partial derivative at (0, ̂x2, ..., ̂xn) given by:

∂

∂ x̂i
Xλ−1 x̂1

1 (0,ϕ(x̂2, ..., x̂n)) = 0. (5)

Let us compute the derivatives when t = x̂1 = 0. Taking into account that the first column is the time-derivative of a flow 
i.e. the vector field, and also (4) and (5), we obtain,

D�(0,x̂2,...,x̂n) =

⎛
⎜⎜⎜⎜⎝

λ−1 X1(X0((0,ϕ(x̂2, ..., x̂n))) 0 . . . 0
λ−1 X2(X0((0,ϕ(x̂2, ..., x̂n)))

∂ϕ1
∂ x̂2

|(x̂2,...,x̂n) . . .
∂ϕ1
∂ x̂n

|(x̂2,...,x̂n)

...
...

. . .
...

λ−1 Xn(X0((0,ϕ(x̂2, ..., x̂n)))
∂ϕn−1
∂ x̂2

|(x̂2,...,x̂n) ...
∂ϕn−1
∂ x̂n

|(x̂2,...,x̂n)

⎞
⎟⎟⎟⎟⎠ . (6)

Using (2) and Laplace’s expansion along the first line, we conclude that,

det(D�(0,x̂2,...,x̂n)) = λ−1 X1((0,ϕ(x̂2, ..., x̂n)))det Dϕ(x̂2,...,x̂n) = g(ϕ(x̂2, ..., x̂n))λ−1 det Dϕ(x̂2,...,x̂n) = 1,

therefore (3) is proved. Now we will check that det D�(x̂0
1,x̂0

2,...,x̂0
n) = 1 for ν-a.e. (x̂0

1, ̂x
0
2, ..., ̂x

0
n) ∈ O 2. Notice that

�(x̂1, x̂2, ..., x̂n) = Xλ−1 x̂0
1 [Xλ−1(x̂1−x̂0

1)((0,ϕ(x̂2, ..., x̂n)))] = Xλ−1 x̂0
1 [�(x̂1 − x̂0

1, x̂2, ..., x̂n)],
so, for ν-a.e. point, we have (modulo an ‘identification’ on the fiber bundle) that

D�(x̂1,x̂2,...,x̂n) = D X
λ−1 x̂0

1

�(x̂1−x̂0
1,x̂2,...,x̂n)

D�(x̂1−x̂0
1,x̂2,...,x̂n). (7)

Evaluating D�(x̂1,x̂2,...,x̂n) at x̂1 = x̂0
1 we get:

D�(x̂0
1,x̂2,...,x̂n) = D X

λ−1 x̂0
1

�(0,x̂2,...,x̂n)
D�(0,x̂2,...,x̂n). (8)

Since Xt is volume-preserving, using (3) and Proposition 1, we conclude that det D�(x̂0
1,x̂0

2,...,x̂0
n) = 1 for ν-a.e. Finally, take 

� = �−1. �
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Remark 3.1. Consider the constant vector field Tc := (λ, 0, ..., 0) (say c = λ). Let (x1, x2, ..., xn) = �(x̂1, ̂x2, ..., ̂xn). Recalling that 
D Xt

x · X(x) = X(Xt(x)), for ν-a.e. (x1, x2, ..., xn), we obtain:

�∗Tc(x1, x2, ..., xn) = D�(x̂1,x̂2,...,x̂n)Tc �−1(x1, x2, ..., xn) = D�(x̂1,x̂2,...,x̂n)Tc(x̂1, x̂2, ..., x̂n)

(8)= D Xλ−1 x̂1
�(0,x̂2,...,x̂n)

D�(0,x̂2,...,x̂n)(λ,0, ...,0)
(6)= D Xλ−1 x̂1

�(0,x̂2,...,x̂n)
X(�(0, x̂2, ..., x̂n))

= X(Xλ−1 x̂1(�(0, x̂2, ..., x̂n))) = X(Xλ−1 x̂1((0,ϕ(x̂2, ..., x̂n))) = X(�(x̂1, x̂2, ..., x̂n)).

Taking � = �−1 , we obtain Tc = �∗ X, where the pull-back is defined for a ν-a.e. point.
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