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In this note, we prove an L
n
2 -energy gap result for Yang–Mills connections on a principal 

G-bundle over a compact manifold without using the Lojasiewicz–Simon gradient inequal-
ity ([2] Theorem 1.1).

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cette note, nous démontrons un résultat concernant le gap d’énergie L
n
2 pour les 

connexions de Yang–Mills sur un fibré principal de groupe structural G sur une variété 
compacte, sans utiliser l’inégalité du gradient de Lojasiewicz–Simon.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let X be a compact n-dimensional Riemannian manifold endowed with a smooth Riemannian metric g , P → X a princi-
pal G-bundle over X , where G is a compact Lie group. We define the Yang–Mills functional by

Y M(A) =
∫

X

|F A |2dvolg,

where A is a C∞-connection on P and F A is the curvature of A.
A connection A on P is called a Yang–Mills connection if it is a critical point of Y M , i.e. it obeys the Yang–Mills equation 

with respect to the metric g:

d∗
A F A = 0. (1.1)

In [2], Feehan proved an L
n
2 -energy gap result for Yang–Mills connections on the principal G-bundle P over an arbitrary 

closed smooth Riemannian manifold with dimension n ≥ 2 ([2] Theorem 1.1). Feehan applied the Lojasiewicz–Simon gradient 

E-mail address: oula143@mail.ustc.edu.cn.
http://dx.doi.org/10.1016/j.crma.2017.07.012
1631-073X/© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

http://dx.doi.org/10.1016/j.crma.2017.07.012
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:oula143@mail.ustc.edu.cn
http://dx.doi.org/10.1016/j.crma.2017.07.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crma.2017.07.012&domain=pdf


T. Huang / C. R. Acad. Sci. Paris, Ser. I 355 (2017) 910–913 911
inequality ([2] Theorem 3.2) to remove a positivity hypothesis on the Riemannian curvature tensors in a previous L
n
2 -energy 

gap result due to Gerhardt [3] (Theorem 1.2).
In this note, we give another proof of this L

n
2 -energy gap result of Yang–Mills connection without using the Lojasiewicz–

Simon gradient inequality.

Theorem 1.1. ([2] Theorem 1.1) Let X be a compact Riemannian manifold without boundary of dimension n ≥ 2 endowed with a 
smooth Riemannian metric g, P be a G-bundle over X. Then, either any smooth Yang–Mills connection A over X with compact Lie 
group G satisfies∫

X

|F A | n
2 dvolg ≥ C0

for a constant C0 > 0 depending only on X, n, G, or the connection A is flat.

2. Preliminaries and basic estimates

We shall generally adhere to the now standard gauge-theory conventions and notation of Donaldson and Kronheimer [1]
and Feehan [2]. Throughout our article, G denotes a compact Lie group and P a smooth principal G-bundle over a compact 
Riemannian manifold X of dimension n ≥ 2 endowed with a Riemannian metric g , gP denote the adjoint bundle of P , 
endowed with a G-invariant inner product and �p(X, gP ) denote the smooth p-forms with values in gP . Given a connection 
on P , we denote by ∇A the corresponding covariant derivative on �∗(X, gP ) induced by A and the Levi-Civita connection 
of X . Let dA denote the exterior derivative associated with ∇A .

For u ∈ Lp(X, gP ), where 1 ≤ p < ∞ and k is an integer, we denote

‖u‖L p
k,A (X) := ( k∑

j=0

∫

X

|∇ j
Au|pdvolg

)1/p
,

where ∇ j
A := ∇A ◦ . . . ◦ ∇A (repeated j times for j ≥ 0). For p = ∞, we denote

‖u‖L∞
k,A (X) :=

k∑
j=0

ess sup
X

|∇ j
Au|.

At first, we review a key result due to Uhlenbeck for the connections with L p-small curvature (2p > n) [5], which provides 
the existence of a flat connection � on P , of a global gauge transformation u of A to Coulomb gauge with respect to �, and 
of a Sobolev norm estimate for the distance between � and A.

Theorem 2.1. ([5] Corollary 4.3 and [2] Theorem 5.1) Let X be a closed, smooth manifold of dimension n ≥ 2 endowed with 
a Riemannian metric, g, and G be a compact Lie group, and 2p > n. Then there are constants, ε = ε(n, g, G, p) ∈ (0, 1] and 
C = C(n, g, G, p) ∈ [1, ∞), with the following property. Let A be a Lp

1 connection on a principal G-bundle P over X. If the curva-
ture F A obeys

‖F A‖L p(X) ≤ ε,

then there exist a flat connection, |�|, on P , and a gauge transformation u ∈ Lp
2 (X) such that

(1) d∗
�

(
u∗(A) − �

) = 0 on X,
(2) ‖u∗(A) − �‖Lp

1,�
≤ C‖F A‖Lp(X) and

(3) ‖u∗(A) − �‖
L

n
2
1,�

≤ C‖F A‖
L

n
2 (X)

.

Next, we also review another key result due to Uhlenbeck concerning an a priori estimate for the curvature of a Yang–
Mills connection over a closed Riemannian manifold.

Theorem 2.2. ([4] Theorem 3.5 and [2] Corollary 4.6) Let X be a compact manifold of dimension n ≥ 2 endowed with a Riemannian 
metric g, let A be a smooth Yang–Mills connection with respect to the metric g on a smooth G-bundle P over X. Then there exist 
constants ε = ε(X, n, g) > 0 and C = C(X, n, g) with the following property. If the curvature F A obeys

‖F A‖
L

n
2 (X)

≤ ε,

then

‖F A‖L∞(X) ≤ C‖F A‖L2(X).
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3. Proof of Theorem 1.1

For any p ≥ 1, the estimate in Theorem 2.2 yields

‖F A‖L p(X) ≤ C‖F A‖L∞(X) ≤ C‖F A‖L2(X), (3.1)

for C = C(g, n).
If n ≥ 4, using Hölder inequality, we have

‖F A‖L2(X) ≤ C‖F A‖
L

n
2 (X)

. (3.2)

If n = 2, 3, the Lp interpolation implies that

‖F A‖L2(X) ≤ C‖F A‖
n
4

L
n
2 (X)

‖F A‖1− n
4

L∞(X)

≤ C‖F A‖
n
4
n
2 (X)

‖F A‖1− n
4

L2(X)

and thus

‖F A‖L2(X) ≤ C‖F A‖
L

n
2 (X)

. (3.3)

Therefore, by combining (3.1)–(3.3), we obtain

‖F A‖L p(X) ≤ C‖F A‖
L

n
2 (X)

, ∀2p ≥ n and n ≥ 2.

Hence, if we suppose ‖F A‖
L

n
2 (X)

sufficiently small so that ‖F A‖Lq(X) (2q > n and n ≥ 2) satisfies the hypothesis of Theo-

rem 2.1, then Theorem 2.1 provides a flat connection � on P , a gauge transformation u ∈ GP , and the estimate

‖u∗(A) − �‖Lq
1(X) ≤ C(q)‖F A‖Lq(X),

and

d∗
�(u∗(A) − �) = 0.

We denote Ã := u∗(A) and a := u∗(A) − �, then the curvature of Ã is

F Ã = d�a + a ∧ a.

The connection Ã also satisfies Yang–Mills equation

0 = d∗
Ã

F Ã . (3.4)

Hence, taking the L2-inner product of (3.4) with a, we obtain

0 = (d∗
Ã

F Ã,a)L2(X)

= (F Ã,dÃa)L2(X)

= (F Ã,d�a + 2a ∧ a)L2(X)

= (F Ã, F Ã + a ∧ a)L2(X).

Then we get

‖F A‖2
L2(X)

= ‖F Ã‖2
L2(X)

= −(F Ã,a ∧ a)L2(X)

≤ ‖F Ã‖L2(X)‖a ∧ a‖L2(X)

= ‖F A‖L2(X)‖a ∧ a‖L2(X)

here we use the fact |Fu∗(A)| = |F A | since Fu∗(A) = u ◦ F A ◦ u−1.
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If n ≥ 4:

‖a ∧ a‖L2(X) ≤ C‖a‖2
L4(X)

≤ C‖a‖2
Ln(X)

≤ C‖a‖2

L
n
2
1 (X)

≤ C‖F A‖2

L
n
2 (X)

≤ C‖F A‖2
L∞(X)

≤ C‖F A‖2
L2(X)

,

where we apply the Sobolev embedding L
n
2
1 ↪→ Ln .

If n = 2, 3,

‖a ∧ a‖L2(X) ≤ C‖a‖2
L4(X)

≤ C‖a‖2
L2

1(X)

≤ C‖F A‖2
L2(X)

,

where we apply the Sobolev embedding L2
1 ↪→ L4.

Combining the preceding inequalities, we have

‖F A‖2
L2(X)

≤ C‖F A‖3
L2(X)

.

We can choose ‖F A‖L2(X) sufficiently small so that C‖F A‖L2(X) < 1, hence ‖F A‖L2(X) ≡ 0 and thus A must be a flat connec-
tion. This completes the proof.
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