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In this note, we study the sharp weighted estimate involving one supremum. In particular, 
we give a positive answer to an open question raised by Lerner and Moen. We also extend 
the result to rough homogeneous singular integral operators.
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r é s u m é

Nous étudions dans cette note les estimations pondérées précisées associées à un seul 
supremum. En particulier, nous résolvons par l’affirmative un probléme ouvert posé par 
Lerner et Moen. Nous étendons également le résultat aux opérateurs intégraux singuliers 
homogènes rugueux.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main result

Our main object is the following so-called sparse operator:

AS( f )(x) =
∑
Q ∈S

〈 f 〉Q χQ (x),

where S ⊂ D is a sparse family, i.e. for all (dyadic) cubes Q ∈ S , there exist E Q ⊂ Q which are pairwise disjoint and 
|E Q | ≥ γ |Q | with 0 < γ < 1, and 〈 f 〉Q = 1

|Q |
∫

Q f . We only consider the sparse operator, because it dominates the 
Calderón–Zygmund operator pointwisely, see [2,14,9,8,11].

We are going to study the sharp weighted bounds of AS . Before that, let us recall

[w]A p = sup
Q

Ap(w, Q ) := sup
Q

〈w〉Q 〈w1−p′ 〉p−1
Q ,

[w]A∞ = sup
Q

A∞(w, Q ) := sup
Q

〈M(wχQ )〉Q

〈w〉Q
.
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In [6], Hytönen and Lacey proved the following estimate:

‖AS‖L p(w) ≤ cn[w]
1
p

A p
([w]

1
p′
A∞ + [w1−p′ ]

1
p

A∞), (1)

which generalizes the famous A2 theorem, obtained by Hytönen in [5]. (We also remark that when p = 2, (1) was obtained 
by Hytönen and Pérez in [7].) It was also conjectured in [6] that

‖AS‖L p(w) ≤ cn([w]
A

1
p
p A

1
p′
∞

+ [w1−p′ ]
A

1
p′
p A

1
p∞
),

where

[w]
Aα

p Aβ
r

:= sup
Q

Ap(w, Q )α Ar(w, Q )β .

This conjecture, which is usually referred to as the one supremum conjecture, is still open. Before this conjecture was 
formulated, Lerner [10] obtained the following mixed Ap –Ar estimate:

‖AS‖L p(w) ≤ cn,p,r([w]
A

1
p−1
p A

1− 1
p−1

r

+ [w1−p′ ]
A

1
p′−1
p′ A

1− 1
p′−1

r

),

which was further extended by Lerner and Moen [13] to the r = ∞ case with Hrusčěv A∞ constant:

‖AS‖L p(w) ≤ cn,p([w]
A

1
p−1
p (Aexp∞ )

1− 1
p−1

+ [w1−p′ ]
A

1
p′−1
p′ (Aexp∞ )

1− 1
p′−1

),

where Aexp∞ (w, Q ) = 〈w〉Q exp(〈log w−1〉Q ). Some further extension can also be found in [15]. Comparing this result with 
the one supremum conjecture, besides replacing the Fujii–Wilson A∞ constant by Hrusčěv A∞ constant, the main difference 
is that the power of Ap constant is larger, leading to a result which is weaker than the one-supremum conjecture. However, 
there is also another idea, which is replacing Ap by Aq , where q < p. Our main result follows from this idea and it is 
formulated as follows.

Theorem 1.1. Let 1 ≤ q < p and w ∈ Aq. Then

‖AS‖L p(w) ≤ cn,p,q[w]
A

1
p

q (Aexp∞ )
1
p′ .

This result was conjectured by Lerner and Moen, see [13, p.251]. It improves the previous result of Duoandikoetxea [3], 
i.e.

‖AS‖L p(w) ≤ cn,p,q[w]Aq ,

proved by means of extrapolation. In the next section, we will give a proof for this theorem. Extensions to rough homoge-
neous singular integrals will be provided in Section 3.

2. Proof of Theorem 1.1

Before we state our proof, we would like to demonstrate our understanding of this Aq condition, which allows us to 
avoid using extrapolation or interpolation completely. We can rewrite the Aq condition in the following form:

〈w〉Q 〈w1−q′ 〉q−1
Q = 〈w〉Q 〈w(1−p′) p−1

q−1 〉q−1
Q

:= 〈w〉Q 〈σ 1
p′ 〉p

Ā,Q
,

where Ā(t) = t p′(p−1)/(q−1) = t
p

q−1 and as usual, σ = w1−p′
. So we have seen that the Aq condition is actually the power 

bumped Ap condition! Now we are ready to present our proof. Without loss of generality, we can assume f ≥ 0. By duality, 
we have

‖AS( f )‖L p(w) = sup
‖g‖

L p′
(w)

=1

∫
AS( f )g w

= sup
‖g‖

L p′
(w)

=1

∑
Q ∈S

〈 f 〉Q 〈g〉w
Q w(Q )

≤ sup
‖g‖ p′ =1

∑
〈 f w

1
p 〉A,Q 〈w− 1

p 〉 Ā,Q 〈g〉w
Q 〈w〉Q |Q |
L (w) Q ∈S
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× exp(〈log w−1〉Q )
1
p′ exp(〈log w〉Q )

1
p′

≤ [w]
A

1
p

q (Aexp∞ )
1
p′ sup

‖g‖
L p′

(w)
=1

( ∑
Q ∈S

〈 f w
1
p 〉p

A,Q |Q |
) 1

p

×
( ∑

Q ∈S
(〈g〉w

Q )p′
exp(〈log w〉Q )|Q |

) 1
p′

≤ cnγ
−1 p‖M A‖L p [w]

A
1
p

q (Aexp∞ )
1
p′ ‖ f ‖L p(w),

where in the last step, we have used the sparsity and the Carleson embedding theorem.

3. Rough homogeneous singular integral operators

Recall that the rough homogeneous singular integral operator T� is defined by

T�( f )(x) = p.v.

∫

Rn

�(y′)
|y|n f (x − y)dy,

where 
∫

Sn−1 � = 0. The quantitative weighted bound of T� with � ∈ L∞ has been studied in [8], based on refinement of the 
ideas in [4]; see also a recent paper by the author, Pérez, Rivera-Ríos and Roncal [16], relying upon the sparse domination 
formula established in [1].

Our main result in this section is stated as follows.

Theorem 3.1. Let 1 ≤ q < p, w ∈ Aq and � ∈ L∞(Sn−1). Then

‖T�‖L p(w) ≤ cn,p,q[w]
A

1
p

q (Aexp∞ )
1
p′ .

Proof. The proof is again based on the sparse domination formula [1] (see also a very recent paper by Lerner [12]). It 
suffices to prove

‖Ar,S‖L p(w) ≤ cn,p,r,q[w]
A

1
p

q (Aexp∞ )
1
p′ ,

where 1 < r <
p
q and

Ar,S( f ) =
∑
Q ∈S

〈| f |r〉
1
r
Q χQ .

Denote B̄(t) = t
p′(p−1)
r(q−1) = t

p
r(q−1) . Again, we assume f ≥ 0. By duality, we have

‖Ar,S( f )‖L p(w) = sup
‖g‖

L p′
(w)

=1

∫
Ar,S( f )g w

= sup
‖g‖

L p′
(w)

=1

∑
Q ∈S

〈 f r〉
1
r
Q 〈g〉w

Q w(Q )

≤ sup
‖g‖

L p′
(w)

=1

∑
Q ∈S

〈 f r w
r
p 〉

1
r
B,Q 〈w− r

p 〉
1
r

B̄,Q
〈g〉w

Q 〈w〉Q |Q |

× exp(〈log w−1〉Q )
1
p′ exp(〈log w〉Q )

1
p′

≤ [w]
A

1
p

q (Aexp∞ )
1
p′ sup

‖g‖
L p′

(w)
=1

( ∑
Q ∈S

〈 f r w
r
p 〉

p
r
B,Q |Q |

) 1
p

×
( ∑

Q ∈S
(〈g〉w

Q )p′
exp(〈log w〉Q )|Q |

) 1
p′

≤ cnγ
−1 p‖MB‖

1
r
L p/r [w]

A
1
p

q (Aexp∞ )
1
p′ ‖ f ‖L p(w),

where again, in the last step we have used the sparsity and the Carleson embedding theorem. �
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