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We give a new and very short proof of a theorem of Greiner asserting that a positive 
and contractive C0-semigroup on an Lp-space is strongly convergent in case it has a 
strictly positive fixed point and contains an integral operator. Our proof is a streamlined 
version of a much more general approach to the asymptotic theory of positive semigroups 
developed recently by the authors. Under the assumptions of Greiner’s theorem, this 
approach becomes particularly elegant and simple. We also give an outlook on several 
generalisations of this result.
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r é s u m é

Nous présentons une nouvelle preuve très courte d’un théorème de Greiner qui dit qu’un 
semi-groupe de contractions positives sur un espace Lp converge fortement au cas où il 
contiendrait un opérateur intégral et posséderait un point fixe positif presque partout. 
Notre preuve est une version simplifiée d’une approche plus générale de la théorie 
asymptotique des semi-groupes positifs développée récemment par les auteurs. Dans la 
situation du théorème de Greiner, cette approche est particulièrement élégante et simple. 
Finalement, on présente un bref aperçu de plusieurs généralisations de ce résultat.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Consider a positive and contractive C0-semigroup T := (Tt)t∈[0,∞) on Lp := Lp(�, μ), where (�, μ) is a σ -finite measure 
space and p ∈ [1, ∞). By positivity, we mean that f ≥ 0 implies Tt f ≥ 0 for all f ∈ Lp and all times t ≥ 0. We are interested 
in studying the behaviour of Tt as t → ∞.
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In applications it frequently occurs that T consists of so-called integral operators (or kernel operators). Here, a positive 
linear operator T : Lp → Lp is called an integral operators if for a measurable function k : � ×� → [0, ∞) and for all f ∈ L p

the following holds: we have k( · , y) f ( · ) ∈ L1(�, μ) for almost all y ∈ � and T f = ∫
�

k(x, · ) f (x) dμ(x). If at least one of 
the operators Tt is an integral operator and if the semigroup T has a fixed point that is strictly positive almost everywhere, 
then one automatically obtains strong convergence of Tt as time tends to infinity. This was first observed by Greiner [15, 
Kor 3.11], and his result reads as follows.

Theorem 1. Let (�, μ) be a σ -finite measure space, let p ∈ [1, ∞) and let T := (Tt)t∈[0,∞) be a positive and contractive 
C0-semigroup on Lp := Lp(�, μ). If T has a fixed point f0 that fulfils f0 > 0 almost everywhere and if Tt0 is an integral opera-
tor for at least one time t0 ≥ 0, then Tt converges strongly as t → ∞.

An application of this result to semigroups generated by elliptic operators on L1 can, for instance, be found in [2]. 
Moreover, Theorem 1 can be used to derive a famous result of Doob about the convergence of Markov semigroups on 
spaces of measures, see [14] and [13, Sec 4]. Related results on �p -sequence spaces and, more generally, on atomic measure 
spaces can be found in [7,16,27].

One of the major drawbacks of Theorem 1 is its difficult proof. In fact, Greiner reduced the theorem to a 0–2-law whose 
proof is itself technically quite involved. Here, we present a proof of Theorem 1 that only uses the classical decomposition 
theorem by Jacobs, de Leeuw and Glicksberg and the observation that every positive integral operator on L p maps order 
intervals to relatively compact sets. Indeed, a rather explicit proof of the latter fact is presented in the Appendix of [12]; 
however, the fact can also be deduced from abstract Banach lattice theory, see [26, Prop IV.9.8] and [20, Cor 3.7.3]. The 
methods used in the following proof are taken from a more general approach to the asymptotic theory of positive semigroup 
representations that was recently developed by the authors in [12]. In the setting discussed here, the arguments from this 
approach become particularly neat and yield a surprisingly simple proof of Greiner’s theorem, so we find it worthwhile to 
devote the present short note to this special case.

Proof of Theorem 1. We first show that the orbits of the semigroup T are relatively compact. To this end, let c > 0 and 
consider a vector f in the order interval [−cf0, cf0] := {g ∈ Lp : −cf0 ≤ g ≤ cf0}. For every t ≥ t0, we have

Tt f ∈ Tt0 Tt−t0 [−cf0, cf0] ⊆ Tt0 [−cf0, cf0].
Since the latter set is relatively compact and independent of t , it follows that the orbit of f under T is relatively compact. 
Since f0 > 0 almost everywhere, the so-called principal ideal 

⋃
c>0[−cf0, cf0] is dense in Lp and, as the semigroup is 

bounded, it follows that the orbit of every vector in Lp is relatively compact [10, Lem V.2.13].
Hence, we can apply the decomposition theorem of Jacobs, de Leeuw and Glicksberg, which is, for instance, described in 

[17, Sec 2.4], [10, Sec V.2] and [9, Sec 16.3]. This theorem gives us a positive, contractive projection P on L p that commutes 
with each operator Tt and which has the following properties: Tt converges strongly to 0 on ker P as t tends to ∞ and the 
restriction of T to the range F := P E of P (which contains every fixed point of T and which is a sublattice of L p as P is 
contractive) can be extended to a positive and contractive C0-group (St)t∈R on F .

As F is a closed sublattice of Lp , it is itself an Lp -space over some measure space. Let us show that F is actually 
isometrically lattice isomorphic to �p(I) for some index set I . It is known that this is the case if and only if every order 
interval in F is compact; this fact follows for instance from [1, Cor 21.13]. So let f , g ∈ F with f ≤ g . Then we have

[ f , g]F = Tt0 S−t0 [ f , g]F ⊆ Tt0 [S−t0 f , S−t0 g]E ,

where we used the subscripts F and E to distinguish order intervals in the spaces F and E . The set Tt0 [S−t0 f , S−t0 g]E is 
relatively compact in E , so we conclude that [ f , g]F is compact in F , and hence we have indeed F ∼= �p(I).

Let ei ∈ �p(I) be a canonical unit vector. Since each operator St is an isometric lattice isomorphism, Stei is also a 
canonical unit vector for each t ∈ R and i ∈ I . It now follows from the strong continuity of (St)t∈R that Stei = ei for all t
sufficiently close to 0 and hence for all t ∈ R (cf. [27, Prop 2.3] for a more general observation). Thus, each operator St is 
the identity map on F , i.e. each operator Tt operates trivially on F . This proves the assertion. �

We point out that, combining the techniques presented here with results about positive group representations, one can 
derive considerable generalisations of Theorem 1. This is explained in detail in the author’s recent paper [12]; we give a 
brief summary of those generalisations at the end of this note.

Now, we discuss a version of Theorem 1 that does not require the semigroup to contain an integral operator, but only to 
dominate a non-trivial integral operator. This result reads as follows.

Theorem 2. Let (�, μ) be a σ -finite measure space, let p ∈ [1, ∞) and let T := (Tt)t∈[0,∞) be a positive and contractive 
C0-semigroup on Lp := Lp(�, μ). Assume that T has a fixed point f0 that fulfils f0 > 0 almost everywhere and that the follow-
ing assumption is fulfilled:
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(∗) for every fixed point 0 
= f ≥ 0 of T , there exists a time t ≥ 0 and a positive integral operator K on L p such that Tt ≥ K and 
K f 
= 0.

Then Tt converges strongly as t → ∞.

Note that the assumption (∗) is automatically fulfilled if T is irreducible, meaning that there exists no T -invariant 
band in Lp except for 0 and Lp , and if we have in addition Tt0 ≥ K ≥ 0 for at least one time t0 ≥ 0 and a non-zero integral 
operator K . This follows since every positive non-zero fixed point of an irreducible semigroup is strictly positive almost 
everywhere according to [4, Prop C-III-3.5(a)].

For irreducible Markov semigroups on L1-spaces, Theorem 2 was proved by Pichór and Rudnicki in [22, Thm 1]. This 
result has applications to various models from mathematical biology, see for instance [25,24,6,18,8,5,19]. Conditions similar 
to (∗) also occurred in the literature on several occasions, though in a more explicit form. We refer for instance to [23, 
pp. 308 and 309] and to the introduction of the recent article [21]. A version of Theorem 2 for irreducible semigroups on 
Banach lattices with order continuous norm was proved by the first author in [11, Thm 4.2].

We only give a sketch of the proof of Theorem 2. For details we refer to [12], where the theorem is shown in a consid-
erably more general setting, but with a more complex and technically more involved proof.

Sketch of the proof of Theorem 2. The set of all integral operators that are regular (i.e. that can be written as the difference 
of two positive operators) is a band within the regular operators on L p [20, Section 3.3]. Hence, for each t ≥ 0, we find a 
maximal positive integral operator Kt ≤ Tt and define Rt := Tt − Kt ≥ 0. As the product of a positive integral operator with a 
positive operator is again an integral operator [3, Prop 1.9(e)], it easily follows from the maximality of Kt and the semigroup 
law for T that Rt+s ≤ Rt Rs for all s, t ≥ 0. Hence, Rt+s f0 ≤ Rt Rs f0 ≤ Rt Ts f0 = Rt f0 for all s, t ≥ 0, so (Rt f0)t≥0 decreases 
in norm to a vector 0 ≤ g ∈ Lp . This vector fulfils Tt g ≥ Rt g = lims Rt Rs f0 ≥ lims Rt+s f0 = g for each t ≥ 0. Since each 
operator Tt is contractive, we conclude that actually Tt g = Rt g = g , and hence Kt g = 0 for all t ≥ 0. Our condition (∗) now 
implies that g = 0, so we have shown that Rt f0 ↘ 0 in norm as t → ∞.

Now we can see that the orbit of each vector f ∈ [− f0, f0] is relatively compact. Indeed, let ε > 0 and choose t0 ≥ 0
such that ‖Rt0 f0‖ < ε. For each t ≥ 0, we obtain

Tt0+t f ∈ Kt0 [− f0, f0] + [−Rt0 f0, Rt0 f0]
and thus the orbit of f under T is contained in the set

{Tt f : t ∈ [0, t0]} ∪ (
Kt0 [− f0, f0] + Bε(0)

)
,

where Bε(0) denotes the open ball with radius ε around 0. Hence, the orbit of f is totally bounded and thus relatively 
compact.

Since the principal ideal 
⋃

c>0[−cf0, cf0] is dense in Lp , we conclude that the orbit of actually every vector f ∈ Lp

under T is relatively compact [10, Lem V.2.13], so we can apply the Jacobs–de Leeuw–Glicksberg decomposition theorem. 
Now one proceeds as in the proof of Theorem 1. The only difficulty in this situation is to see that each order interval [ f , g]F

in F is compact. To this end, one first observes that

[− f0, f0]F ⊆ Kt S−t[− f0, f0]F + Rt S−t[− f0, f0]F

⊆ Kt[− f0, f0]E + [−Rt f0, Rt f0]E

for each t ≥ 0, where (St)t∈R is given as in the proof of Theorem 1. Hence, the order interval [− f0, f0]F is totally bounded 
and thus compact. Now one can use that the principal ideal 

⋃
c>0 c[− f0, f0]F is dense in F according to [26, Cor 2 to 

Thm II.6.3] in order to conclude that every order interval [ f , g]F is compact in F . �
As mentioned above, Theorems 1 and 2 allow for considerable generalisations. First of all, Theorem 1 remains true 

if Lp is replaced with a Banach lattice E with order continuous norm and if the semigroup T is only assumed to be 
bounded instead of contractive. In this case, the proof clearly requires a bit more lattice theory. Moreover, the range F of 
the projection P needs no longer be a sublattice, but it is still a so-called lattice subspace of E , meaning that it is a lattice 
with respect to the order induced by E but not with respect to the same lattice operations. We point out that even for 
E = Lp , the space F is no longer an �p -space in this case; instead, it is an atomic Banach lattice with order continuous 
norm. For more details, we refer to [12].

Theorem 2 can be generalised to bounded positive semigroups on Banach lattices with order continuous norm, too. 
However, the first part of the proof shows that one needs an additional technical assumption in this case: we have to assume 
that every super-fixed point of the semigroup is a fixed point, meaning that Tt g = g for all t ≥ 0 whenever Tt g ≥ g ≥ 0 for 
all t ≥ 0. Again, we refer to [12] for details.

The most significant generalisation of Theorems 1 and 2 refers however to the strong continuity assumption with respect 
to the time parameter. In the proof of Theorem 2, this assumption is first employed when one uses that a set of the form 
{Tt f : t ∈ [0, t0]} is compact, but this step of the argument can easily be circumvented by using a bit more information 
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about the Jacobs–de Leeuw–Glicksberg decomposition. Much more importantly, the proofs of Theorems 1 and 2 both use 
the strong continuity to deduce that the positive and contractive group (St)t∈R acts trivially on �p(I). Yet, it turns out that 
this can also be deduced without strong continuity by only using the algebraic properties of the additive group R. Hence, 
if one is willing to invest more work in the proofs, one can show that Theorems 1 and 2 and their counterparts on Banach 
lattices remain true for semigroup representations (Tt)t∈[0,∞) without any continuity or measurability assumptions with 
respect to t . For detailed results and proofs, we refer again to [12], where it is also demonstrated that the same methods 
can be used to obtain convergence results for positive representations of more general semigroups.
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