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Do we have enough examples of convex bodies that we truly understand? Is out standard 
set of examples diverse enough to understand convexity? In this note, we will dramatically 
increase our set of examples. More specifically, we will present several new constructions 
of convex bodies: the geometric mean of two convex bodies, the power function Kα (which 
in general exists only for |α| ≤ 1), and even the logarithm log K .
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r é s u m é

Existe-t-il suffisamment de corps convexes que nous comprenions vraiment ? L’éventail 
usuel d’exemples est-il assez diversifié pour saisir la notion de convexité ? Dans cette note, 
nous proposons une augmentation drastique du corpus d’exemples. Plus précisément, nous 
présentons plusieurs constructions nouvelles de corps convexes : la moyenne géométrique 
de deux corps convexes, la fonction puissance Kα (qui, en général, n’existe que pour 
|α| ≤ 1), et même le logarithme log K .

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction: means of convex bodies

Do we have enough examples of convex bodies that we truly understand? Is our standard set of examples diverse 
enough to understand convexity? Recently it was realized that the polarity operation in convexity (both in convex analysis 
and convex geometry) is analogous to the operation x �→ 1

x defined for x > 0 (the inverse operation is a “polarity” on R+). 
Let us follow this analogy and think about the polar body K ◦ as the inverse “ 1

K ”. Surprisingly, this point of view will be 
used to dramatically increase our set of examples – one may see an example of this idea in the construction of continued 
fractions by Molchanov ([10]). Our goal for this note is to present some very novel constructions of convex bodies that 
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are, on the one hand, “invisible” but, on the other hand, may be studied and should increase the diversity of our examples 
and help us develop a new intuition. In particular, we will show very unexpected constructions such as the power K α (for 
|α| ≤ 1) and the logarithm log K .

We start with a few definitions and some notation. A convex body in Rn is a set K ⊆ R
n that is convex, compact, and 

has a non-empty interior. We will also make the assumption that our convex bodies are origin-symmetric, i.e. x ∈ K implies 
−x ∈ K . Let us denote the set of all such bodies in Rn by Kn

s .
In this introductory section, we recall various ways of averaging convex bodies. For two convex bodies K , T ∈ Kn

s , let 
K + T denote their Minkowski sum (for the definition of this notion, and other basic definitions in convexity, the reader 
may consult [12]). Similarly, for K ∈ Kn

s , the body λK will denote the dilation of K by a factor λ > 0. Using this notation, 
we can of course define the arithmetic mean of K and T as A(K , T ) = K+T

2 .
In order to define the harmonic mean H(K , T ), we need an additional ingredient – the existence of an inverse operation 

K �→ “K −1”. As was mentioned above, it turns out to be natural to define K −1 as the polar body

K ◦ = {
y ∈R

n : 〈x, y〉 ≤ 1 for all x ∈ K
}

(where 〈·, ·〉 denotes the standard inner product on Rn). For more background on the motivation behind this idea, we refer 
the reader to [9]. We will take it as a fact, and define the harmonic mean as H(K , T ) =

(
K ◦+T ◦

2

)◦
. This mean was already 

considered by Firey in the early 1960s [3].
The construction of the geometric mean is a more delicate matter. In [11] and [8], we prove the following result.

Theorem 1.1. There exists a map G :Kn
s ×Kn

s →Kn
s that satisfies the following properties:

1) G(K , K ) = K ;
2) G is symmetric in its arguments: G(K , T ) = G(T , K );
3) G is monotone in its arguments: If K1 ⊆ K2 and T1 ⊆ T2 then G(K1, T1) ⊆ G(K2, T2);
4) G is continuous in its arguments, with respect to the Hausdorff distance;
5) G satisfies the harmonic mean – geometric mean – arithmetic mean inequality(

K ◦ + T ◦

2

)◦
⊆ G(K , T ) ⊆ K + T

2
;

6) [G(K , T )]◦ = G (K ◦, T ◦);
7) G(K , K ◦) = Bn

2 , where Bn
2 denotes the unit Euclidean ball;

8) for every linear map u :Rn → R
n we have G(uK , uT ) = u (G(K , T ));

9) for every α, β > 0, we have G (αK , βT ) = √
αβG(K , T ).

We call G(K , T ) the geometric mean of K and T .

All the properties in the above list are natural properties for the geometric mean to satisfy. Property (7), for example, is 
the analogue of the fact that the geometric mean of x and 1

x is always 1. For property (4), we remind the reader that the 
Hausdorff distance is defined as

d(K , T ) = min
{

r > 0 : K ⊆ T + rBn
2 and T ⊆ K + rBn

2

}
.

Whenever we discuss continuity or convergence in Kn
s , we will always have the Hausdorff metric in mind.

Properties (7) and (8) suffice to compute the geometric mean of centered ellipsoids. If E, F ∈ Kn
s are ellipsoids, then 

G(E, F ) is also an ellipsoid. Furthermore, if we change the scalar product on Rn in such a way that G(E, F ) is the new unit 
ball, then F = E◦ . This fact characterizes G(E, F ) uniquely.

Let us say a few words about the proof of Theorem 1.1. First, as was done in [9], one defines a simpler construction 
g(K , T ) that satisfies all properties except property (9). To do so, one defines two sequences of convex bodies {An}∞n=0 and 
{Hn}∞n=0 by

A0 = K , H0 = T ,

An+1 = A(An, Hn), Hn+1 = H(An, Hn)

and then sets g(K , T ) = limn→∞ An = limn→∞ Hn . Even though g does not satisfy the important scaling property (9), it is 
still a useful construction. For example, in [11], it is used to define a new type of a geometric Banach limit on sequences of 
convex bodies.

There are two possible approaches for passing from g to G . The first one is explained in [11], and uses the aforemen-
tioned geometric Banach limit. It has the advantage of also applying to non-symmetric convex bodies. A completely different 
approach is detailed in [8], and uses ellipsoids as basic ingredients. This second approach is similar in spirit to the ideas 
discussed in the remainder of this note.

We conclude this section with an open problem: we do not know if the nine properties of Theorem 1.1 suffice to 
characterize G uniquely.
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2. Powers of convex bodies

Our next goal is to construct the power K α ∈Kn
s for a body K ∈Kn

s and α ∈R.
Recall that the support function hK : Rn → (0, ∞) of a body K ∈ Kn

s is defined by hK (y) = supx∈K 〈x, y〉. The support 
function is related to the Minkowski sum via the relation hλK+μT = λhK +μhT . In fact, given p ≥ 1, K , T ∈Kn

s and λ, μ > 0
one may define the p-sum +p and p-homothety ·p by

hp(
λ·p K

)+p
(
μ·p T

) = λhp
K + μhP

T .

p-sums were originally defined by Firey ([4]) and studied extensively by Lutwak ([6], [7]).
For us, an ellipsoid will always mean a centered ellipsoid, i.e. a linear image of the unit ball Bn

2. If E is an ellipsoid, 
then hE (y) = √〈u · y, y〉 for a uniquely defined positive-definite matrix u : Rn → R

n . We will also write uE instead of u to 
emphasize the dependence on E . If E and F are ellipsoids and λ, μ > 0 then (λ ·2 E) +2 (μ ·2 F ) is also an ellipsoid and 
u(λ·2 E)+2(μ·2 F ) = λuE + μuF . On the other hand, for 1-sum, λE + μF is usually not an ellipsoid.

If f : (0, ∞) → R is any function, one can always apply it to the positive-definite matrix u. If f > 0, then the matrix 
f (u) will again be positive-definite. This allows us to apply f to ellipsoids by setting u f (E) = f (uE). In geometric terms, 
f (E) is obtained from E by fixing the directions of the principal axes and applying f to the square of their lengths.

By choosing f (x) = xα , we can define Eα for every ellipsoid E and every α ∈ R. Concentrating for the moment on the 
case α > 0, there is an important difference between the cases 0 < α < 1 and α > 1. To explain this difference, we need the 
following definition.

Definition 2.1 (Löwner [5]). A function f : (0, ∞) → R is operator monotone if, for every positive definite matrices u and v
(of any size), u  v implies f (u)  f (v).

Recall that u  v in the matrix order means that u − v is positive semi-definite. Since uE  uF if and only if E ⊇ F , we 
see that an operator monotone function is also monotone with respect to inclusion on the class of ellipsoids.

It is well known that the function f (x) = xα is operator monotone if 0 ≤ α ≤ 1, but not if α > 1 (Löwner, see also e.g. 
[1], Section V.1). This monotonicity allows us to extend the power operation to general convex bodies. To do so, we first 
define the upper pre-power as

Pα(K ) =
⋂{

Eα : E is an ellipsoid and K ⊆ E
}
.

Of course, Pα(K ) is always a convex body. The map K �→ Pα(K ) satisfies some natural properties, such as monotonicity, 
but it does not satisfy the power law Pαβ(K ) = Pβ (Pα (K )), which is the analogue of the identity xαβ = (

xα
)β

. Instead, the 
pre-powers only satisfy the inclusion Pαβ(K ) ⊇ Pβ (Pα (K )).

In order to create a better construction, we continue as follows: for a fixed finite partition of [α, 1],
� : α = t0 < t1 < · · · < tm = 1,

we set si = ti−1/ti for i = 1, 2, ..m, and define

P�(K ) = (
P s1 ◦ P s2 ◦ · · · ◦ P sm

)
(K ) .

We then have the following theorem, which is a slight extension of the results of [8].

Theorem 2.2. Fix Kn
s and 0 ≤ α ≤ 1. Then the limit

K α := lim
λ(�)→0

P�(K ) ∈ Kn
s

exists in the Hausdorff sense. Here λ (�) = max |ti+1 − ti | denotes the length of the longest interval in �. Furthermore, the maps 
K �→ K α have the following properties:

1) for every 0 < α < 1, if K ⊆ T then K α ⊆ T α ;
2) for every 0 < α < 1, every K ∈Kn

s and every λ > 0 we have (λK )α = λα K α ;

3) for every 0 < α, β < 1 and every K ∈Kn
s we have 

(
K α

)β = K αβ ;

4) if E ∈Kn
s is an ellipsoid, then Eα agrees with its linear algebra definition for every 0 < α < 1;

5) K ⊇ Bn
2 implies K α ⊆ K , and K ⊆ Bn

2 implies K α ⊇ K for all 0 ≤ α ≤ 1.

We call the map K �→ K α the upper power. As the name suggests, one can also define lower powers, by taking

Pα(K ) = conv
⋃{

Eα : E is an ellipsoid and K ⊇ E
}
.
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and carrying out the rest of the construction in the same way. The lower powers K α will have the same good properties as 
the upper powers, and of course K α ⊆ K α for all K ∈Kn

s and 0 ≤ α ≤ 1.
However, the upper and lower powers still do not satisfy all properties one may expect. To see this, recall that we 

interpret K −1 to be K ◦ . Therefore, the power law 
(

K α
)β = K αβ = (

K β
)α

should imply that 
(

K α
)◦ = (K ◦)α , and there is no 

reason for the upper and lower powers to satisfy this property.
We will now present an alternative construction that does commute with polarity. We begin by fixing a free ultrafilter 

U on the natural numbers N. The Blaschke selection theorem states that, for every R > 0, the set
{

K ∈ Kn
s : K ⊆ R · Bn

2

}
is compact (see, e.g., [12]). Therefore, if {Km}∞m=1 is a uniformly bounded sequence of convex bodies, then the ultralimit 
limU Km always exists and is convex.

Fix a number 0 < γ < 1 (say γ = 1
2 ). For every K ∈Kn

s and every 0 < α < 1, we set

Q m(K ,α) =
(

Pγ 1/m ◦ Pγ 1/m

)�

(K ) ,

where � = � (m) is the biggest integer such that γ 2�/m ≥ α. Finally, we define K α = limU Q m(K , α).

Theorem 2.3. The maps K �→ K α that send convex bodies to convex bodies satisfy properties (1)–(5) from Theorem 2.2, together with 
the additional property:

6) for every 0 < α < 1 and every K ∈Kn
s , we have 

(
K α

)◦ = (K ◦)α .

Let us mention that the identity 
(

K α
)◦ = (K ◦)α follows from the following elementary estimate: if 1

R · Bn
2 ⊆ K ⊆ R · Bn

2
for some R > 0, then

(
1

R

)2−2γ 1/m

· Q m (K ,α)◦ ⊆ Q m
(

K ◦,α
) ⊆ R2−2γ 1/m · Q m (K ,α)◦ .

As is the case for the geometric mean, we do not know if the six properties of Theorem 2.3 characterize the powers 
K �→ K α uniquely. Note that if this is indeed the case, then the definition of K α does not depend on the choice of the 
ultrafilter U , and the limit limm→∞ Q m(K , α) actually exists in the Hausdorff sense.

We conclude this section with two remarks.

Remark 1. In general, it is impossible to define K α for α > 1, at least if one wants to keep the power law 
(

K α
)β = K αβ . To 

see this, let Q = [−1, 1]n be the cube, and assume that Q 2 is well defined. Then by John’s theorem, there exists an ellipsoid 
E such that E ⊆ Q 2 ⊆ √

nE (see, e.g., [12]). It follows that

E1/2 ⊆
(

Q 2
)1/2 = Q ⊆ (√

nE
)1/2 = n1/4 E1/2,

and since E1/2 is also an ellipsoid, these inclusions are impossible: it is well known that dBM
(

Q , Bn
2

) = n1/2, where dBM
denotes the Banach–Mazur distance.

Remark 2. Our construction of the upper power is somewhat related to the logarithmic mean of Böröczky, Lutwak, Yang, 
and Zhang ([2]). Recall that for K , T ∈Kn

s and 0 < α < 1, the logarithmic mean is defined by

Lα(K , T ) =
{

x ∈ R
n : 〈x, θ〉 ≤ hK (θ)αhT (θ)1−α for all θ ∈ Sn−1

}

(where Sn−1 denotes the unit sphere). In other words, L = Lα(K , T ) is the largest convex function such that hL(θ) ≤
hK (θ)αhT (θ)1−α for all θ ∈ Sn−1.

To see the relation with our construction, notice that a slab S = {x : |〈x, θ〉| ≤ c} can be viewed as a “degenerate ellip-
soid”. By approximating S with proper ellipsoids, we see that

Sα = {
x : |〈x, θ〉| ≤ cα

}
.

It follows that

Lα(K , Bn
2) =

⋂{
Sα : S is a slab and K ⊆ S

}
,

which is similar to the upper pre-power Pα(K ). It follows that we have

K α ⊆ Pα(K ) ⊆ Lα(K , Bn)
2
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for all K ∈Kn
s and 0 < α < 1.

In the same way, one can construct variants of the other definitions in this note using only slabs instead of ellipsoids. 
We will not pursue this point further.

3. Logarithms of convex bodies

The final goal of this note is to discuss the construction of the logarithms of convex bodies. We would like these loga-
rithms to be convex bodies themselves. For an ellipsoid E , one may define log E in the same way as in the previous section, 
by setting ulog E = log (uE ). The problem, of course, is that log (uE ) is positive-definite only if uE  Id. Therefore log E can 
only be defined for ellipsoids E such that E ⊇ Bn

2.

The reader may check that log
(
rBn

2

) = √
2 log rBn

2 for r ≥ 1. Moreover, for every E ⊇ Bn
2 we have log

(
Eα

) = α ·2 log E =√
α log E . The appearance of the 2-homothety ·2 is not surprising, given the relation between the 2-sum and ellipsoids. It is 

known that the function f (x) = log x is operator monotone (again, see e.g. [1]), so E ⊇ F implies log E ⊇ log F .
We now want to extend the definition from ellipsoids to general convex bodies K such that K ⊇ Bn

2. Assume that E is 
any ellipsoid such that Eα ⊇ K α for some 0 < α < 1. If the logarithm for convex bodies behaves like it does for ellipsoids 
we expect to have

α ·2 log K = log
(

K α
)

⊆ log
(

Eα
) = α ·2 log E,

so log K ⊆ log E . This suggests the following definitions:

Definition 3.1.

1. For K ∈Kn
s , the core family E (K ) is the family of all ellipsoids E such that Eα ⊇ K α for some 0 < α < 1.

2. If K ⊇ Bn
2, the (upper) logarithm of K is defined by

log K =
⋂

{log E : E ∈ E(K )} .

We then have the following result:

Theorem 3.2. The map K �→ log K satisfies the following properties:

1) if Bn
2 ⊆ K ⊆ T , then log K ⊆ log T ;

2) if E ∈Kn
s is an ellipsoid and E ⊇ Bn

2 , then log E agrees with its linear algebra definition;
3) for every K ⊇ Bn

2 and every 0 < α < 1, one has log
(

K α
) = α ·2 log K ;

4) for every K ⊇ Bn
2 and every t ≥ 1, we have

log(t ·2 K ) ⊇ (
log t ·2 Bn

2

) +2 log K

Property (4) is of course related to the standard identity log(tx) = log t + log x for t, x > 0. There exists a variant of our 
definition of the logarithm that transforms the inclusion in (4) into an equality.

The core family E(K ) is not easy to compute in practice. To illustrate that point, and to present another interesting 
construction, let us define the core of a convex body K as

core(K ) =
⋂

{E : E ∈ E(K )} .

Fig. 1. An ellipse and its core.
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It is easy to check that core(rBn
2) = rBn

2. However, even for other ellipsoids E , the body core(E) does not seem to have a 
simple description. Fig. 1 shows the 2-dimensional ellipse E with axes of lengths 1 and 4 together with its core core(E), as 
was computed numerically.

The fact that core(E) �= E is a geometric manifestation of the non-commutativity of matrix multiplication. Indeed, if 
F ∈ E(E) and uE and uF commute, then we must have F ⊇ E . However this is no longer true if uE and uF do not commute, 
which explains why we may have core(E) �= E .
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