Potential theory/Partial differential equations

Nonstationary Navier-Stokes equations with singular time-dependent external forces

Équations de Navier-Stokes non stationnaires avec forces externes dépendant du temps et singulières

Nguyen Anh Dao ${ }^{\text {a }}$, Quoc-Hung Nguyen ${ }^{\text {b }}$
${ }^{\text {a }}$ Applied Analysis Research Group, Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
${ }^{\text {b }}$ Scuola Normale Superiore, Centro Ennio de Giorgi, Piazza dei Cavalieri 3, 56100 Pisa, Italy

A R T I C L E I N F O

Article history:

Received 3 May 2017
Accepted after revision 6 September 2017
Available online 21 September 2017
Presented by Haïm Brézis

Abstract

We establish a sufficient condition for the existence of solutions to the incompressible Navier-Stokes equations, with singular time-dependent external forces defined in terms of capacity $\operatorname{Cap}_{\mathcal{H}_{1}, 2}(E)$. © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Nous établissons une condition suffisante pour l'existence de solutions aux équations de Navier-Stokes incompressibles, avec force externe dépendant du temps et singulière, dans un espace défini en termes de la capacité $\operatorname{Cap}_{\mathcal{H}_{1}, 2}(E)$.
© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main result

In this paper, we establish a sufficient condition for the existence of solutions to the incompressible Navier-Stokes equations (in short NSE):

$$
\begin{cases}\partial_{t} u-\Delta u+\operatorname{div}(u \otimes u)+\nabla p=F & \text { in } \mathbb{R}^{n} \times(0, \infty), \tag{1.1}\\ \operatorname{div} u=0 & \text { in } \mathbb{R}^{n} \times(0, \infty), \\ u(0)=u_{0} & \text { in } \mathbb{R}^{n},\end{cases}
$$

where u with value in $\in \mathbb{R}^{n}(n \geq 2)$ is the velocity, and p with value $\in \mathbb{R}$ is the pressure.
It is not hard to see that, if the pair $(u(x, t), p(x, t))$ solves $\operatorname{NSE}(1.1)$, then $\left(u_{\lambda}(x, t), p_{\lambda}(x, t)\right)$ with

$$
u_{\lambda}(x, t)=\lambda u\left(\lambda x, \lambda^{2} t\right)
$$

[^0]$$
p_{\lambda}(x, t)=\lambda^{2} p\left(\lambda x, \lambda^{2} t\right)
$$
is a solution to the system (1.1) with the initial and the force data
\[

$$
\begin{aligned}
& u_{0, \lambda}(x)=\lambda u_{0}(\lambda x) \\
& F_{\lambda}(x, t)=\lambda^{3} F\left(\lambda x, \lambda^{2} t\right)
\end{aligned}
$$
\]

It is well known that the following continuous embeddings hold

$$
\begin{equation*}
L^{n}\left(\mathbb{R}^{n}\right) \subset \mathcal{M}^{q, q}\left(\mathbb{R}^{n}\right) \subset B M O^{-1}\left(\mathbb{R}^{n}\right) \subset B_{\infty}^{-1, \infty}\left(\mathbb{R}^{n}\right) \tag{1.2}
\end{equation*}
$$

where $\mathcal{M}^{q, q}\left(\mathbb{R}^{n}\right)$ is the Morrey space with order $(q, q), q \in[1, n]$, i.e. the set of functions $f \in L^{q}\left(\mathbb{R}^{n}\right)$ such that

$$
\|f\|_{\mathcal{M}^{q, q}\left(\mathbb{R}^{n}\right)}:=\sup _{B_{r}\left(x_{0}\right) \subset \mathbb{R}^{n}}\left\{r^{q-n} \int_{B_{r}\left(x_{0}\right)}|f(x)|^{q} \mathrm{~d} x\right\}^{\frac{1}{q}}
$$

and the space $B M O^{-1}\left(\mathbb{R}^{n}\right)$ is the set of distributions f satisfying

$$
\|f\|_{B M O^{-1}\left(\mathbb{R}^{n}\right)}:=\sup _{B_{r}\left(x_{0}\right) \subset \mathbb{R}^{n}}\left\{r^{-n} \int_{0}^{r^{2}} \int_{B_{r}\left(x_{0}\right)}\left|\mathrm{e}^{s \Delta} f(x)\right|^{2} \mathrm{~d} x \mathrm{~d} s\right\}^{\frac{1}{2}}
$$

and the space $B_{\infty}^{-1, \infty}\left(\mathbb{R}^{n}\right)$ is the Besov space equipped with the norm

$$
\|f\|_{B_{\infty}^{-1, \infty}\left(\mathbb{R}^{n}\right)}:=\sup _{t>0} t^{\frac{1}{2}}\left\|\mathrm{e}^{t \Delta} f(.)\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}
$$

Those spaces are invariant under the scaling $f(.) \rightarrow \lambda f(\lambda$.$) , in the sense that \|f\|_{E}=\|\lambda f\|_{E}$.
T. Kato [3] initiated the study of (1.1) with $F \equiv 0$ and the initial data belonging to the space $L^{n}\left(\mathbb{R}^{n}\right)$. He obtained the global existence of solutions in a subspace of $C\left([0, \infty), L^{n}\left(\mathbb{R}^{n}\right)\right.$) if the norm $\left\|u_{0}\right\|_{L^{n}\left(\mathbb{R}^{n}\right)}$ is small enough. The global existence result also holds for the small initial data in the homogeneous Morrey space $\mathcal{M}^{q, q}\left(\mathbb{R}^{n}\right)$, for $1 \leq q \leq n$ (see [4], [5], [11]). Later in 2001, H. Kock and D. Tataru [6] showed that the global well-posedness of NSE holds with small initial data in the space $B M O^{-1}$. Otherwise, J. Bourgain and N. Pavlović [1] showed that (1.1) with initial data in $B_{\infty}^{-1, \infty}\left(\mathbb{R}^{n}\right)$ is ill-posed no matter how the initial data are.

Recently, T.V. Phan and N.C. Phuc [9] proved the existence of solutions to the stationary equation of (1.1) with data singular external force F in space $\mathcal{V}^{1,2}\left(\mathbb{R}^{n}\right)$. We refer the detail of this space to [9].

In this paper, we consider the global existence of solutions of problem (1.1) with initial data and forcing term. In order to state it, we recall that the $\left(\mathcal{H}_{1}, 2\right)$-capacity of a Borel set $E \subset \mathbb{R}^{n+1}$ is defined by

$$
\operatorname{Cap}_{\mathcal{H}_{1}, 2}(E)=\inf \left\{\int_{\mathbb{R}^{n+1}}|f|^{2} \mathrm{~d} x \mathrm{~d} t: f \in L_{+}^{2}\left(\mathbb{R}^{n+1}\right), \mathcal{H}_{1} * f \geq \chi_{E}\right\}
$$

where \mathcal{H}_{1} is the Heat kernel of the first order:

$$
\mathcal{H}_{1}(x, t)=\left((4 \pi)^{n / 2} \Gamma(1 / 2)\right)^{-1} \frac{\chi_{(0, \infty)}(t)}{t^{(n+1) / 2}} \exp \left(-\frac{|x|^{2}}{4 t}\right) \text { for }(x, t) \text { in } \mathbb{R}^{n+1}
$$

The Riesz parabolic kernel of order one \mathbb{I}_{1} is defined by:

$$
\mathbb{I}_{1}[\mu](x, t)=\int_{0}^{\infty} \frac{\mu\left(\tilde{Q}_{\rho}(x, t)\right)}{\rho^{n+1}} \frac{\mathrm{~d} \rho}{\rho}
$$

where $\tilde{Q}_{\rho}(x, t)=B_{\rho}(x) \times\left(t-\rho^{2} / 2, t+\rho^{2} / 2\right) \subset \mathbb{R}^{n+1}$ and μ is a nonnegative Radon measure on \mathbb{R}^{n+1}.
Let us define

$$
Y=\left\{g \in L_{\mathrm{loc}}^{2}\left(\mathbb{R}^{n+1}\right):\|g\|_{Y}=\sup _{E \subset \mathbb{R}^{n+1}}\left\{\frac{\int_{E}|g(x, t)|^{2} \mathrm{~d} x \mathrm{~d} t}{\operatorname{Cap}_{\mathcal{H}_{1}, 2}(E)}\right\}^{\frac{1}{2}}<+\infty\right\}
$$

with the supremum being taken over all compact sets $E \subset \mathbb{R}^{n+1}$.

For any $2<l \leq n+2$, we have the following embeddings:

$$
L^{n+2}\left(\mathbb{R}^{n+1}\right) \subset \mathcal{M}_{*}^{l, l}\left(\mathbb{R}^{n+1}\right) \subset Y \subset \mathcal{M}_{*}^{2,2}\left(\mathbb{R}^{n+1}\right)
$$

where $\mathcal{M}_{*}^{l, l}\left(\mathbb{R}^{n+1}\right)=\sup _{\tilde{Q}_{\rho}\left(x_{0}, t_{0}\right) \subset \mathbb{R}^{n+1}}\left(\rho^{l-(n+2)} \int_{\tilde{Q}_{\rho}\left(x_{0}, t_{0}\right)}|f(x, t)|^{l} \mathrm{~d} x \mathrm{~d} t\right)$ is the Morrey space corresponding to the parabolic problem.

To our purpose later, we define the space:

$$
Z=\left\{F \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n+1}\right): \sup _{E \subset \mathbb{R}^{n+1}}\left(\int_{E} \frac{\left|\int_{0}^{t} \mathrm{e}^{(t-s) \Delta} \mathbb{P} F \mathrm{~d} s\right|^{2}}{\operatorname{Cap}_{\mathcal{H}_{1}, 2}(E)} \mathrm{d} x \mathrm{~d} t\right)^{1 / 2}<+\infty\right\},
$$

where the norm is defined by

$$
\|F\|_{Z}=\sup _{E \subset \mathbb{R}^{n+1}}\left(\int_{E} \frac{\left|\int_{0}^{t} \mathrm{e}^{(t-s) \Delta} \mathbb{P} F \mathrm{~d} s\right|^{2}}{\operatorname{Cap}_{\mathcal{H}_{1}, 2}(E)} \mathrm{d} x \mathrm{~d} t\right)^{1 / 2}
$$

Next, we define

$$
X=\left\{g \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right):\left\|\mathrm{e}^{t \Delta} g\right\|_{Y}<+\infty\right\}
$$

where the norm on X is defined by $\|g\|_{X}=\left\|\mathrm{e}^{t \Delta} g\right\|_{Y}$.
Then, we observe that

$$
\operatorname{Cap}_{\mathcal{H}_{1}, 2}\left(\tilde{Q}_{\rho}(x, t)\right)=\rho^{n} \operatorname{Cap}_{\mathcal{H}_{1}, 2}\left(\tilde{Q}_{1}(0)\right) \text { for any } \rho>0
$$

and

$$
\operatorname{Cap}_{\mathcal{H}_{1}, 2}(E) \geq C|E|^{1-\frac{2}{n+2}}
$$

for any Borel set $E \subset \mathbb{R}^{n+1}$, see [8]. Thus, it is not difficult to show that, for $1<q<n$,

$$
\mathcal{M}^{q, q}\left(\mathbb{R}^{n}\right) \subset X \subset B M O^{-1}\left(\mathbb{R}^{n}\right) \subset B_{\infty}^{-1, \infty}\left(\mathbb{R}^{n}\right)
$$

Put

$$
A(x, t):=\left\{\begin{array}{lc}
\left(\mathrm{e}^{t \Delta} u_{0}\right)(x)+\int_{0}^{t}\left(\mathrm{e}^{(t-s) \Delta} \mathbb{P} F\right)(x) \mathrm{d} s & \text { if }(x, t) \in \mathbb{R}^{n} \times[0,+\infty) \\
0 & \text { otherwise }
\end{array}\right.
$$

where $\mathbb{P}=i d-\nabla \Delta^{-1} \nabla$. is the Helmholtz-Leray projection onto the vector fields of zero divergence, i.e. for any $f \in \mathbb{R}^{n}$, $\mathbb{P} f=f-\nabla u$ and $\Delta u=\operatorname{div} f$.

Then, we have the following theorem.

Theorem 1.1. There exists a constant $c_{1}=c_{1}(n)>0$ such that, if $\left\|u_{0}\right\|_{X}+\|F\|_{Z}<c_{1}$, then problem (1.1) admits a global solution satisfying

$$
\begin{equation*}
|u(x, t)| \leq|A(x, t)|+c \mathbb{I}_{1}\left[|A|^{2}\right](x, t), \quad \forall(x, t) \in \mathbb{R}^{n} \times(0, \infty) \tag{1.3}
\end{equation*}
$$

for some constant $c=c(n)>0$.
In the particular case when $F \equiv 0$, the assumption reads

$$
\begin{equation*}
\int_{E}\left|\left(\mathrm{e}^{t \Delta} u_{0}\right)(x)\right|^{2} \mathrm{~d} x \mathrm{~d} t \leq \operatorname{Cap}_{\mathcal{H}_{1}, 2}(E), \tag{1.4}
\end{equation*}
$$

for any compact set $E \subset \mathbb{R}^{n+1}$, and the pointwise estimate (1.3) becomes

$$
|u(x, t)| \leq\left|\mathrm{e}^{t \Delta} u_{0}\right|(x, t)+\tilde{C} \mathbb{I}_{1}\left[\left|\mathrm{e}^{t \Delta} u_{0}\right|^{2}\right](x, t)
$$

Remark 1.2. Note that we have the following embeddings:

$$
L^{(n+2) / 3}\left(\mathbb{R}^{n+1}\right) \subset Z_{1} \subset Z_{0} \subset Z
$$

where $\quad Z_{0}=\left\{F: F=\operatorname{div}(f), f \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n+1}\right): \sup _{E \subset \mathbb{R}^{n+1}} \frac{\int_{E}|f| \mathrm{d} x \mathrm{~d} t}{\operatorname{Cap}_{\mathcal{H}_{1}, 2}(E)}<+\infty\right\}$, with the norm $\|F\|_{Z_{0}}=$ $\inf _{f: \operatorname{div}(f)=F} \sup _{E \subset \mathbb{R}^{n+1}} \frac{\int_{E}|f| \mathrm{d} x \mathrm{~d} t}{\operatorname{Cap}_{\mathcal{H}_{1}, 2}(E)}$; and

$$
Z_{1}=\left\{F: F=\operatorname{div}(f), \text { with } \sup _{\tilde{Q}_{\rho}\left(x_{0}, t_{0}\right) \subset \mathbb{R}^{n+1}}\left(\rho^{2 p-(n+2)} \int_{\tilde{Q}_{\rho}\left(x_{0}, t_{0}\right)}|f(x, t)|^{p} \mathrm{~d} x \mathrm{~d} t\right)^{1 / p}<\infty\right\}
$$

for $1<p<(n+2) / 2$, with the norm

$$
\|F\|_{z_{1}}=\inf _{f: \operatorname{div}(f)=F} \sup _{\tilde{Q}_{\rho}\left(x_{0}, t_{0}\right) \subset \mathbb{R}^{n+1}}\left(\rho^{2 p-(n+2)} \int_{\tilde{Q}_{\rho}\left(x_{0}, t_{0}\right)}|f(x, t)|^{p} \mathrm{~d} x \mathrm{~d} t\right)^{1 / p}
$$

As a consequence of above Theorem and Remark 1.2, we have the following result.
Corollary 1.3. If $u_{0} \in X$, and $F \in Z_{1}$, such that $\left\|u_{0}\right\|_{X}+\|F\|_{Z_{1}}$ is small enough then equation (1.1) admits a global solution.

2. Proof of Theorem 1.1

Let u be a mild solution of (1.1), i.e. $u \in L_{\text {loc }}^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ such that

$$
\begin{cases}\partial_{t} u-\Delta u+\mathbb{P} \operatorname{div}(u \otimes u)=\mathbb{P} F & \text { in } \mathbb{R}^{n} \times(0, \infty) \tag{2.1}\\ u(0)=u_{0} & \text { in } \mathbb{R}^{n}\end{cases}
$$

By Duhamel's principle (see [10]), we get

$$
\begin{equation*}
u(t)=\mathrm{e}^{t \Delta} u_{0}+\int_{0}^{t} \mathrm{e}^{(t-s) \Delta} \mathbb{P} F \mathrm{~d} s-\int_{0}^{t} \mathrm{e}^{(t-s) \Delta} \mathbb{P} \operatorname{div}(u \otimes u) \mathrm{d} s \tag{2.2}
\end{equation*}
$$

For any distribution $G: \mathbb{R}^{N} \times(0, \infty) \rightarrow \mathbb{R}^{n}$, we can write

$$
\int_{0}^{t} \mathrm{e}^{(t-s) \Delta}(\mathbb{P} G)^{i} \mathrm{~d} s=\int_{0}^{t} \int_{\mathbb{R}^{n}} k_{i, j}(x-y, t-s) G^{j}(y, s) \mathrm{d} y \mathrm{~d} s
$$

where $\left(k_{i, j}\right)$ is the Oseen kernel; it is well known that this kernel satisfies the following estimates:

$$
\begin{aligned}
& \left|k_{i, j}(x, t)\right| \leq c_{1} \frac{1}{(\max \{|x|, \sqrt{|t|}\})^{N}} \\
& \left|\frac{\partial^{l_{1}+l_{2}} k_{i, j}}{\partial x^{l_{1}} \partial t^{l_{2}}}(x, t)\right| \leq c_{2} \frac{1}{(\max \{|x|, \sqrt{|t|}\})^{N+l_{1}+2 l_{2}}}, \quad \text { for } l_{1}, l_{2} \in \mathbb{N}
\end{aligned}
$$

for all $(x, t) \in \mathbb{R}^{n} \times(0, \infty)$, where c_{1}, c_{2} are positive constants depending only on n, i, j, l_{1}, l_{2} (see Lerner [7], and LemariéRieusset [2]). Therefore, we get for any $G \in\left(L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)\right)^{n}$

$$
\begin{equation*}
\left|\int_{0}^{t}\left(\mathrm{e}^{(t-s) \Delta} \mathbb{P} \operatorname{div}(G)\right)(x) \mathrm{ds}\right| \leq c_{3} \mathbb{I}_{1}[|G|](x, t), \quad \forall(x, t) \in \mathbb{R}^{n+1} \tag{2.3}
\end{equation*}
$$

From (2.2) and (2.3), we obtain

$$
\begin{equation*}
|u(x, t)| \leq|A(x, t)|+c I_{1}\left[|u|^{2}\right](x, t), \quad \forall(x, t) \in \mathbb{R}^{n+1} \tag{2.4}
\end{equation*}
$$

Now, consider the sequence $\left\{u_{k}\right\}_{k \geq 1} \subset L_{\text {loc }}^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ of functions defined by $u_{1}=0$ and

$$
u_{k+1}(t)=\mathrm{e}^{t \Delta} u_{0}+\int_{0}^{t} \mathrm{e}^{(t-s) \Delta} \mathbb{P} F \mathrm{~d} s-\int_{0}^{t} \mathrm{e}^{(t-s) \Delta} \mathbb{P} \operatorname{div}\left(u_{k} \otimes u_{k}\right) \mathrm{d} s, \quad \forall k \geq 1
$$

Hence, from (2.3) we have

$$
\begin{align*}
& \left|u_{k+1}(x, t)\right| \leq|A(x, t)|+c_{4} \mathbb{I}_{1}\left[\left|u_{k}\right|^{2}\right](x, t) \tag{2.5}\\
& \left|u_{k+1}(x, t)-u_{k}(x, t)\right| \leq c_{5} \mathbb{I}_{1}\left[\left|u_{k}-u_{k-1}\right|\left(\left|u_{k}\right|+\left|u_{k-1}\right|\right)\right](x, t) \tag{2.6}
\end{align*}
$$

for some positive constants c_{4}, c_{5}.
Next, we need the following result, which is proved in Theorem 4.36, [8].
Proposition 2.1. Let μ be a nonnegative Radon measure on \mathbb{R}^{n+1}. Then the following statements are equivalent.

1. For every compact set $E \subset \mathbb{R}^{n+1}$,

$$
\begin{equation*}
\mu(E) \leq c_{6} \operatorname{Cap}_{\mathcal{H}_{1}, 2}(E) \tag{2.7}
\end{equation*}
$$

for some positive constant c_{6}.
2. $\mathbb{I}_{1}[\mu]<\infty$ a.e., and

$$
\begin{equation*}
\mathbb{I}_{1}\left[\left(\mathbb{I}_{1}[\mu]\right)^{2}\right] \leq c_{7} \mathbb{I}_{1}[\mu] \text { a.e. in } \mathbb{R}^{n+1} \tag{2.8}
\end{equation*}
$$

for some positive constant c_{7}.
3. For every compact set $E \subset \mathbb{R}^{n+1}$,

$$
\begin{equation*}
\int_{E}\left(\mathbb{I}_{1}[\mu]\right)^{2} \mathrm{~d} x \mathrm{~d} t \leq c_{8} \operatorname{Cap}_{\mathcal{H}_{1}, 2}(E) \tag{2.9}
\end{equation*}
$$

for some positive constant c_{8}.
Applying Proposition 2.1 to $\mathrm{d} \mu=|A(x, t)|^{2} \mathrm{~d} x \mathrm{~d} t$, we obtain if, for some $\lambda>0$ and for every compact set $E \subset \mathbb{R}^{n+1}$ such that

$$
\begin{equation*}
\int_{E}|A(x, t)|^{2} \mathrm{~d} x \mathrm{~d} t \leq \lambda \operatorname{Cap}_{\mathcal{H}_{1}, 2}(E) \tag{2.10}
\end{equation*}
$$

the following inequalities

$$
\mathbb{I}_{1}\left[|A|^{2}\right]<\infty, \quad \text { a.e. in } \mathbb{R}^{n+1}
$$

and

$$
\begin{equation*}
\mathbb{I}_{1}\left[\left(\mathbb{I}_{1}\left[|A|^{2}\right]\right)^{2}\right] \leq c_{7} c_{6}^{-1} \lambda \mathbb{I}_{1}\left[|A|^{2}\right], \quad \text { a.e. in } \mathbb{R}^{n+1} \tag{2.11}
\end{equation*}
$$

a. Suppose

$$
\begin{equation*}
\mathbb{I}_{1}\left[\left(\mathbb{I}_{1}\left[|A|^{2}\right]\right)^{2}\right] \leq \frac{1}{16 c_{4}^{2}} \mathbb{I}_{1}\left[|A|^{2}\right]<\infty, \quad \text { a.e. in } \mathbb{R}^{n+1} \tag{2.12}
\end{equation*}
$$

we claim that

$$
\begin{equation*}
\left|u_{k}(x, t)\right| \leq|A(x, t)|+4 c_{4} \mathbb{I}_{1}\left[|A|^{2}\right](x, t), \quad \text { for } k \geq 1 . \tag{2.13}
\end{equation*}
$$

Clearly, (2.13) is true for $k=1$. Now assume that (2.13) holds for $k=m$:

$$
\left|u_{m}(x, t)\right| \leq|A(x, t)|+4 c_{4} \mathbb{I}_{1}\left[|A|^{2}\right](x, t), \quad \forall(x, t) \in \mathbb{R}^{n+1}
$$

From (2.5), we obtain

$$
\begin{aligned}
\left|u_{m+1}(x, t)\right| & \leq|A(x, t)|+c_{4} \mathbb{I}_{1}\left[\left|u_{m}\right|^{2}\right](x, t) \\
& \leq|A(x, t)|+2 c_{4} \mathbb{I}_{1}\left[|A|^{2}\right](x, t)+32 c_{4}^{2} \mathbb{I}_{1}\left[\left(\mathbb{I}_{1}\left[|A|^{2}\right]\right)^{2}\right](x, t) \\
& \leq|A(x, t)|+4 c_{4} \mathbb{I}_{1}\left[|A|^{2}\right](x, t) .
\end{aligned}
$$

Note that we use (2.12) in the last inequality. Then, (2.13) is true with $k=m+1$. In other words, we get the claim above.

Hence, from (2.6) and Holder inequality, we have

$$
\begin{aligned}
\left|u_{k+1}-u_{k}\right| & \leq 2 c_{5} \mathbb{I}_{1}\left[\left|u_{k}-u_{k-1}\right||A|\right]+8 c_{5} c_{4} \mathbb{I}_{1}\left[\left|u_{k}-u_{k-1}\right| \mathbb{I}_{1}\left[|A|^{2}\right]\right] \\
& \leq 2 c_{5}\left(\mathbb{I}_{1}\left[\left|u_{k}-u_{k-1}\right|^{2}\right] \mathbb{I}_{1}\left[|A|^{2}\right]\right)^{1 / 2}+8 c_{5} c_{4}\left(\mathbb{I}_{1}\left[\left|u_{k}-u_{k-1}\right|^{2}\right] \mathbb{I}_{1}\left[\left(\mathbb{I}_{1}\left[|A|^{2}\right]\right)^{2}\right]\right)^{1 / 2}
\end{aligned}
$$

b. Now, we suppose

$$
\begin{equation*}
\mathbb{I}_{1}\left[\left(\mathbb{I}_{1}\left[|A|^{2}\right]\right)^{2}\right] \leq M \mathbb{I}_{1}\left[|A|^{2}\right]<\infty, \quad \text { a.e. in } \mathbb{R}^{n+1} \tag{2.14}
\end{equation*}
$$

Then, we have

$$
\begin{equation*}
\left|u_{k+1}-u_{k}\right| \leq 2 c_{5}\left(1+4 c_{4} M^{1 / 2}\right)\left(\mathbb{I}_{1}\left[\left|u_{k}-u_{k-1}\right|^{2}\right] \mathbb{I}_{1}\left[|A|^{2}\right]\right)^{1 / 2} \tag{2.15}
\end{equation*}
$$

We need to prove that

$$
\begin{equation*}
\left|u_{k+1}-u_{k}\right| \leq c_{5} b^{k-2} \mathbb{I}_{1}\left[|A|^{2}\right], \quad \forall k \geq 1 \tag{2.16}
\end{equation*}
$$

where $b=2 c_{5}\left(1+4 c_{4} M^{1 / 2}\right) M^{1 / 2}$.
In fact, (2.16) is true for $k=1$. Next, we assume that (2.16) holds with $k=m$. Then, from (2.15) and (2.14), we have

$$
\begin{aligned}
\left|u_{m+2}-u_{m+1}\right| & \leq 2 c_{5}\left(1+4 c_{4} M^{1 / 2}\right) c_{5} b^{m-2}\left(\mathbb{I}_{1}\left[\left(\mathbb{I}_{1}\left[|A|^{2}\right]\right)^{2}\right] \mathbb{I}_{1}\left[|A|^{2}\right]\right)^{1 / 2} \\
& \leq 2 c_{5}\left(1+4 c_{4} M^{1 / 2}\right) c_{5} b^{m-2} M^{1 / 2} \mathbb{I}_{1}\left[|A|^{2}\right] \\
& =c_{5} b^{m-1} \mathbb{I}_{1}\left[|A|^{2}\right]
\end{aligned}
$$

Thus, (2.16) is also true with $k=m+1$. Or, (2.16) holds for all $k \geq 1$.
Hence, if $b<1$ then u_{k} converges to $u=u_{1}+\sum_{j=1}^{\infty}\left(u_{j+1}-u_{j}\right)$ in $L_{\text {loc }}^{2}\left(\mathbb{R}^{n} \times(0, \infty), \mathbb{R}^{n}\right)$, and $\mathbb{I}_{1}\left[\left|u_{k}-u\right|^{2}\right] \rightarrow 0$ a.e. in \mathbb{R}^{n}. Moreover, we have

$$
|u| \leq|A|+4 c_{4} \mathbb{I}_{1}\left[|A|^{2}\right] .
$$

Note that $b<1$ is equivalent to

$$
M<\frac{1}{4 c_{4}}\left(\sqrt{\frac{1}{4 c_{4}}+\frac{1}{2 c_{5}}}-\frac{1}{4 c_{4}}\right)^{2}
$$

Combining this with (2.12) and (2.10)-(2.11), we conclude that the problem (1.1) admits a solution u satisfying (1.3) with

$$
C(N)=\frac{c_{6}}{c_{7}} \min \left\{\frac{1}{16 c_{4}^{2}}, \frac{1}{8 c_{4}}\left(\sqrt{\frac{1}{4 c_{4}}+\frac{1}{2 c_{5}}}-\frac{1}{4 c_{4}}\right)^{2}\right\}
$$

Thus, the proof of Theorem 1.1 is complete.

Remark 2.2. We can show that

$$
\sup _{\text {compact } E \subset \mathbb{R}^{n+1}}\left\{\frac{\int_{E}\left|u_{k}-u\right|^{2} \mathrm{~d} x \mathrm{~d} t}{\operatorname{Cap}_{\mathcal{H}_{1}, 2}(E)}\right\}^{\frac{1}{2}} \rightarrow 0 \text { as } k \rightarrow \infty .
$$

Remark 2.3. By (2.4), if we consider the equation

$$
\begin{equation*}
U=c \mathbb{I}_{1}\left[U^{2}\right]+\varepsilon f, \tag{2.17}
\end{equation*}
$$

for some $\varepsilon>0$, with $U \in L_{\text {loc }}^{2}\left(\mathbb{R}^{n+1}\right)$ then the following two statements are equivalent.
a. For every compact set $E \subset \mathbb{R}^{n+1}, \int_{E} f^{2} \mathrm{~d} x \mathrm{~d} t \leq C \operatorname{Cap}_{\mathcal{H}_{1}, 2}(E)$ for some constant $C>0$.
b. There exists a solution $U \in L_{\text {loc }}^{2}\left(\mathbb{R}^{n+1}\right)$ of equation (2.17). In particular, we can apply $f=A(x, t)$.

References

[1] J. Bourgain, N. Pavlović, Ill-posedness of the Navier-Stokes equations in a critical space in 3D, J. Funct. Anal. 255 (2008) $2233-2247$.
[2] P.G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman \& Hall/CRC Res. Notes Math., 2002.
[3] T. Kato, Strong L^{p}-solutions of the Navier-Stokes equation in R^{m}, with applications to weak solutions, Math. Z. 187 (1984) 471-480.
[4] T. Kato, Strong solutions of the Navier-Stokes equation in Morrey spaces, Bol. Soc. Bras. Mat. (N.S.) 22 (1992) 127-155.
[5] H. Kozono, M. Yamazaki, The stability of small stationary solutions in Morrey spaces of the Navier-Stokes equation, Indiana Univ. Math. J. 44 (1995) 1307-1335.
[6] H. Koch, D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math. 157 (2001) 22-35.
[7] N. Lerner, A note on the Oseen kernels, in: Advances in Phase Space Analysis of Partial Differential Equations, in: Prog. Nonlinear Differ. Equ. Appl., vol. 78, Birkhäuser, 2009, pp. 161-170.
[8] Q.-H. Nguyen, Potential estimates and quasilinear equations with measure data, arXiv:1405.2587v1.
[9] T.V. Phan, N.C. Phuc, Stationary Navier-Stokes equations with critically singular forces: existence and stability results, Adv. Math. 241 (2013) 137-161.
[10] H. Sohr, The Navier-Stokes Equations: An Elementary Functional Analytic Approach, Birkhäuser, 2001.
[11] M.E. Taylor, Analysis of Morrey spaces and applications to Navier-Stokes and other evolution equations, Commun. Partial Differ. Equ. 17 (1992) 1407-1456.

[^0]: E-mail addresses: daonguyenanh@tdt.edu.vn (N.A. Dao), quochung.nguyen@sns.it (Q.-H. Nguyen).
 http://dx.doi.org/10.1016/j.crma.2017.09.007
 1631-073X/© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

