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r é s u m é

Nous établissons une condition suffisante pour l’existence de solutions aux équations de 
Navier–Stokes incompressibles, avec force externe dépendant du temps et singulière, dans 
un espace défini en termes de la capacité CapH1,2(E).

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main result

In this paper, we establish a sufficient condition for the existence of solutions to the incompressible Navier–Stokes 
equations (in short NSE):⎧⎪⎨

⎪⎩
∂t u − �u + div(u ⊗ u) + ∇p = F in R

n × (0,∞),

div u = 0 in R
n × (0,∞),

u(0) = u0 in R
n,

(1.1)

where u with value in ∈ R
n (n ≥ 2) is the velocity, and p with value ∈ R is the pressure.

It is not hard to see that, if the pair (u(x, t), p(x, t)) solves NSE (1.1), then (uλ(x, t), pλ(x, t)) with

uλ(x, t) = λu(λx, λ2t),
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pλ(x, t) = λ2 p(λx, λ2t)

is a solution to the system (1.1) with the initial and the force data

u0,λ(x) = λu0(λx),

Fλ(x, t) = λ3 F (λx, λ2t).

It is well known that the following continuous embeddings hold

Ln(Rn) ⊂ Mq,q(Rn) ⊂ BM O −1(Rn) ⊂ B−1,∞∞ (Rn), (1.2)

where Mq,q(Rn) is the Morrey space with order (q, q), q ∈ [1, n], i.e. the set of functions f ∈ Lq(Rn) such that

|| f ||Mq,q(Rn) := sup
Br(x0)⊂Rn

⎧⎪⎨
⎪⎩rq−n

∫
Br(x0)

| f (x)|qdx

⎫⎪⎬
⎪⎭

1
q

,

and the space BM O −1(Rn) is the set of distributions f satisfying

|| f ||BM O−1(Rn) := sup
Br(x0)⊂Rn

⎧⎪⎨
⎪⎩r−n

r2∫
0

∫
Br(x0)

|es� f (x)|2dx ds

⎫⎪⎬
⎪⎭

1
2

and the space B−1,∞∞ (Rn) is the Besov space equipped with the norm

|| f ||B−1,∞∞ (Rn)
:= sup

t>0
t

1
2 ||et� f (.)||L∞(Rn).

Those spaces are invariant under the scaling f (.) → λ f (λ.), in the sense that ‖ f ‖E = ‖λ f ‖E .
T. Kato [3] initiated the study of (1.1) with F ≡ 0 and the initial data belonging to the space Ln(Rn). He obtained the 

global existence of solutions in a subspace of C([0, ∞), Ln(Rn)) if the norm ||u0||Ln(Rn) is small enough. The global existence 
result also holds for the small initial data in the homogeneous Morrey space Mq,q(Rn), for 1 ≤ q ≤ n (see [4], [5], [11]). 
Later in 2001, H. Kock and D. Tataru [6] showed that the global well-posedness of NSE holds with small initial data in the 
space BM O −1. Otherwise, J. Bourgain and N. Pavlović [1] showed that (1.1) with initial data in B−1,∞∞ (Rn) is ill-posed no 
matter how the initial data are.

Recently, T.V. Phan and N.C. Phuc [9] proved the existence of solutions to the stationary equation of (1.1) with data 
singular external force F in space V1,2(Rn). We refer the detail of this space to [9].

In this paper, we consider the global existence of solutions of problem (1.1) with initial data and forcing term. In order 
to state it, we recall that the (H1, 2)-capacity of a Borel set E ⊂ R

n+1 is defined by

CapH1,2(E) = inf

⎧⎪⎨
⎪⎩
∫

Rn+1

| f |2dx dt : f ∈ L2+(Rn+1),H1 ∗ f ≥ χE

⎫⎪⎬
⎪⎭

where H1 is the Heat kernel of the first order:

H1(x, t) =
(
(4π)n/2�(1/2)

)−1 χ(0,∞)(t)

t(n+1)/2
exp

(
−|x|2

4t

)
for (x, t) in R

n+1.

The Riesz parabolic kernel of order one I1 is defined by:

I1[μ](x, t) =
∞∫

0

μ(Q̃ ρ(x, t))

ρn+1

dρ

ρ
,

where Q̃ ρ(x, t) = Bρ(x) × (t − ρ2/2, t + ρ2/2) ⊂R
n+1 and μ is a nonnegative Radon measure on Rn+1.

Let us define

Y =
⎧⎨
⎩g ∈ L2

loc(R
n+1) : ‖g‖Y = sup

E⊂Rn+1

{∫
E |g(x, t)|2dx dt

CapH1,2(E)

} 1
2

< +∞
⎫⎬
⎭ ,

with the supremum being taken over all compact sets E ⊂ R
n+1.
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For any 2 < l ≤ n + 2, we have the following embeddings:

Ln+2(Rn+1) ⊂ Ml,l∗ (Rn+1) ⊂ Y ⊂ M2,2∗ (Rn+1),

where Ml,l∗ (Rn+1) = sup
Q̃ ρ(x0,t0)⊂Rn+1

⎛
⎜⎜⎝ρl−(n+2)

∫
Q̃ ρ(x0,t0)

| f (x, t)|ldx dt

⎞
⎟⎟⎠ is the Morrey space corresponding to the parabolic 

problem.
To our purpose later, we define the space:

Z =

⎧⎪⎨
⎪⎩F ∈ D′(Rn+1) : sup

E⊂Rn+1

⎛
⎝∫

E

| ∫ t
0 e(t−s)�

PF ds|2
CapH1,2(E)

dx dt

⎞
⎠

1/2

< +∞

⎫⎪⎬
⎪⎭ ,

where the norm is defined by

‖F‖Z = sup
E⊂Rn+1

⎛
⎝∫

E

| ∫ t
0 e(t−s)�

PF ds|2
CapH1,2(E)

dx dt

⎞
⎠

1/2

.

Next, we define

X = {g ∈ D′(Rn) : ‖et� g‖Y < +∞} ,
where the norm on X is defined by ‖g‖X = ‖et� g‖Y .

Then, we observe that

CapH1,2(Q̃ ρ(x, t)) = ρnCapH1,2(Q̃ 1(0)) for any ρ > 0,

and

CapH1,2(E) ≥ C |E|1− 2
n+2 ,

for any Borel set E ⊂ R
n+1, see [8]. Thus, it is not difficult to show that, for 1 < q < n,

Mq,q(Rn) ⊂ X ⊂ BM O −1(Rn) ⊂ B−1,∞∞ (Rn).

Put

A(x, t) :=
{

(et�u0)(x) + ∫ t
0 (e(t−s)�

PF )(x)ds if (x, t) ∈ R
n × [0,+∞),

0 otherwise

where P = id − ∇�−1∇ . is the Helmholtz–Leray projection onto the vector fields of zero divergence, i.e. for any f ∈ R
n , 

P f = f − ∇u and �u = div f .
Then, we have the following theorem.

Theorem 1.1. There exists a constant c1 = c1(n) > 0 such that, if ‖u0‖X + ‖F‖Z < c1 , then problem (1.1) admits a global solution 
satisfying

|u(x, t)| ≤ |A(x, t)| + cI1[|A|2](x, t), ∀(x, t) ∈ R
n × (0,∞), (1.3)

for some constant c = c(n) > 0.
In the particular case when F ≡ 0, the assumption reads∫

E

|(et�u0)(x)|2dx dt ≤ C CapH1,2(E), (1.4)

for any compact set E ⊂ R
n+1 , and the pointwise estimate (1.3) becomes

|u(x, t)| ≤ |et�u0|(x, t) + C̃I1[|et�u0|2](x, t).
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Remark 1.2. Note that we have the following embeddings:

L(n+2)/3(Rn+1) ⊂ Z1 ⊂ Z0 ⊂ Z ,

where Z0 =
{

F : F = div( f ), f ∈ L1
loc(R

n+1) : sup
E⊂Rn+1

∫
E | f |dx dt

CapH1,2(E)
< +∞

}
, with the norm ‖F‖Z0 =

inf
f :div( f )=F

sup
E⊂Rn+1

∫
E | f |dx dt

CapH1,2(E)
; and

Z1 =

⎧⎪⎪⎨
⎪⎪⎩F : F = div( f ), with sup

Q̃ρ(x0,t0)⊂Rn+1

⎛
⎜⎜⎝ρ2p−(n+2)

∫
Q̃ρ(x0,t0)

| f (x, t)|pdx dt

⎞
⎟⎟⎠

1/p

< ∞

⎫⎪⎪⎬
⎪⎪⎭ ,

for 1 < p < (n + 2)/2, with the norm

‖F‖Z1 = inf
f :div( f )=F

sup
Q̃ρ(x0,t0)⊂Rn+1

⎛
⎜⎜⎝ρ2p−(n+2)

∫
Q̃ρ(x0,t0)

| f (x, t)|pdx dt

⎞
⎟⎟⎠

1/p

.

As a consequence of above Theorem and Remark 1.2, we have the following result.

Corollary 1.3. If u0 ∈ X, and F ∈ Z1 , such that ‖u0‖X + ‖F‖Z1 is small enough then equation (1.1) admits a global solution.

2. Proof of Theorem 1.1

Let u be a mild solution of (1.1), i.e. u ∈ L2
loc(R

n, Rn) such that{
∂t u − �u + Pdiv(u ⊗ u) = PF in R

n × (0,∞),

u(0) = u0 in R
n.

(2.1)

By Duhamel’s principle (see [10]), we get

u(t) = et�u0 +
t∫

0

e(t−s)�
PF ds −

t∫
0

e(t−s)�
Pdiv(u ⊗ u)ds. (2.2)

For any distribution G : RN × (0, ∞) → R
n , we can write

t∫
0

e(t−s)�(PG)ids =
t∫

0

∫
Rn

ki, j(x − y, t − s)G j(y, s)dy ds,

where (ki, j) is the Oseen kernel; it is well known that this kernel satisfies the following estimates:

|ki, j(x, t)| ≤ c1
1

(max{|x|,√|t|})N
,

|∂
l1+l2ki, j

∂xl1∂tl2
(x, t)| ≤ c2

1

(max{|x|,√|t|})N+l1+2l2
, for l1, l2 ∈N,

for all (x, t) ∈R
n × (0, ∞), where c1, c2 are positive constants depending only on n, i, j, l1, l2 (see Lerner [7], and Lemarié-

Rieusset [2]). Therefore, we get for any G ∈ (L1
loc(R

n))n

∣∣∣∣∣∣
t∫

0

(
e(t−s)�

Pdiv(G)
)

(x)ds

∣∣∣∣∣∣≤ c3I1[|G|](x, t), ∀(x, t) ∈R
n+1. (2.3)

From (2.2) and (2.3), we obtain

|u(x, t)| ≤ |A(x, t)| + cI1[|u|2](x, t), ∀(x, t) ∈R
n+1. (2.4)
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Now, consider the sequence {uk}k≥1 ⊂ L2
loc(R

n, Rn) of functions defined by u1 = 0 and

uk+1(t) = et�u0 +
t∫

0

e(t−s)�
PF ds −

t∫
0

e(t−s)�
Pdiv(uk ⊗ uk)ds, ∀k ≥ 1.

Hence, from (2.3) we have

|uk+1(x, t)| ≤ |A(x, t)| + c4I1[|uk|2](x, t), (2.5)

|uk+1(x, t) − uk(x, t)| ≤ c5I1[|uk − uk−1|(|uk| + |uk−1|)](x, t), (2.6)

for some positive constants c4, c5.
Next, we need the following result, which is proved in Theorem 4.36, [8].

Proposition 2.1. Let μ be a nonnegative Radon measure on Rn+1. Then the following statements are equivalent.

1. For every compact set E ⊂R
n+1 ,

μ(E) ≤ c6CapH1,2(E), (2.7)

for some positive constant c6.
2. I1[μ] < ∞ a.e., and

I1[(I1[μ])2] ≤ c7I1[μ] a.e. in R
n+1, (2.8)

for some positive constant c7.
3. For every compact set E ⊂R

n+1 ,∫
E

(I1[μ])2dx dt ≤ c8CapH1,2(E), (2.9)

for some positive constant c8.

Applying Proposition 2.1 to dμ = |A(x, t)|2dx dt , we obtain if, for some λ > 0 and for every compact set E ⊂ R
n+1 such 

that ∫
E

|A(x, t)|2dx dt ≤ λCapH1,2(E), (2.10)

the following inequalities

I1[|A|2] < ∞, a.e. in R
n+1,

and

I1[(I1[|A|2])2] ≤ c7c−1
6 λI1[|A|2], a.e. in R

n+1. (2.11)

a. Suppose

I1[(I1[|A|2])2] ≤ 1

16c2
4

I1[|A|2] < ∞, a.e. in R
n+1, (2.12)

we claim that

|uk(x, t)| ≤ |A(x, t)| + 4c4I1[|A|2](x, t), for k ≥ 1. (2.13)

Clearly, (2.13) is true for k = 1. Now assume that (2.13) holds for k = m:

|um(x, t)| ≤ |A(x, t)| + 4c4I1[|A|2](x, t), ∀(x, t) ∈R
n+1.

From (2.5), we obtain

|um+1(x, t)| ≤ |A(x, t)| + c4I1[|um|2](x, t)

≤ |A(x, t)| + 2c4I1[|A|2](x, t) + 32c2
4I1[
(
I1[|A|2]

)2](x, t)

≤ |A(x, t)| + 4c4I1[|A|2](x, t).

Note that we use (2.12) in the last inequality. Then, (2.13) is true with k = m + 1. In other words, we get the claim above.
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Hence, from (2.6) and Holder inequality, we have

|uk+1 − uk| ≤ 2c5I1[|uk − uk−1||A|] + 8c5c4I1

[
|uk − uk−1|I1[|A|2]

]

≤ 2c5

(
I1[|uk − uk−1|2]I1[|A|2]

)1/2 + 8c5c4

(
I1

[
|uk − uk−1|2

]
I1

[(
I1[|A|2]

)2
])1/2

.

b. Now, we suppose

I1[(I1[|A|2])2] ≤ MI1[|A|2] < ∞, a.e. in R
n+1. (2.14)

Then, we have

|uk+1 − uk| ≤ 2c5(1 + 4c4M1/2)
(
I1[|uk − uk−1|2]I1[|A|2]

)1/2
. (2.15)

We need to prove that

|uk+1 − uk| ≤ c5bk−2
I1[|A|2], ∀k ≥ 1, (2.16)

where b = 2c5(1 + 4c4M1/2)M1/2.
In fact, (2.16) is true for k = 1. Next, we assume that (2.16) holds with k = m. Then, from (2.15) and (2.14), we have

|um+2 − um+1| ≤ 2c5(1 + 4c4M1/2)c5bm−2
(
I1[
(
I1[|A|2]

)2]I1[|A|2]
)1/2

≤ 2c5(1 + 4c4M1/2)c5bm−2M1/2
I1[|A|2]

= c5bm−1
I1[|A|2].

Thus, (2.16) is also true with k = m + 1. Or, (2.16) holds for all k ≥ 1.
Hence, if b < 1 then uk converges to u = u1 +∑∞

j=1(u j+1 − u j) in L2
loc(R

n × (0, ∞), Rn), and I1[|uk − u|2] → 0 a.e. in R
n .

Moreover, we have

|u| ≤ |A| + 4c4I1[|A|2].
Note that b < 1 is equivalent to

M <
1

4c4

(√
1

4c4
+ 1

2c5
− 1

4c4

)2

.

Combining this with (2.12) and (2.10)–(2.11), we conclude that the problem (1.1) admits a solution u satisfying (1.3) with

C(N) = c6

c7
min

⎧⎨
⎩ 1

16c2
4

,
1

8c4

(√
1

4c4
+ 1

2c5
− 1

4c4

)2
⎫⎬
⎭ .

Thus, the proof of Theorem 1.1 is complete.

Remark 2.2. We can show that

sup
compact E⊂Rn+1

{∫
E |uk − u|2dx dt

CapH1,2(E)

} 1
2

→ 0 as k → ∞.

Remark 2.3. By (2.4), if we consider the equation

U = cI1[U 2] + ε f , (2.17)

for some ε > 0, with U ∈ L2
loc(R

n+1) then the following two statements are equivalent.

a. For every compact set E ⊂ R
n+1, 

∫
E f 2dx dt ≤ C CapH1,2(E) for some constant C > 0.

b. There exists a solution U ∈ L2
loc(R

n+1) of equation (2.17). In particular, we can apply f = A(x, t).
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[1] J. Bourgain, N. Pavlović, Ill-posedness of the Navier–Stokes equations in a critical space in 3D, J. Funct. Anal. 255 (2008) 2233–2247.
[2] P.G. Lemarié-Rieusset, Recent Developments in the Navier–Stokes Problem, Chapman & Hall/CRC Res. Notes Math., 2002.
[3] T. Kato, Strong Lp -solutions of the Navier–Stokes equation in Rm , with applications to weak solutions, Math. Z. 187 (1984) 471–480.
[4] T. Kato, Strong solutions of the Navier–Stokes equation in Morrey spaces, Bol. Soc. Bras. Mat. (N.S.) 22 (1992) 127–155.
[5] H. Kozono, M. Yamazaki, The stability of small stationary solutions in Morrey spaces of the Navier–Stokes equation, Indiana Univ. Math. J. 44 (1995) 

1307–1335.
[6] H. Koch, D. Tataru, Well-posedness for the Navier–Stokes equations, Adv. Math. 157 (2001) 22–35.
[7] N. Lerner, A note on the Oseen kernels, in: Advances in Phase Space Analysis of Partial Differential Equations, in: Prog. Nonlinear Differ. Equ. Appl., 

vol. 78, Birkhäuser, 2009, pp. 161–170.
[8] Q.-H. Nguyen, Potential estimates and quasilinear equations with measure data, arXiv:1405.2587v1.
[9] T.V. Phan, N.C. Phuc, Stationary Navier–Stokes equations with critically singular forces: existence and stability results, Adv. Math. 241 (2013) 137–161.

[10] H. Sohr, The Navier–Stokes Equations: An Elementary Functional Analytic Approach, Birkhäuser, 2001.
[11] M.E. Taylor, Analysis of Morrey spaces and applications to Navier–Stokes and other evolution equations, Commun. Partial Differ. Equ. 17 (1992) 

1407–1456.

http://refhub.elsevier.com/S1631-073X(17)30225-X/bib426F5061s1
http://refhub.elsevier.com/S1631-073X(17)30225-X/bib4C655269s1
http://refhub.elsevier.com/S1631-073X(17)30225-X/bib4B6131s1
http://refhub.elsevier.com/S1631-073X(17)30225-X/bib4B6132s1
http://refhub.elsevier.com/S1631-073X(17)30225-X/bib4B6F5961s1
http://refhub.elsevier.com/S1631-073X(17)30225-X/bib4B6F5961s1
http://refhub.elsevier.com/S1631-073X(17)30225-X/bib4B6F5461s1
http://refhub.elsevier.com/S1631-073X(17)30225-X/bib4C657273s1
http://refhub.elsevier.com/S1631-073X(17)30225-X/bib4C657273s1
http://refhub.elsevier.com/S1631-073X(17)30225-X/bib5148s1
http://refhub.elsevier.com/S1631-073X(17)30225-X/bib54756F6350687563s1
http://refhub.elsevier.com/S1631-073X(17)30225-X/bib536F72s1
http://refhub.elsevier.com/S1631-073X(17)30225-X/bib546179s1
http://refhub.elsevier.com/S1631-073X(17)30225-X/bib546179s1

	Nonstationary Navier-Stokes equations with singular time-dependent external forces
	1 Introduction and main result
	2 Proof of Theorem 1.1
	References


